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Abstract—This paper considers the Cramer–Rao bound (CRB)
related to estimating the carrier frequency of a noisy phase-shift
keying signal. The following scenarios are discussed: 1) carrier fre-
quency estimation irrespective of the carrier phase, based on either
known or random data and 2) joint carrier phase and frequency
estimation, based on either known or random data. Ideal symbol
timing is assumed. We compare the results obtained from a (com-
monly used) simplified observation model against those resulting
from the correct model. Because of the presence of nuisance pa-
rameters (random data and/or random carrier phase), the analyt-
ical computation of the corresponding CRBs is often not feasible.
Here we present results that are based upon a combined analyt-
ical/numerical approach. Our results show that the choice of the
observation model has essentially no effect on the CRBs at mod-
erate and high signal-to-noise ratios. We also show that of the two
scenarios considered, joint frequency and phase estimation yields
the smaller CRB; the penalty resulting from frequency estimation,
irrespective of the carrier phase, decreases with increasing obser-
vation interval.

Index Terms—Cramer–Rao bound (CRB), frequency estima-
tion, carrier synchronization.

I. INTRODUCTION

THE Cramer–Rao bound (CRB) is a lower bound on the
error variance of any unbiased estimate, and as such,

serves as a useful benchmark for practical estimators [1]. In
many cases, the statistics of the observation depend not only
on the vector parameter to be estimated, but also on a nuisance
vector parameter we do not want to estimate. The presence of
this nuisance parameter makes the analytical computation of
the CRB very hard, if not impossible.

In order to avoid the computational complexity caused by the
nuisance parameters, a modified CRB (MCRB) has been de-
rived in [2] and [3]. The MCRB is much simpler to evaluate
than the CRB, but is, in general, looser than the CRB. In [4],
the high signal-to-noise ratio (SNR) limit of the CRB has been
evaluated analytically, and has been shown to coincide with the
MCRB when estimating the delay, the frequency offset, or the
carrier phase of a linearly modulated waveform.

The true CRB related to joint carrier phase and frequency es-
timation (but not frequency estimation irrespective of the carrier
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phase) has been derived for binary phase-shift keying (BPSK)
and quaternary PSK (QPSK) in [5], and for quadrature ampli-
tude modulation (QAM) in [6], assuming a simplified obser-
vation model. In this model, frequency error correction is ap-
plied after the matched filter, and the observation consists of the
matched-filter output samples (taken at the decision instants)
before frequency correction. The simplification consists of ne-
glecting the signal reduction and intersymbol interference (ISI)
that occur at the matched-filter output when the frequency offset
is nonzero. In [7], the low SNR limit of the CRB for carrier
phase and frequency estimation, again assuming this simplified
observation model, has been obtained analytically for -ary
(M)-PSK, -ary (M)-QAM, and -ary pulse amplitude mod-
ulation (M-PAM).

In this paper, we investigate the true CRBs related to fre-
quency estimation, irrespective of the carrier phase, and to joint
phase and frequency estimation. The data symbols are either
known (e.g., training sequence) or random, and are taken from
an M-PSK constellation. The corresponding low SNR limits of
these CRBs are presented as well. We consider both the correct
model (where the observation consists of the noisy PSK signal at
the receiver input) and the simplified observation model adopted
in [5]–[7]. The transmit pulse is a square-root Nyquist pulse, and
we assume the time delay to be known. Results are presented
for various PSK constellations and several transmitted sequence
lengths. The main conclusions are: 1) both observation models
yield essentially the same results for moderate and high SNR;
and 2) frequency estimation irrespective of the carrier phase ex-
hibits a performance penalty, as compared with joint frequency
and phase estimation, but this penalty decreases with increasing
observation intervals.

II. PROBLEM FORMULATION

Let us consider the complex baseband representation of
a noisy PSK signal

(1)

where is a vector of
M-PSK symbols is a real-valued unit-energy
square-root Nyquist pulse; is the carrier frequency offset;
is the carrier phase at ; is the symbol interval; is
complex-valued zero-mean Gaussian noise with independent
real and imaginary parts, each having a normalized power
spectral density of and , with and
denoting the symbol energy and the noise power spectral den-
sity, respectively. Depending on the scenario to be considered,
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Fig. 1. Computation of (a) r and (b) z .

the M-PSK symbols are either a priori known to the receiver
(training sequence), or they are statistically independent and
uniformly distributed over the M-PSK constellation (random
data).

