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Abstract—In this paper we consider the Cramer–Rao lower
bound (CRB) for the joint estimation of the carrier phase and
the frequency offset from a noisy linearly modulated burst signal
containing random data symbols (DSs) as well as known pilot
symbols (PSs). We point out that the CRB depends on the location
of the PSs in the burst, the number of PSs, the number of DSs,
the signal-to-noise ratio (SNR), and the data modulation scheme.
Distributing the PSs symmetrically about the center of the burst
and estimating the carrier phase in the center of the burst interval
decouples the frequency and phase estimation, making the CRB
for phase estimation independent of the specific location of the
PSs. At low and moderate SNR, the CRBs for both phase and fre-
quency estimation decrease as the fraction of the PSs in the burst
increases. In addition, the CRB for frequency estimation decreases
as the PSs are separated with more DSs. Numerical evaluation
of the CRB indicates that the carrier phase and frequency of a
“hybrid” burst (i.e., containing PSs and DSs) can be estimated
more accurately when exploiting both the presence of the DSs and
the a priori knowledge about the PSs, instead of using only the
knowledge about the PSs (and ignoring the DSs), or considering
all the received symbols (PSs and DSs) as unknown (and ignoring
the knowledge about the PSs). Comparison of the CRB with the
performance of existing carrier synchronizers shows that the
iterative soft-decision-directed (sDD) estimator with data-aided
(DA) initialization performs very closely to the CRB and provides
a large improvement over the classical non-data-aided (NDA)
estimator at lower SNR.

Index Terms—Carrier synchronization, Cramer–Rao bound,
frequency estimation, phase estimation.

I. INTRODUCTION

I N burst digital transmission with coherent detection, the re-
covery of the carrier phase and the frequency offset is a key

aspect. We assume that phase coherence over successive bursts
cannot be maintained, so that the carrier phase and frequency
offset have to be recovered on a burst-by-burst basis.

Most classical synchronizers belong to one of the following
types: data-aided (DA) synchronization algorithms use known
pilot symbols (PSs), while non-data-aided (NDA) and decision-
directed (DD) estimators operate on modulated data symbols
(DSs). DD estimators are similar to DA estimators, but use, in-
stead of PSs, hard or soft decisions regarding the DSs that are
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provided by the detector; NDA estimators apply a nonlinearity
to the received signal to remove the data modulation.

Assuming that the parameter estimate is unbiased, the vari-
ance of the estimation error is often used as a performance mea-
sure. The Cramer–Rao lower bound (CRB) is a fundamental
lower bound on the variance of any unbiased estimate [1], and is
also known to be asymptotically achievable for a large enough
number of observations, under mild regularity conditions. The
CRB for phase and/or frequency estimation from
known PSs has been derived in [2] and [3]. The CRB
related to joint carrier phase and frequency estimation from
random DSs has been addressed in [4]–[6]. In the latter case, the
statistics of the observation depend not only on the vector pa-
rameter to be estimated but also on a nuisance vector parameter
(i.e., the unknown DSs) we do not want to estimate. In order to
avoid the computational complexity caused by the nuisance pa-
rameters, a modified CRB (MCRB) has been derived in [7] and
[8]. The MCRB is much easier to evaluate than the CRB, but
is in general looser (i.e., lower) than the true CRB, especially
at lower signal-to-noise ratio (SNR). In [9], the high-SNR limit
of the CRB has been obtained analytically, and has been
shown to coincide with MCRB .

Very often it may be beneficial for carrier synchronizers
to utilize information on both PSs and DSs in the estimation
process. In [10], it has been shown that a frequency estimator
that utilizes both PSs and DSs may provide the combined ad-
vantages of DA estimators and NDA estimators and allow more
accurate synchronization at lower SNR. A similar observation
holds for DA estimators and DD estimators. The proper opera-
tion of DD estimators requires an accurate initialization, which,
at low SNR, can only be provided by a DA estimator using
known PSs. At the same time, exploiting the DSs guarantees a
good performance at high SNR. Note that the PSs also allows
to resolve the ambiguity of the NDA and DD phase estimates
caused by the rotational symmetry of the constellation.

