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Abstract—This paper derives the Cramer–Rao bound (CRB)
related to the estimation of the time delay of a linearly modulated
bandpass signal with unknown carrier phase and frequency. We
consider the following two scenarios: joint estimation of the time
delay, the carrier phase, and the carrier frequency; and joint esti-
mation of the time delay and the carrier frequency irrespective of
the carrier phase. The transmit pulse is a bandlimited square-root
Nyquist pulse. For each scenario, the transmitted symbols consti-
tute either an a priori known training sequence or an unknown
random data sequence. In spite of the presence of random data
symbols and/or a random carrier phase, we obtain a relatively
simple expression of the CRB, from which the effect of the constel-
lation and the transmit pulse are easily derived. We show that the
penalty resulting from estimating the time delay irrespective of
the carrier phase decreases with increasing observation interval.
However, the penalty, caused by not knowing the data symbols a
priori, cannot be reduced by increasing the observation interval.
Comparison of the true CRB to existing symbol synchronizer
performance reveals that decision-directed timing recovery is
close to optimum for moderate-to-large signal-to-noise ratios.

Index Terms—Carrier synchronization, Cramer–Rao bound
(CRB), symbol synchronization, timing estimation.

I. INTRODUCTION

THE Cramer–Rao bound (CRB) is a lower bound on the
error variance of any unbiased estimate, and as such,

serves as a useful benchmark for practical estimators [1]. In
many cases, the statistics of the observation depend not only
on the vector parameter to be estimated, but also on a nuisance
vector parameter we do not want to estimate. A common
example is the estimation of the synchronization parameters
(carrier frequency offset, carrier phase, time delay) of a signal
carrying digital information, with the unknown data symbols
acting as nuisance parameters. The presence of the nuisance
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parameters makes the computation of the likelihood function
and the corresponding CRB very hard.

In order to avoid the computational complexity caused by the
nuisance parameters, a modified CRB (MCRB) has been de-
rived in [2] and [3]. The MCRB is much simpler to evaluate
than the true CRB, but is, in general, looser. In [4], the high
signal-to-noise ratio (SNR) limit of the true CRB related to the
estimation of a scalar parameter has been evaluated analytically.
In [5], the low-SNR limits of the true CRBs for timing recovery,
both irrespective of the carrier phase and with a priori known
carrier phase, have been obtained analytically, assuming per-
fect carrier frequency recovery; the low-SNR limits of the true
CRBs for carrier phase and frequency estimation, assuming per-
fect timing, are dealt with in [6]. The closed-form expression of
the CRB in the presence of random data has been presented only
for very few cases, pertaining either to carrier phase and fre-
quency estimation, assuming the timing to be known [7]–[10],
or to timing estimation, assuming perfect carrier synchroniza-
tion [11].

However, in practice, it is unusual to perform carrier syn-
chronization prior to timing recovery. Therefore, in this paper,
we further consider the true CRB related to time-delay estima-
tion in the following more realistic scenarios: joint estimation
of the time delay, the carrier phase, and the carrier frequency;
and joint estimation of the time delay and the carrier frequency
irrespective of the carrier phase. The transmitted symbols are
either known (training sequence) or unknown (random data) to
the receiver, and are taken from an -ary phase-shift keying
(M-PSK), -ary quadrature amplitude modulation (M-QAM),
or -ary pulse amplitude modulation (M-PAM) constellation.
The transmit pulse is a bandlimited square-root Nyquist pulse.
In Section II, the CRB is defined and some related results from
the literature are briefly reviewed. We tackle the problem of
drastically reducing the computational complexity of the CRB
in Section III. Section IV investigates the behavior of the CRB
as a function of the SNR, the constellation, the transmitted se-
quence length, and the shape of the transmit pulse. The CRB is
compared with the actual performance of two timing synchro-
nizers in Section V. In Section VI, conclusions are drawn and
suggestions for further research formulated. One of the main
conclusions is that for moderate and large observation intervals,
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the CRBs for timing estimation in the above two scenarios are
essentially the same as with perfect carrier synchronization.

II. PROBLEM FORMULATION

Let us consider the complex baseband representation of
a noisy linearly modulated signal

(1)

where is a vector of symbols
taken from an M-PSK, M-QAM, or M-PAM constellation;
is a real-valued unit-energy square-root Nyquist pulse; is the
time delay, is the carrier phase at , is the carrier fre-
quency offset; is the symbol interval; is complex-valued
zero-mean Gaussian noise with independent real and imaginary
parts, each having a normalized power spectral density (PSD) of

, with and denoting the symbol energy and the
noise PSD, respectively. The transmitted symbols are either un-
known random data or a priori known training symbols. In the
former case, the random data symbols are assumed to be sta-
tistically independent (hence, uncoded) and equally likely, sat-
isfying the normalization constraint . In the latter
case, the symbols of the training sequence are selected from the
same normalized constellations.