In [5]–[7], CRBs related to frequency estimation have
been derived, assuming the following observation model

:

(2)

where is a sequence of independent zero-mean complex-
valued Gaussian random variables, with independent real and
imaginary parts that each have variance equal to . In (2),

stands for the matched-filter output sample taken at the cor-
rect decision instant , when from (1) is applied to the
matched filter, and the frequency offset is assumed to be small
(i.e., ) [see Fig. 1(a)]. It is important to realize that the
observations from (1) and from (2) are not equivalent,
as will be pointed out in the following.

Suppose that one is able to produce from an observation
vector an unbiased estimate of a deterministic vector
parameter . Then the estimation error variance is lower
bounded by the CRB [1]: , where

is the th diagonal element of the inverse of the
Fisher information matrix . The th element of
is given by

(3)

Note that is a symmetrical matrix. The probability density
of , corresponding to a given value of , is called the

likelihood function of , while is the log-likelihood
function (LLF) of . The expectation in (3) is with respect
to .

We investigate two scenarios. For each scenario, the data
symbols are either known (e.g., training sequence) or random
to the receiver. Also, the effect of the observation model
(correct/simplified) will be considered.

• Scenario 1): Estimation of , irrespective of .
The useful parameter is given by . The nuisance

parameter is given by when the transmitted data
symbols are known, or by when the data sym-
bols are random. In this scenario, is considered as uni-
formly distributed in .

• Scenario 2): Joint estimation of .
The useful parameter is given by . There is

no nuisance parameter when the transmitted data symbols
are known. In the case of random data, the nuisance pa-
rameter is given by .

For both scenarios, the joint likelihood function is,
within a factor not depending on , given by

(4)

where

(5)

When using the simplified observation model (2), the vector
is given by , and equals given by

(6)

As indicated in Fig. 1(a), the quantity is obtained by feeding
to a filter matched to the transmit pulse , and sampling

the matched-filter output at instant . The quantity is
obtained by applying to a rotation of rad. When
using the correct observation model (1), is a vector representa-
tion of the signal from (1), and equals given
by

(7)

As indicated in Fig. 1(b), the quantity is obtained by
first applying to a constant-speed rotation of rad/s,
feeding the result to a filter matched to the transmit pulse ,
and sampling the matched-filter output at instant . Note the
similarity between (6) and (7). However, unless , it fol-
lows from Fig. 1 that . Actually,
cannot be computed from , and therefore, estimating

from instead of is suboptimum.
The LLF resulting from (4) is given by

(8)

Computation of the CRB requires the substitution of (8) into
(3), and the evaluation of the various expectations included in
(8) and (3).

As the evaluation of the expectations involved in
and is quite tedious, a simpler lower bound,
called the MCRB, has been derived in [2] and [3], i.e.,

. The MCRB for
frequency estimation, is given by [2], [3]

(9)

where denotes the number of symbols trans-
mitted within the observation interval. When using the simpli-
fied observation model (2), the MCRB (9) is valid for both sce-
narios 1) and 2), irrespective of the data symbols being known
or random. When using the correct observation model (1), the
resulting MCRB converges to (9) for large , for both scenarios
and both cases of known or random data symbols. In [4], it has
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been shown that for high SNR (i.e., , the CRB for
frequency estimation converges to the MCRB corresponding to
the considered scenario.

Also, a closed-form expression can be derived for the
low-SNR limit (i.e., ) of the CRB, which we
call the asymptotic CRB (ACRB). In [7], this has been ac-
complished for scenario 2) with random data and using the
simplified observation model.

In this paper, we compute the CRBs resulting from the sce-
narios mentioned above, and present the expressions for the cor-
responding ACRBs. It should be noted that these ACRBs do not
necessarily provide a lower bound on the actual frequency-error
variance for moderate and large SNR.