In this paper, we derive the true CRB for joint
phase and frequency estimation from the observation of a “hy-
brid” burst that contains pilot symbols as well as data
symbols. These CRBs can be viewed as a generalization of the
CRBs derived in [2]–[6]. Numerical results are reported for a
quaternary phase-shift keying (QPSK) constellation, indicating
that hybrid algorithms that exploit both PSs and DSs (in some
intelligent way) are potentially more accurate to estimate the
carrier phase and frequency from a hybrid burst than algorithms
that only use the PSs (and ignore the DSs) or algorithms that
use all burst symbols (PSs and DSs) but ignore the knowledge
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of the PSs. Comparing the obtained CRBs to the performance of
the hybrid estimation algorithm from [10], it is concluded that
more efficient hybrid algorithms may exist that perform more
closely to the CRBs. We show that the iterative soft-DD (sDD)
estimator with DA initialization yields a close agreement be-
tween the simulated performance and the new CRBs.

II. PROBLEM FORMULATION

Consider the transmission, of a signal with digital linear
modulation, over an additive white Gaussian noise channel
with unknown carrier phase and frequency offset. Assuming
ideal timing recovery, the matched filter output samples are
given by

(1)

In (1), is a sequence of trans-
mitted phase-shift keying (PSK), quadrature amplitude modu-
lation, or pulse amplitude modulation symbols. We assume
belongs to the symbol alphabet , with
denoting the number of constellation points and .
The symbol denotes a known PS for belonging to the set of
indexes , where denotes the
number of PSs. For , denotes an unknown
DS. The ( ) DSs are assumed to be statistically in-
dependent and uniformly distributed over the constellation, i.e.,
the transmitted DS can take any value from the symbol alphabet
with equal probability. The sequence consists
of zero-mean complex Gaussian noise variables, with indepen-
dent real and imaginary parts each having a variance of 2 .
The quantities and denote the symbol energy and the
noise power spectral density (SNR ), respectively. The
quantity is defined as ( 2 ), where represents the
carrier phase at , is the frequency offset, and is the
symbol duration. Both and are unknown but deterministic
parameters.

Let us denote by the probability density function of
the observation vector , where is an unknown deterministic
vector parameter. Suppose one is able to produce from an un-
biased estimate of the parameter . Then the estimation error
covariance matrix satisfies

(2)

where the notation indicates that is a positive semidef-
inite matrix (i.e., , irrespective of ), and is
the Fisher information matrix (FIM) [1]. The th element of

is given by

(3)

Note that is a symmetrical matrix. When the element
, the parameters and are said to be decoupled.

The expectation in (3) is with respect to . The
probability density of , corresponding to a given value
of , is called the likelihood function of ; is the
log-likelihood function of . When the observation depends
not only on the parameter to be estimated but also on a

nuisance vector parameter , the likelihood function of is
obtained by averaging the likelihood function of
the vector over the a priori distribution of the nuisance
parameter: . We refer to as
the joint likelihood function, as is relevant to the joint
maximum likelihood (ML) estimation of and .

Considering the joint estimation of the carrier phase and the
frequency offset from the observation vector from
(1), we take . The nuisance parameter
vector consists of the unknown DSs. Within
a factor not depending on , , and , the joint likelihood func-
tion is given by

(4)

where

(5)

and . Averaging (4) over the data symbols
yields the likelihood function . For the log-likelihood
function we obtain, within a term that does not
depend on

(6)

where

(7)

and denotes the set of constellation points.
It follows from (2) that the error variance regarding the esti-

mation of and is lower bounded by the Cramer–Rao bound
(CRB)

CRB (8)

CRB (9)

where denotes the inverse of the FIM. Similarly, (2) yields
a lower bound on the variance of the estimation error on the
instantaneous phase

CRB

(10)

The presence of the nuisance vector parameter
makes the analytical computation of the FIM

very hard. In order to avoid the computational
complexity caused by the nuisance parameters, a simpler
lower bound, MCRB, has been derived in [7] and [8], i.e.,

CRB CRB ,
where CRB is defined in the same way as
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CRB in (8)–(10) but with the FIM
replaced with the modified FIM (MFIM) given by

(11)

where

III. TRUE CRB : ANALYTICAL RESULTS

Partial differentiation of the log-likelihood function (6) with
respect to the carrier phase and the frequency offset yields

(12)

(13)

where

(14)

and are defined as in (5) and (7), respectively, and
denotes the set of constellation points.