Suppose that one is able to produce from an observation
vector an unbiased estimate of a deterministic vector
parameter . Then the estimation error variance is lower
bounded by the CRB [1]: , where

is the th diagonal element of the inverse of the
Fisher information matrix (FIM) . The th element of

is given by

(2)

Note that is a symmetrical matrix. When the element
, the parameters and are said to be decoupled.

The probability density of , viewed as a function of ,
is called the likelihood function of , while is the
log-likelihood function (LLF) of . The expectation in
(2) is with respect to .

When the observation depends not only on the parameter
to be estimated, but also on a nuisance vector parameter , the
likelihood function of is obtained by averaging the likelihood
function of the vector over the a priori distri-
bution of the nuisance parameter: . We
refer to as the joint likelihood function, as
is relevant to the joint estimation of and .

We investigate two scenarios. For each scenario, the trans-
mitted symbols form either a known training sequence or an un-
known random data sequence.

Scenario (i): joint estimation of . The useful param-
eter is given by . There is no nuisance parameter
when the transmitted symbols are known. In the case of random
data, the nuisance parameter is given by .

Scenario (ii): joint estimation of irrespective of . The
useful parameter is given by . The nuisance param-
eter is given by when the transmitted symbols are known,
or by when the symbols are random data. In this sce-
nario, is considered as uniformly distributed in .

For both scenarios, the joint likelihood function is,
within a factor not depending on , given by

(3)

where

(4)

In (3), is a vector representation of the signal from (1),
and , where is defined as

(5)

Note that is obtained by first frequency-correcting by an
amount , then applying the result to a filter that is matched
to the transmit pulse , sampling the matched-filter output
at instant , and finally rotating the matched-filter output
sample over an angle . Hence, is a function of ,
whereas depends only on . The LLF re-
sulting from (3) is

(6)

Computation of the CRB requires the substitution of (6) into
(2), and the evaluation of the various expectations included in
(6) and (2).

As the evaluation of the expectations involved in and
is quite tedious, a simpler lower bound, called the modi-

fied CRB (MCRB), has been derived in [2] and [3], i.e.,
, where is the th

diagonal element of the inverse of the modified Fisher informa-
tion matrix (MFIM) . The th element of is
given by

(7)

and denotes averaging over both and , i.e., with re-
spect to . Note that (7) is much simpler than (2) as far
as analytical evaluation is concerned.

Let us introduce the Nyquist pulse given by

(8)

and denote its first and second derivate with respect to as
and , respectively; for real-valued , the pulses and

are even in , whereas is an odd function of . Then,
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assuming random data, the MCRB for timing estimation, corre-
sponding to from (1), is for both scenarios (i) and (ii) given
by [2], [3]

(9)

where

(10)

and denotes the number of symbols transmitted
within the observation interval. Note that in (9), the timing error
has been normalized by the symbol interval . The MCRB is
inversely proportional to and to , and does not depend
on the symbol constellation; the shape of the transmit pulse
affects only , which is an increasing function of the excess
bandwidth of the transmit pulse .

When known symbols are transmitted, the MCRB depends
on the particular training sequence selected. We consider a
training sequence such that, as grows, the time averages
of interest, involving the particular sequence, converge to the
corresponding statistical averages of a sequence of random
data symbols that belong to the same constellation as the
training symbols. It will be assumed that the sequence length
is sufficiently large, so that the MFIM converges to the MFIM
that corresponds to random data; hence, the MCRB for known
symbols converges to the MCRB (9) for random data. This is
illustrated in Appendix 1. In the case of known symbols, not
only the MCRB, but also the CRB, depends on the particular
training sequence selected. Again, it will be assumed that the
sequence length is sufficiently large, so that, using similar
arguments as above, the dependence of the CRB on the training
sequence can safely be ignored.

Let us define by and the high-SNR and
low-SNR asymptotic CRBs (ACRBs) that are obtained as the
limit of CRB for and , respectively.
In [4], the high-SNR limit of the CRB related to the estima-
tion of a scalar parameter has been evaluated analytically. For
timing estimation when both the carrier phase and frequency
are known [which we will show to be relevant to Scenario (i)],
it follows from [4] that equals MCRB from (9) when
the data symbols are random; in the case of a training sequence,

converges to MCRB with increasing sequence length
. For timing estimation, irrespective of the carrier phase and as-

suming the carrier frequency to be known [which we will show
to be relevant to Scenario (ii)], it follows from [4] that ,
for random data symbols as well as a priori known training sym-
bols, converges to MCRB from (9) when the sequence length
increases. Also, a closed-form expression can be derived for the
low-SNR limit . In [5], this has been accomplished as-
suming random data symbols. One obtains

(11)

(12)