III. EVALUATION OF THE TRUE CRB

A. Estimation of Irrespective of ; Random Data Symbols

Taking in (8) , the LLF is (within an
arbitrary constant) given by

(10)

where

(11)

(12)

and is the set of PSK constellation points.
Differentiation of (10) yields

(13)

where and are shorthand notations for
and , respectively, and

(14)

(15)

(16)

and the subscript denotes differentiation with respect to . In
these expressions, or , and

or , according
to the observation model that is being used. As the variable
in (6) and (7) corresponds to the actual frequency offset, the
quantities , and can be decomposed as

(17)

(18)

where and are zero-mean complex Gaussian
random variables, with

(19)

As and are periodic
in , with period equal to , there is no need to include a carrier
phase in the first term of (17) and (18). Note that the statistics
of , and in (17) and (18) do not depend
on the value of the actual frequency offset .

Taking (13) into account, we derive from (3)

(20)
where

(21)

and denotes averaging over the data symbols and the noise.
Using the method outlined in [8], (21) can be further simplified
by making use of the statistical properties of and ,
conditioned on

(22)

In (22), the captions and refer to the observation model
(si: simplified, co: correct). The average in (21) is computed by
first taking the expectation conditioned on , and then averaging
over . We obtain

(23a)

(23b)

where

(24)

(25)
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(26)

In (24), and represent two statistically independent
quantities . The three superscripts in (23) and in subse-
quent equations related to the CRBs refer to scenario 1) or 2), to
the receiver’s knowledge about the data symbols (ra: random,
kn: known), and to the observation model (si: simplified, co:
correct). We observe from (23) that equals the
sum of and an additional positive term. Hence,

, which is in keeping with the fact
that frequency estimation from in (2) is suboptimum. As
outlined in the Appendix, dominates at high

(for large ), whereas at low SNR values, the additional
term becomes the largest. Consequently, the simplified obser-
vation model will provide a CRB that approaches the CRB
from the correct observation model at sufficiently high SNR.
Note that and depend on

, on the size of the constellation, and on the transmitted
sequence length, but not on the shape of the square-root Nyquist
transmit pulse. The shape of the transmit pulse affects only the
coefficient of in (23b).

For low SNR, (23a) and (23b) converge to the corresponding
ACRBs. The computation of these ACRBs is outlined in the
Appendix; we obtain, for the simplified observation model

(27)

where and represents the number of constel-
lation points. The ACRB (27) is proportional to
and to . With the correct model, we get the following ex-
pression for the ACRB:

(28)

which is only proportional to and to . Note that
(28) is independent of the constellation size , but is affected
by the transmit pulse .

B. Estimation of Irrespective of ; Known Data Symbols

When the transmitted data symbols are known at the receiver,
the nuisance parameter is given by , and no averaging
over the data is required. Equations (20)–(22) remain valid, pro-
vided we remove from (12) the summations over the constella-
tion points, and replace by the actual symbol . The average
in (21) is computed by first taking the expectation conditioned
on , and then averaging over . We ob-
tain

(29)

(30a)

with

(30b)

Note that for symbols taken from a PSK constellation, the sta-
tistics of do not depend on the specific data sequence
transmitted; hence, from (29) does not depend
on the particular training sequence. The second term between
parentheses in (30a) indicates that the CRB corresponding to
the correct observation model does depend on the transmitted
data sequence. However, for large , this dependence is
very weak. Indeed, for long training sequences with symbols
drawn independently from a PSK constellation, the statistical
fluctuation of this second term in (30a) can be ignored, as
compared with its mean. Therefore, we can approximate this
term by its mean over all possible training sequences, which
corresponds to keeping in (30a) only the terms with .
From the resulting expression, it follows that the ratio of the
first to the second term of (30) is proportional to , so that the
second term can be safely ignored for large . This indicates
that , and are essentially the same for
long training sequences.

The corresponding low SNR limit can be derived as in [7].
For the simplified model, we obtain (see the Appendix)

(31)

which is proportional to and to . For the correct
observation model, the resulting converges for
large to from (31).