The two superscripts in (11)–(12) and in subsequent equations
related to the CRBs refer to Scenario (i) or (ii) and to the re-
ceiver’s knowledge about the transmitted symbols (ra: random
data, kn: known training sequence). In (12), the quantity is
given by

(13)

The approximation in (13) is valid when the observation
interval is much longer than the duration of , in which
case becomes independent of . Equations (11)–(12) show
that the is inversely proportional to (assuming
large , so that the approximation in (13) holds) and to the
square of . For a given constellation type, the number
( ) of constellation points has no influence on . The
shape of the transmit pulse only affects , which
grows (more rapidly than ) with the excess bandwidth of the
transmit pulse . It should be noted that the does
not necessarily provide a lower bound on the actual timing error
variance for moderate and large SNR. For complex-valued
constellations (M-PSK with , M-QAM) both sce-
narios yield the same low-SNR limit of the CRB, whereas for
real-valued constellations (M-PAM), Scenario (ii) yields an

that is twice as large as the from Scenario (i).
In the case where the transmitted symbols are known, the first
scenario contains no nuisance parameters, so that the CRB and
the MCRB coincide; hence, assuming a long training sequence,
the corresponding CRB equals MCRB from (9). For the second
scenario, the low-SNR limit can be derived as in [5];
the result for a long training sequence is

(14)

which is proportional to and (not ).

III. EVALUATION OF THE TRUE CRB

In this section, we compute the true CRBs resulting from
the two scenarios mentioned above, for both random data and
known training symbols, assuming PAM, PSK, and QAM con-
stellations, and a bandlimited square-root Nyquist pulse .
We define .

A. Joint Estimation of and ; Random Data Symbols

We first concentrate on rotationally symmetric constellations
with , i.e., M-PSK with and M-QAM, but
not M-PAM. The case of M-PAM is dealt with at the end of this
subsection.

Taking in (6) , we obtain

(15)

where

(16)
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is given by (4), and is the set of
constellation points. Differentiation of (15) yields

(17)

where

(18)

(19)

and the subscript denotes differentiation with respect to ,
i.e.,

(20)

with . Further, we define as
. Note that does not depend on ; we have

and for . Taking (17) into
account, from (2) can be represented as

(21)

where denotes averaging over the quantities
, and . As this averaging cannot be

done analytically, we have to resort to a numerical evaluation.
However, because of the correlation between the quantities

, and , a brute-force numerical averaging
is quite time consuming (brute force computation is briefly
discussed in Section IV). Taking into account the Gaussian
nature of the noise components in and , we were able
to perform analytically the averaging in (21) over and

, conditioned on and . Further evaluation of (21)
then requires numerically averaging only over and ,
which are statistically independent. This procedure reduces the
numerical complexity considerably. More details are outlined
in [11] for the special case where and are a priori known.

We obtain and , which indicates that there
is no coupling between the parameters and . This means
that (at least for small errors) the inaccuracy in carrier recovery
does not impact timing delay estimation and vice versa. Conse-
quently, the is the same as the CRB from [11], which
is related to timing recovery, assuming the carrier phase and fre-
quency a priori known. This implies that the high and low SNR
limits of the CRB are given by (9) and (11), respectively, and
that the true CRB for M-PSK and M-QAM is given
by

(22)

where

(23)

(24)

The expectations in (23) and (24) are with respect to
, where is a data symbol taken ran-

domly from the constellation, and is a complex-valued
zero-mean Gaussian random variable with uncorrelated real
and imaginary parts, each having a variance equal to .
The quantities , and depend
on and on the constellation, but not on the shape
of the square-root Nyquist transmit pulse. The quantities

and can easily be evaluated by
means of numerically averaging. The shape of the transmit
pulse affects only the quantities and in (22). Note that

and being decoupled also implies that the CRBs for
joint frequency and phase estimation under Scenario (i) with
random data are the same as for joint carrier frequency and
phase recovery, assuming the timing to be known; these CRBs
related to carrier synchronization have been considered in
[7]–[10].

Until now we have excluded from consideration the M-PAM
constellation. The case of M-PAM can be dealt with in a similar
way as above. It turns out that the CRB for M-PAM is related to
the CRB for -QAM by

(25)

B. Joint Estimation of and ; Known Training Symbols

In this scenario, there are no nuisance parameters. Hence, the
CRB equals the MCRB, which, in principle, depends on the
particular training sequence transmitted. For long training se-
quences, the elements and of the FIM (2) approach
zero, whereas approaches 1/MCRB. Hence, also and

are essentially decoupled, and the resulting CRB for timing
estimation reduces to the MCRB given by (9).

C. Joint Estimation of and Irrespective of ; Random
Data Symbols

Again, we first consider M-PSK with and M-QAM,
and deal with M-PAM at the end of this subsection. Taking in
(6) , the LLF is, within an arbitrary
constant, given by

(26)

where , and

(27)
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The quantity is given by (16), and
is the set of constellation points. Differentiation of (26) yields,
for

(28)

where

(29)

Taking (28) into account, we derive from (2) the equation
shown at the bottom of the page, where denotes averaging
over the quantities . Exploiting the Gaussian
nature of the noise components, the average in (30) is com-
puted by first analytically taking the expectation over and

, conditioned on , and then numerically averaging over
.
We obtain , which indicates that also in this scenario

there is no coupling between the parameters and . Conse-
quently, the is the same as the CRB related to timing
estimation irrespective of the carrier phase, assuming the car-
rier frequency to be known. This implies that the high and low
SNR limits of this CRB are given by (9) and (12), respectively.
Hence, , yielding

(31)

where

(32)

(33)

(34)

The expectations in (32) and (33) are with respect to
, where denotes the random data sequence, and is a

sequence of independent zero-mean complex-valued Gaussian
random variables, with uncorrelated real and imaginary parts,
each having a variance equal to . In (32), and rep-
resent two different integers from the interval . As in
Scenario (i), the pulse shape affects the quantities and , but

not the numerical averages. Note that and being decoupled
implies that the CRB for frequency estimation under Scenario
(ii) is the same as the CRB related to frequency recovery irre-
spective of the carrier phase, assuming the timing to be known;
this CRB for frequency estimation has been considered in [9]
and [10].

The case of M-PAM can be handled in a similar way as above.
The CRB for M-PAM is given by (31), provided we replace in
(31) the quantity by

(35)

D. Joint Estimation of and Irrespective of ; Known
Training Symbols

When the transmitted symbols are known at the receiver, the
nuisance parameter is given by , and no averaging of
the joint likelihood function (3) over the symbol sequence is
required. Equation (28) remains valid, provided we remove all
the summations over the constellation points, and replace
by the actual symbol . For long training sequences, is
essentially zero, meaning that and are decoupled; hence,

, yielding

(36)

where is a zero-mean complex Gaussian random vari-
able with uncorrelated real and imaginary parts, each
having a variance equal to . Note that the ratio

is a function of that is indepen-
dent of the shape of the transmit pulse.

IV. NUMERICAL RESULTS AND DISCUSSION

As no further analytical simplification of (22), (31), and (36)
seems possible, we have to resort to numerical computation. For
Scenario (ii), the average with respect to [in (34) and (36)] is
evaluated through numerical integration. Monte Carlo simula-
tion techniques are used to evaluate the statistical expectations
in (23)–(24), (32)–(33), (35), and (36) over the noise (and over
the unknown data symbols) at each SNR. Note that these av-
erages are independent of the transmit pulse, and are with re-
spect to either a scalar [in (23)–(24) and (36)], or an -dimen-
sional vector [in (32)–(33) and (35)] with statistically indepen-

(30)
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Fig. 1. CRB/MCRB for timing estimation [(i): Scenario (i); (ii): Scenario (ii);
ra: random data sequence; kn: known training sequence] from a noisy linearly
modulated signal characterized by a cosine 20% rolloff pulse; based on an
observation of L symbol periods.

dent components. This is in contrast to a brute-force evaluation
that requires a numerical averaging over two correlated -di-
mensional vectors and (and, for Scenario (ii), also
one single and one double numerical integration over the car-
rier phase) in order to obtain [see (21) and (30)]; moreover,
these brute-force computation results cannot be reused for a dif-
ferent shape of the transmit pulse.

In Fig. 1, we compare the CRBs resulting from the various
scenarios, assuming 2-PAM and 4-PSK constellations; the
transmit pulse is a square-root cosine rolloff pulse with a 20%
excess bandwidth. The considered range of contains
extremely low values, for the purpose of illustrating that the nu-
merically computed CRBs are consistent with their analytically
obtained low SNR limits. In the case of known symbols, the
CRB for timing recovery, resulting from the joint estimation of

, and , equals the MCRB from (9). Hence, for any other
scenario, the ratio CRB/MCRB is a measure of the penalty
caused by not knowing the transmitted symbols and/or not
estimating jointly with . The following observations
can be made from Fig. 1.

For small (large) SNR, the CRBs converge to their corre-
sponding (to the MCRB (9)); the for Scenario
(ii) with known training symbols is not shown, because it falls
outside the range displayed.

Of the two scenarios considered, Scenario (ii) yields the
larger CRB. This indicates that estimating jointly with
is potentially more accurate than estimating irrespective

Fig. 2. CRB/MCRB for timing estimation from a noisy linearly modulated
signal characterized by a cosine rolloff pulse and random M-PAM symbols.

of . Indeed, as , and are uncoupled, the joint estimation
of yields the same CRB as estimating when is
a priori known, and this CRB is smaller than the one resulting
from estimating irrespective of .