C. Joint Estimation of and ; Random Data Symbols

Now we take in (8) . We obtain

(32)

where is the set of PSK constellation
points. Differentiation of (32) yields

(33)

(34)
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Taking (33) and (34) into account, and from (3) can
be represented as

(35)

(36)

where denotes averaging over the data symbols and
the noise. As in Section III-A, or

; and or
, depending on the observation model. The

decomposition of and
yields the same result as the decomposition of
and in Section III-A [see (17)–(19)]. Note that

depends only on .
Again, (35) and (36) can be further simplified by making
use of the statistical properties of and ,
conditioned on , that turn out to be the
same as the statistical properties of and ,
conditioned on in Section III-A. The average in (35)
and (36) is computed by first taking the expectation con-
ditioned on , and then averaging over

. We obtain and, consequently

(37a)

(37b)

where

(38)

(39)

We observe that equals the sum of
and an additional positive term, which implies

. Again, the term
dominates at high (for large ), whereas at low SNR,
the additional term becomes the largest (see the Appendix).
The remarks from Section III-A, concerning the behavior of
the CRBs at sufficiently high SNR and the effect of the pulse
shape, are also valid here. Note that from (37a)
for BPSK and QPSK yields the CRB for frequency estimation
presented in [5].

The low SNR limit based on the simplified observation model
has been derived in [7]

(40)

In contrast with (27), this ACRB is proportional to
and to . For the correct observation model, we must distin-
guish between and . For
resulting from (37b) is the same as from (28);
this indicates that estimating independently of or jointly
with yields the same ACRB when and the correct
observation model is used. For , we find that for large

converges to from (40), eval-
uated for ; hence, for , both observation models
yield essentially the same ACRB.

D. Joint Estimation of and ; Known Data Symbols

In this specific case, it is a simple matter to compute
, and analytically, because there are

no nuisance parameters. It is easily shown that the parameters
and are decoupled . The resulting CRBs are

nothing but the given by (9).

IV. NUMERICAL RESULTS AND DISCUSSION

As no further analytical simplification of (24), (25), (29),
(30), (38), and (39) seems possible, we have to resort to nu-
merical computation. This involves numerical integrations with
respect to in (26), (29), and (30), and replacing the statistical
expectations in (24), (25), (29), (30), (38), and (39) by arith-
metical averages over a number of computer-generated vectors

.

A. Known Data Symbols

In the case of known data symbols, the resulting from
the joint estimation of and equals . Hence, for any
other scenario, the ratio CRB/MCRB is a measure of the penalty
occurred by not knowing the data symbols and/or not estimating

jointly with .
Fig. 2 shows the ratio CRB/MCRB related to the estima-

tion of independently of , i.e., scenario 1), along with
the corresponding ACRB/MCRB. We have pointed out in
Section III-B that both observation models yield the same
ACRB; our numerical results indicate that also the resulting
CRBs are essentially the same (when using the approximation
of , outlined in Section III-B). For small (large)
SNR, the CRBs converge to the corresponding ACRB (to the
MCRB). Increasing the observation interval from to
shifts the curve of CRB/MCRB to the left by an amount of

dB; hence, the value of at which the
CRB comes close to the MCRB is shifted by the same amount.
Note that for SNR values of practical interest, CRB/MCRB
is close to one, even for a moderate length of the observation
interval.
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Fig. 2. CRB related to frequency estimation irrespective of the carrier phase,
based on known data symbols.

B. Random Data Symbols,

It follows from Sections III-A and III-C that in the case of
random data symbols with , the correct observation
model yields essentially the same ACRBs, irrespective of
whether is estimated jointly with or independently of .
However, the ACRBs resulting from these two scenarios are
much different when using the simplified observation model.

Figs. 3 and 4 show, for 8-PSK and 4-PSK, respectively, the
ratios CRB/MCRB and the corresponding ACRB/MCRB, for
scenarios 1) and 2), and for both observation models. The be-
havior of the various curves is as follows.