In the case of random data, does not
depend on [see (9) and (22)]. This indicates that in-
creasing the sequence length cannot reduce the penalty
caused by not knowing the transmitted symbols. The
ratio , on the contrary, does depend
on [see (9) and (31)]. Fig. 1 indicates that for a given

converges to
when increases. Hence, the penalty caused by estimating

independently of is reduced by increasing . For
, this penalty is extremely small when exceeds

about dB in the case of 2-PAM, and for the whole range of
in the case of 4-PSK.

When transmitting a long training sequence,
only depends on [see (9) and

(36)]; hence, increasing the observation interval from
to shifts the curve of to the left by

dB, so that the value of at which
comes close to the MCRB is shifted by the same

amount. We observe from Fig. 1 that for a moderate observation
interval, is essentially equal to
one when exceeds about dB. Hence, in the case of
known symbols, the penalty resulting from estimating
independently of can be safely ignored. Note from (36) that
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Fig. 3. CRB/MCRB for timing estimation from a noisy linearly modulated
signal characterized by a cosine rolloff pulse and random M-PSK symbols.

the ratio depends neither on the shape of
the transmit pulse , nor on the constellation.

Also for other constellations and for other values of the excess
bandwidth, we have verified that and are
essentially the same when and exceeds 0 dB.
Therefore, in the sequel, we restrict our attention to the ratio

.

Figs. 2–4 show the ratio with
for M-PAM, M-PSK, and M-QAM, respectively.

Figs. 2–4 indicate that the CRB decreases with increasing
rolloff factor, and that this effect is more pronounced at small

than at large .

For all three constellations, we observe that for a given
, the ratio CRB/MCRB increases with , which

indicates that for the larger constellations, timing recovery is
inherently harder to accomplish (a similar observation holds
for carrier synchronization assuming perfect timing recovery
[8]–[10]). This effect is more pronounced for a smaller
rolloff factor. Figs. 2–4 also show the limiting curve for
approaching infinity (only for 20% rolloff, because for 100%
rolloff, the effect of the number ( ) of constellation points is
much smaller); this situation corresponds to data symbols that
are continuous random variables, that are uniformly distributed
on the unit circle for PSK, in the interval for PAM,
and in a square for QAM. It is instructive to consider
the high-SNR limit of the CRB when the

Fig. 4. CRB/MCRB for timing estimation from a noisy linearly modulated
signal characterized by a cosine rolloff pulse and random M-QAM symbols.

number of symbols in the constellation is infinite. Using the
method outlined in [4], we obtain

(37)

Expression (37) indicates that for large , the CRB in the
case of infinite-size constellations does not approach the MCRB
(9); according to [4], this is because of the nondiagonal nature
of the FIM, related to the joint estimation of the continuous data
symbols and the time delay. This behavior is confirmed by the
nearly horizontal portion of the curves corresponding to infi-
nite that occurs at large (see Figs. 2–4). Note from
(37) that the ratio is larger for
PAM and QAM than for PSK; this can also be verified from
Figs. 2–4. When is not necessarily a lower
bound on the mean-square estimation error for finite ;
this can be seen from Figs. 2 and 4, where the nearly horizontal
portion of is below

.
For finite , the CRB does converge to the MCRB when

is sufficiently large. The value of , at which CRB
is close to MCRB, increases by about 6 dB when doubles
(PAM, PSK) or quadruples (QAM). It is outlined in Appendix II
that the convergence to the MCRB is mainly determined by the
value of , with denoting the minimum Eu-
clidean distance between the constellation points. For all con-
sidered constellations, we have verified that the convergence of
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CRB to MCRB occurs at a value of that corresponds to
an uncoded BER in the order of .

In the case of transmit pulses that are time-limited to one
symbol interval , we have for all , so that only
the first term of (22) contributes. This yields

, which does not depend on the shape of the time-
limited transmit pulse. We have verified that the curves corre-
sponding to a rolloff of 100% yield essentially the same result.
Hence, the curves for 100% rolloff are representative also for
time-limited transmit pulses.

V. COMPARISON OF CRB AND ACTUAL

SYNCHRONIZER PERFORMANCE

Here we compare the CRB to the mean-square timing er-
rors (MSEs) resulting from a nondata-aided (NDA) and a de-
cision-directed (DD) symbol synchronizer. We assume random
data taken from a 4-PSK constellation, a square-root cosine
rolloff transmit pulse with a 20% excess bandwidth, and an ob-
servation interval of symbols.

The NDA synchronizer is the well-known Oerder & Meyr
(O&M) synchronizer that has been introduced and analyzed in
[12]. The O&M synchronizer derives its timing estimate from
the Fourier transform, evaluated at , of the squared
magnitude of the matched-filter output. In contrast to the DD
symbol synchronizer described below, the O&M synchronizer
performs timing estimation independently of carrier synchro-
nization. The O&M synchronizer performance does not depend
on the carrier phase , and is only marginally affected by a small
carrier frequency offset (because and are decoupled);
therefore, we have determined the MSE assuming .

The DD synchronizer is related to the likelihood function
. The synchronizer jointly maximizes over

the function , given by

where is defined in (5), and results from applying
to the hard-decision device. The maximization of
is to be carried out iteratively. From a previous es-

timate , a refined estimate is com-
puted, based upon the derivatives of with respect
to , and , evaluated at . An initial estimate is
obtained from the O&M synchronizer described above; using

, an initial estimate can be provided by an NDA
carrier synchronizer suited to the symbol constellation (exam-
ples of such carrier synchronizers can be found in [7], [8], [13],
and [14]). As is decoupled from , the accuracy of the
timing estimate is not affected by (small) carrier synchroniza-
tion errors; therefore, we have determined the MSE, assuming
that and are known to the receiver .

Fig. 5 compares the ratios
, and , with and

denoting the MSEs resulting from the NDA and
the DD synchronizer, respectively. We have not displayed

, because for , it is essentially the
same as . As expected, the CRB is a lower

Fig. 5. Comparison of the CRB to the MSE resulting from an NDA and a DD
symbol synchronizer.

bound on the MSE of the NDA and DD symbol synchronizers.
For large SNR (say, dB), is very close
to the MCRB, which indicates that in this operating region
the synchronizer performance is not affected by the decision
errors. Synchronizer performance is essentially the same as for
a priori known data symbols. When decreases below
10 dB, decision errors occur more frequently, and therefore,

gets larger than the MCRB. However, when is
between 5–10 dB, is close to the true CRB, in spite
of the increased number of decision errors. For
dB, the decision errors are too frequent, and is
larger than the CRB. Hence, the DD synchronizer is close to
optimum for moderate and large SNR (i.e., dB).
The NDA symbol synchronizer shows the opposite behavior:
this synchronizer is close to optimum for (very) small SNR,
and the deviation of from the CRB increases with
increasing SNR.

VI. CONCLUSIONS AND REMARKS

We have derived the CRB related to timing estimation from
a noisy linearly modulated signal with arbitrary bandlimited
square-root Nyquist transmit pulse. We have handled both
random data and a priori known training symbols. Two dif-
ferent scenarios were considered: timing estimation jointly with
carrier phase and carrier frequency [Scenario (i)]; and timing
estimation jointly with the carrier frequency but irrespective of
the carrier phase [Scenario (ii)].



NOELS et al.: TRUE CRAMER–RAO BOUND FOR TIMING RECOVERY 481

The numerical evaluation of the CRBs requires the Monte
Carlo evaluation of a few statistical expectations, and for Sce-
nario (ii) also, numerical integration over the unknown carrier
phase is needed. These averages and numerical integration de-
pend on and on the number of symbols in the constel-
lation (and, for Scenario (ii), also on the transmitted sequence
length), but not on the pulse shape. The effect of the pulse shape
is analytically accounted for.

We have shown analytically that the time delay is decou-
pled from the carrier phase and frequency in Scenario (i), and
from the carrier frequency in Scenario (ii). This implies that the
CRB for timing estimation is not affected by whether the decou-
pled parameters are a priori known or estimated jointly with the
timing.

Further, we have investigated the dependence of the CRB on
, the pulse shape, the constellation, and the length of the

observation interval. We have shown that both scenarios yield
a CRB for timing estimation that for moderate and large obser-
vation intervals is nearly the same as the CRB for timing esti-
mation in the case of perfect carrier recovery. In the case of a
known training sequence, this CRB essentially coincides with
the MCRB. In the case of random data, the CRB is very close
to the MCRB, when is such that the BER for uncoded
transmission is less than about .

The evaluated CRBs were compared to the MSE estimation
resulting from existing timing synchronizers. At moderate and
high SNR, the DD estimator performs close to the CRB and
provides a large improvement over the NDA timing estimator.
At (very) low SNR, the NDA synchronizer outperforms the DD
synchronizer and converges to the CRB.

We have verified (simulation results not reported here) that
when transmitting coded 4-PSK symbols, the MSEs of the
NDA and DD synchronizer remain essentially the same as for
uncoded transmission (with denoting the energy per
coded symbol, and the DD synchronizer making use of hard
symbol-by-symbol decisions about the coded symbols). This
indicates that in the case of coded transmission, the CRB for
uncoded data symbols can be interpreted as a lower bound on
the MSE, resulting from a synchronizer that does not exploit
the encoding rule. In the case of carrier phase estimation
from coded symbols, the CRB corresponding to the normal
operating SNR of the code has been shown to be very close to
the MCRB [15]–[17]. Hence, the ratio is
an indication about how much the synchronizer performance
could be improved by making clever use of the code properties
in the phase estimation process. Moreover, “code-aware”
carrier synchronizers performing close to the MCRB have been
presented in [18]–[20]. The extension to timing recovery of
these results, pertaining to carrier synchronization from coded
signals, is a topic of further research.