• For small SNR (say, dB), the CRBs are
close to the corresponding ACRBs. We have verified
that also for 8-PSK, the is very close to the

for dB, but because of the
steepness of the ACRB (40) for higher constellation sizes

, the ACRB at dB takes a very large
value (about 1E20) that is outside the range shown in
Fig. 3. Hence, the convergence of the CRB to the ACRB
is quite constellation-size independent.

• For a given observation model, scenario 1) yields the
larger CRB. This indicates that estimating jointly
with is potentially more accurate than estimating
irrespective of . Indeed, as and are uncoupled, the
joint estimation of and yields the same as

Fig. 3. CRB related to carrier frequency estimation irrespective of [scenario
1)] and jointly with [scenario 2)] the carrier phase for an 8-PSK constellation
(si: simplified observation model, co: correct observation model).

estimating when is a priori known, and this
is smaller than the one resulting from estimating
irrespective of .

• For a given scenario, the simplified observation model
yields the larger CRB. Indeed, as the transformation from

to cannot be inverted, estimating from
instead of is suboptimum.

• We have pointed out in Section III-C that both observation
models yield the same CRB for large values of .
Our numerical results indicate that for scenario 1), as well
as for scenario 2), the two observation models yield es-
sentially the same CRB for SNR values of practical in-
terest. The difference between these observation models
becomes apparent only at small or even very small SNR.
Consequently, the shape of the transmit pulse has no effect
on the CRB at moderate and high SNR.

• For a given scenario and observation model, the CRB at
a fixed increases with increasing . This indi-
cates that frequency estimation becomes more difficult for
larger constellations. This effect is more pronounced for
the estimation of irrespective of (with ACRB being
proportional to , than for joint estimation of

and (with ACRB being proportional to .
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Fig. 4. CRB related to carrier frequency estimation irrespective of [scenario
1)] and jointly with [scenario 2)] the carrier phase for a QPSK constellation (si:
simplified observation model, co: correct observation model).

• When is sufficiently large, the CRB converges to
the MCRB. The value of at which the CRB comes
close to the MCRB increases with the number of con-
stellation points.

• For small enough SNR, the CRB corresponding to the
correct observation model is very close to the asso-
ciated ACRB. Increasing SNR yields a CRB that for
large clearly exceeds the ACRB. In this context,
it is instructive to consider the high SNR limit (i.e.,

of the CRB when the constel-
lation size is infinite (which corresponds to continuous
instead of discrete data symbols). Using the method
outlined in [4], we obtain

(41)

which is proportional to and to . Expres-
sion (41) indicates that for large , the CRB in the
case of infinite-size constellations does not approach the
MCRB (9). According to [4], this is because of the nondi-
agonal nature of the Fisher information matrix, related to

Fig. 5. CRB related to carrier frequency estimation irrespective of [scenario
1)] and jointly with [scenario 2)] the carrier phase for a BPSK constellation (si:
simplified observation model, co: correct observation model).

the joint estimation of the continuous data symbols and the
frequency offset. For large but finite , with increasing
SNR, the CRB tends to , but a further increase of
SNR eventually makes the CRB approach the MCRB.

C. Random Data Symbols,

We have pointed out in Section III-A and III-C that in the
case of random data symbols with , both observation
models yield essentially the same ACRB when is estimated
jointly with . However, when estimating irrespective of ,
the ACRBs resulting from the two observation models are much
different from each other.

Assuming , Fig. 5 shows the ratios CRB/MCRB and
the corresponding ACRB/MCRB, for scenarios 1) and 2), and
for both observation models. The behavior of the various curves
is as follows.

• As for , the CRBs converge to the corresponding
ACRBs (to the MCRB) for small (large) SNR. The CRB
resulting from scenario 1) is larger than the CRB corre-
sponding to scenario 2), when the observation model is
given. Also, when the scenario is given, the correct obser-
vation model yields the smaller CRB.
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Fig. 6. CRB related to frequency estimation irrespective of the carrier phase
[scenario 1)], based on random QPSK data symbols (si: simplified observation
model, co: correct observation model).

• For scenario 2), both observation models yield essentially
the same CRB.