APPENDIX I

Denoting , we easily obtain

(A1.1)

where

In the case of Scenario (i) with random data symbols, the
elements of the 3 3 MFIM are obtained by averaging (A.1)
over the data symbols. This yields

for

(A1.2)

In the case of Scenario (ii) with random data, the elements
of the 2 2 MFIM are obtained by averaging (A1.1) over the
data symbols and the carrier phase for . However, it is
easily verified that does not depend on , so that the
MFIM for Scenario (ii) is a submatrix of the MFIM for Scenario
(i). Assuming real-valued transmit pulses, it has been shown in
[3] that , so that for both scenarios, the
MCRB corresponding to random data equals , which
yields (8).

In the case of Scenario (i) with known training symbols, the
elements of the MFIM are given by (A1.1) for .
The MIFM related to Scenario (ii) is a 2 2 submatrix of the
MFIM for Scenario (i). For increasing , the elements (A1.1)
of the MFIM converge to (A1.2), which are the elements of the
MFIM in the case of random data. Hence, the resulting MCRB
is given by (8) as well.

APPENDIX II

We consider both the MCRB and the CRB for timing estima-
tion, resulting from the joint estimation of , in the case
of a random data sequence . As is decoupled from

, the CRB is the same as for estimating assuming
is known. In this case, the MCRB from (2) is computed from the
derivative of the joint LLF of and , with respect to given by

(A.2.1)

The resulting MCRB equals (8). At the same time, the CRB
from (1) is determined by the derivative of the (marginal) LLF
of , which can be manipulated into the following form:

(A.2.2)

with denoting the set of constellation
points, and

(A.2.3)

In (A.2.3), represents the th data symbol transmitted, and
is a zero-mean complex Gaussian noise term with indepen-
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Fig. 6. Cumulative distribution function of R(k; i) (CDF(x) =
P [R(k; i) � x]) as a function of x.

dent real and imaginary parts, each having a variance equal to
. Note that when . It is easily

verified that, for given , the quantity is lognormally
distributed with median value1 equal to

(A.2.4)

where . It follows from (A.2.4) that the quan-
tities with are likely to be much smaller than
one when is large. In this case, both the nu-
merator and the denominator of the th term in (A.2.2) are, with
high probability, strongly dominated by the term with
(for which ), so that the right-hand side of (A.2.2)
is well approximated by the right-hand side of (A.2.1). This
indicates that converges to MCRB with increasing

.
Let us verify that the quantities with

are indeed likely to be much smaller than one when
is such that the BER is about . For the var-

ious constellations considered, a BER in the order of
corresponds to (or, in decibels,

dB), where

1The lognormal distribution is highly skewed to the right (asymmetrical with
right tail longer then left). The median is less affected by extreme scores than
the mean and is, therefore, a better measure of central tendency for such an
extremely skewed distribution.

denotes the minimum Euclidean distance between the con-
stellation points. At high , the quantities
with are most likely to be the second
largest of all . The cumulative distribution function

corresponding to
is plotted in Fig. 6 as a function of , for
dB (or ). We observe that the considered
are less than in about 97.5% (99%) of all cases,
which indicates that they can be neglected, as compared with

.

REFERENCES

[1] H. L. Van Trees, Detection, Estimation and Modulation Theory. New
York: Wiley, 1968.

[2] A. N. D’Andrea, U. Mengali, and R. Reggiannini, “The modified
Cramer–Rao bound and its applications to synchronization problems,”
IEEE Trans. Commun., vol. 24, pp. 1391–1399, Feb.-Apr. 1994.

[3] F. Gini, R. Reggiannini, and U. Mengali, “The modified Cramer–Rao
bound in vector parameter estimation,” IEEE Trans. Commun., vol. 46,
pp. 52–60, Jan. 1998.

[4] M. Moeneclaey, “On the true and the modified Cramer–Rao bounds for
the estimation of a scalar parameter in the presence of nuisance param-
eters,” IEEE Trans. Commun., vol. 46, pp. 1536–1544, Nov. 1998.

[5] H. Steendam and M. Moeneclaey, “Low-SNR limit of the Cramer–Rao
bound for estimating the time delay of a PAM, PSK, or QAM wave-
form,” IEEE Commun. Lett., vol. 5, pp. 31–33, Jan. 2001.

[6] , “Low-SNR limit of the Cramer–Rao bound for estimating the car-
rier phase and frequency of a PAM, PSK, or QAM waveform,” IEEE
Commun. Lett., vol. 5, pp. 215–217, May 2001.

[7] W. G. Cowley, “Phase and frequency estimation for PSK packets:
Bounds and algorithms,” IEEE Trans. Commun., vol. 44, pp. 26–28,
Jan. 1996.

[8] F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramer–Rao lower bounds
for QAM phase and frequency estimation,” IEEE Trans. Commun., vol.
49, pp. 1582–1591, Sept. 2001.

[9] N. Noels, H. Steendam, and M. Moeneclaey, “The true Cramer–Rao
bound for phase-independent carrier frequency estimation from a PSK
signal,” in Proc. IEEE GLOBECOM, Taipei, Taiwan, Nov. 2002, pp.
1137–1141.

[10] , “The impact of the observation model on the Cramer–Rao bound
for carrier and frequency synchronization,” in Proc. IEEE Int. Conf.
Communications, Anchorage, AK, May 2003, pp. 2562–2566.

[11] , “The true Cramer–Rao bound for edtimating the time delay of a
linearly modulated waveform,” in Proc. IEEE Int. Conf. Communica-
tions, New York, NY, Apr./May 2002, pp. 1476–1479.

[12] M. Oerder and H. Meyr, “Digital filter and square timing recovery,”
IEEE Trans. Commun., vol. COM-36, pp. 605–612, May 1988.

[13] A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated
carrier phase with application to burst digital transmission,” IEEE Trans.
Inform. Theory, vol. IT-29, pp. 543–551, July 1983.

[14] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication
Receivers—Synchronization, Channel Estimation, and Signal Pro-
cessing. New York: Wiley, 1998.

[15] N. Noels, H. Steendam, and M. Moeneclaey, “The true Cramer–Rao
bound for estimating the carrier phase of a convolutionally encoded
signal,” in Proc. IEEE SVCT, 2002, pp. 9–14.

[16] , The true Cramer–Rao bound for carrier and symbol synchroniza-
tion. presented at EUSIPCO. [CD-ROM]Paper 890

[17] , “The Cramer–Rao bound for phase estimation from coded lin-
early modulated signals,” IEEE Commun. Lett., vol. 7, pp. 207–209,
May 2003.

[18] N. Noels et al., “Turbo synchronization: An EM algorithm interpreta-
tion,” in Proc. IEEE Int. Conf. Communications, Anchorage, AK, May
2003, pp. 2933–2937.

[19] H. Steendam, N. Noels, and M. Moeneclaey, “Iterative carrier phase
synchronization for low-density parity-check coded systems,” in Proc.
IEEE Int. Conf. Communications, Anchorage, AK, May 2003, pp.
3120–3124.

[20] V. Lottici and M. Luise, “Carrier phase recovery for turbo-coded linear
modulations,” in Proc. IEEE Int. Conf. Communications, New York, NY,
Apr./May 2002, pp. 1541–1545.



NOELS et al.: TRUE CRAMER–RAO BOUND FOR TIMING RECOVERY 483

Nele Noels (S’02) received the diploma of electrical
engineering in 2001 from Ghent University, Gent,
Belgium, where she is currently working toward the
Ph.D. degree in the Department of Telecommunica-
tions and Information Processing.

Her main research interests are in carrier and
symbol synchronization. She is the author of several
papers in international journals and conference
proceedings.

Henk Wymeersch (S’02) received the diploma
of computer science engineer in 2001 from Ghent
University, Gent, Belgium, where he is currently
working toward the Ph.D. degree in the Department
of Telecommunications and Information Processing.

His main research interests include channel coding
and synchronization.

Heidi Steendam (M’00) received the Diploma and
the Ph.D. degree, both in electrical engineering, from
Ghent University, Gent, Belgium, in 1995 and 2000,
respectively.

She is currently a Professor in the Department of
Telecommunications and Information Processing,
Ghent University. Her main research interests are in
statistical communication theory, carrier and symbol
synchronization, bandwidth-efficient modulation
and coding, spread spectrum (multicarrier spread
spectrum), satellite and mobile communication. She

is the author of more than 50 scientific papers in international journals and
conference proceedings.

Marc Moeneclaey (M’93–SM’99–F’02) received
the Diploma and the Ph.D. degree, both in electrical
engineering, from Ghent University, Gent, Belgium,
in 1978 and 1983, respectively.

He is currently a Professor in the Department of
Telecommunications and Information Processing,
Ghent University. His main research interests are in
statistical communication theory, carrier and symbol
synchronization, bandwidth-efficient modulation
and coding, spread spectrum, satellite and mobile
communication. He is the author of more than 200

scientific papers in international journals and conference proceedings. Together
with H. Meyr (RWTH Aachen) and S. Fechtel (Siemens AG), he is a co-author
of the book Digital Communication Receivers—Synchronization, Channel
Estimation, and Signal Processing (New York: Wiley, 1998).

Between 1992–1994, Dr. Moeneclaey served as Editor for Synchronization
for the IEEE TRANSACTIONS ON COMMUNICATIONS.