• For scenario 2), the CRBs resulting from the two observa-
tion models behave in a similar way as for . When

exceeds dB, both observation models yield
essentially the same CRB.

• For SNR values of practical interest, the CRB for any
scenario and any observation model is very close to the
MCRB.

D. Effect of Observation Interval (Random Data)

For both observation models and both scenarios, we consider
the ratio CRB/MCRB and the corresponding ACRB/MCRB for
different lengths of the observation interval, assuming random
QPSK modulation. We have verified that the same behavior ap-
plies to other M-PSK constellations.

For both observation models, the results related to scenarios
1) and 2) are shown in Figs. 6 and 7, respectively. In scenario
1), the ratio CRB/MCRB at SNR values of practical interest
decreases with , whereas in scenario 2), this ratio does not
depend on . This is consistent with the observation that for
the simplified model, which is relevant for practical values of

Fig. 7. CRB related to joint phase and frequency estimation [scenario 2)],
based on random QPSK data symbols (si: simplified observation model, co:
correct observation model).

SNR, ACRB is proportional to (to ) in scenario 1) [in
scenario 2)]. Hence, taking into account that the MCRB is pro-
portional to , it follows that for the simplified observation
model, ACRB/MCRB is proportional to (independent of

) in scenario 1) [in scenario 2)].
Fig. 8 compares the ratios CRB/MCRB for both scenarios

1) and 2), assuming the simplified observation model. We have
verified that, for the ranges of and of CRB/MCRB con-
sidered in Fig. 8, the correct observation model yields virtu-
ally the same curves. For given , increasing makes

approach , and hence, reduces the penalty,
caused by treating as a nuisance parameter; for given , this
penalty is considerably larger than in the case of known data
symbols. The ratio being independent of
indicates that the penalty, caused by treating the data symbols
as nuisance parameters, cannot be reduced by increasing the ob-
servation interval.

V. CONCLUSIONS AND REMARKS

In this paper, we have considered the CRB related to the
carrier frequency estimation of a noisy linearly modulated
signal with arbitrary square-root Nyquist transmit pulse. We
have handled both random and a priori known data symbols,
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Fig. 8. Effect of the observation interval on the CRB related to frequency
estimation irrespective of the carrier phase [scenario 1)] and to joint phase and
frequency estimation [scenario 2)].

and have contrasted the results obtained from the correct
observation model with those resulting from an approximation
of the correct model, used in [5]–[7]. The CRB for joint phase
and frequency estimation [scenario 2)] has been compared to
the CRB for frequency estimation irrespective of the carrier
phase [scenario 1)]. The numerical evaluation of the CRBs
requires the approximation of each statistical expectation by
an arithmetical average and, for scenario 1), also numerical
integration is needed. These averages and numerical integration
depend on and on the constellation size (and, for
scenario 1), on the transmitted sequence length), but not on
the pulse shape. The effect of the pulse shape is analytically
accounted for.

The numerical results indicate that the correct and the sim-
plified model yield CRBs that are substantially different only
at low . The influence of the pulse shape is restricted to
these low SNR values. For both small and very large

, the effect of the constellation on the CRB is small. For
moderate , the CRB increases with increasing constella-
tion size. Frequency estimation irrespective of the carrier phase
yields a larger CRB than joint frequency and phase estimation,
which implies that the latter strategy is potentially the better
one. For given SNR, the penalty of the former strategy with
respect to the latter decreases with increasing observation in-

terval. When the data symbols are known, this penalty can be
neglected for practical values of SNR, even for moderate ob-
servation intervals. In the case of random data symbols, con-
siderably longer observation intervals are required to make the
penalty very small.

When the carrier frequency and phase are estimated jointly,
we have considered the CRB for frequency estimation only. As
for both observation models the frequency and phase are not
coupled (i.e., ), the CRB for phase estimation is the
same as in the case where is a priori known to be zero. For

, the two observation models are equivalent, and the re-
sulting CRB for phase estimation is the same as in [5] and [6].

The simplified model of the matched-filter output samples ig-
nores the ISI and the reduction of the useful symbol magnitude,
which are caused by the frequency offset at the input of the
matched filter. For up to 30 dB, we have verified (details
not reported here) that the useful signal magnitude is reduced by
less than 0.01 dB and the ISI power is at least 20 dB below the
noise power, provided that for a
rolloff factor of 20% (of 100%). Hence, the simplified observa-
tion model is valid as long as the maximum frequency offset is
on the order of 1% of the symbol rate.

The behavior of the true CRB for frequency estimation in the
presence of coding is a topic for further research.

APPENDIX

HIGH AND LOW SNR LIMITS OF THE TRUE CRBS

A. High SNR Limits of the True CRBs

For large , we obtain an approximation of the CRB by
keeping in the summation over the constellation points only the
dominant term, i.e., the term with .

1) Scenario 1): Keeping only the dominant terms and taking
into account the decomposition (17) of , we obtain for the
quantities , and from (24)
and (25)

(A.1)

(A.2)

Substitution of (A.1) in (23a) yields ; substitution of
(A.1) and (A.2) in (23b) yields the sum of and an
additional term, which can be neglected for large .

2) Scenario 2): Keeping only the dominant terms and taking
into account the decomposition (17) of , we obtain for
the quantities and from (38) and
(39)

(A.3)

(A.4)

Substitution of (A.3) in (37a) yields ; substitution of
(A.3) and (A.4) in (37b) yields the sum of and an
additional term, which again can be neglected for large .
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B. Low SNR Limits of the LLFs

For small , we obtain an approximation of the LLF
by expanding the exponential function in (8) into a Taylor se-
ries, and keeping only the relevant terms that correspond to the
smallest powers of

(A.5)

where

(A.6)

1) Random Data Symbols: The random data symbols have
to be considered as nuisance parameters. Consequently, in (8),
averaging over the data is required

(A.7)

Since we assume a M-PSK constellation, we obtain

Hence, the LLF can be approximated as shown in
(A.8) at the bottom of the page, where is a vector of nuisance
parameters other than the data. All other nonzero terms in (A.8)
contain a power of larger than .

a) Scenario 1); Simplified Observation Model: Take in
(A.8) and . The terms in
are independent of , and for small , these terms can be ne-
glected, as compared with the term 1. Keeping only the terms
that correspond to the smallest powers of and taking into ac-
count that (with integer), we obtain for
the LLF

(A.9)

b) Scenario 1); Correct Observation Model: Take in
(A.8) and . In this case, is function of ,
so that higher order terms can be neglected, as compared with
the term in . Taking into account that
(with integer), we obtain for the LLF

(A.10)

c) Scenario 2); Simplified Observation Model: Com-
puted in [7].

d) Scenario 2); Correct Observation Model: Take
; no average has to be taken. Again, is function of , so

that higher order terms can be neglected, as compared with the
term in . We must distinguish between and .
For , the terms in can be neglected, as compared with
the term in . We obtain for the LLF

(A.11)

For , the LLF becomes

(A.12)

This indicates that for , only the in-phase component of
is needed to estimate .

2) Known Data Symbols: No averaging over the data sym-
bols is required. This implies that in (A.5), the first-order terms
are the dominant terms. Hence, keeping only the terms that cor-
respond to the smallest powers of , (8) can be approximated as
follows:

(A.13)

(A.8)
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e) Scenario 1); Simplified Observation Model: Take in
(A.13) and . As the average
of the term in over is zero, we obtain for the LLF

(A.14)

f) Scenario 1); Correct Observation Model: Take in
(A.13) and . Again, only the terms in should
be considered, as the average of the terms in over is zero.
We obtain for the LLF

(A.15)

g) Scenario 2); Correct and Simplified Observation
Model: In this case, .

C. Low SNR Limits of the True CRBs

The application of (3) to (A.9), (A.10), (A.11), (A.12),
(A.14), and (A.15) is straightforward but tedious. Keeping
only the relevant terms corresponding to the smallest powers
of , and taking into account the decomposition (17) of or

, we obtain (the dominant part of) . Inverting then
gives rise to the low SNR limits of the CRBs.
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