Substituting (12) and (13) into (3) yields

(15)

where

(16)

and

(17)

In (16), denotes the average over , where is a
random variable that takes any value from the symbol alphabet
with equal probability and is complex zero-mean Gaussian
noise with independent real and imaginary parts each having a
variance equal to 2 . The quantity can be interpreted as
the center of gravity of the sequence . We obtain ,
unless , which is achieved if both PSs and DSs are each
located symmetrically about zero, and the PSs satisfy

. For , the parameters and are coupled, meaning

that the inaccuracy in the carrier phase estimate has an impact
on the frequency offset estimation and vice versa. Note that the
FIM does not depend on or . Substituting (15) into (8)–(10),
we obtain

CRB

(18)

CRB (19)

CRB

(20)

The lower bound on from (20) is quadratic
in . Its minimum value is achieved at and is equal to

, which is the CRB for the estimation of the carrier phase
when the frequency offset is a priori known. Note from (15)
and (16) that depends on the number ( ) of PSs, the
number ( ) of DSs, and the particular pilot sequence that was
selected, but not on the specific position of the PSs in the burst.
Let and represent the distance
(in symbol intervals) between the position of the minimum value
of the CRB (20) and the edges of the burst interval . The bound
(20) achieves its maximum value at

i.e., at one of the edges of the burst interval (or at both edges
if ). The difference between the min-
imum and the maximum value of (20) over the burst amounts
to CRB , where .
Hence, for given values of 1 and CRB , the
detection of symbols located near the edge suffers from a
larger instantaneous phase error variance as increases.

Let us define by and the high-SNR and low-SNR
asymptotic FIM that are obtained as the limit of the FIM from
(15) for and , respectively. It can be
verified that equals the FIM for estimation from the PSs only;
it has been shown in [3] that this FIM is given by (15) in which
the summation over is replaced with a summation over only.
This indicates that at very low SNR, DA estimation techniques
may perform close to optimal. The high SNR asymptotic FIM

equals the MFIM from (11).
Note that, for a PSK-type modulation , some further

simplification and interpretation of the above results is possible.

1) The ratio CRB CRB
only depends on the SNR and on the ratio .

2) For very low SNR, converges to the center of the pilot
sequence. For very high SNR, converges to the center
of the complete burst, i.e., 2.

3) Independent of the presence of the PSs (number, value,
location), the MFIM (11) related to a burst containing
pilot symbols and data symbols equals the MFIM for
transmitting a sequence of unknown DSs
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Fig. 1. Burst structure, location of the PSs.

that has been shown to coincide with the high-SNR limit
of the FIM for the estimation from unknown DSs in [9].
This implies that, at high SNR, estimation techniques that
make no use of PSs may perform close to optimum.

4) The lower bound on from (19) does not
depend on the choice of the time origin.

IV. TRUE CRB : NUMERICAL RESULTS AND DISCUSSION

Numerical results were obtained for a QPSK constellation
and a symmetrical observation interval, i.e., .
In this case the MFIM from (11) becomes diagonal and the
MCRBs reduce to [8]

CRB MCRB

MCRB MCRB

We assume a burst of symbols, con-
taining two parts of 2 PSs spaced with DSs, as proposed
in [10]. Two different burst structures are considered. They are
shown in Fig. 1, where the shaded areas indicate the location of
the PSs. In burst structure #1 the PSs are concentrated at the be-
ginning of each burst, whereas burst structure #2 is symmetric
yielding , so that carrier phase and frequency estimation
are decoupled (with ).

Figs. 2 and 3 show the ratio CRB
MCRB as a function of the SNR, for the
reference phase error in and for the frequency error,
respectively. Results are presented for , equal
to (approximately) 10% and 20% ( if and

if ), and for , ,
and . For comparison, the lower bound
CRB CRB for the estimation from a burst
without PSs is also displayed. The gray curves correspond
to the lower bounds CRB CRB for
the estimation from the PSs only, which are the low-SNR
asymptotes of the CRB .

A. True CRB for the Estimation of the
Reference Phase in

Fig. 2 corresponds to the reference phase estimation
error in . As the ratio CRB

MCRB is determined only by and
, the curves for all burst structures with the same

ratio coincide. At low and intermediate SNR, the ratio

CRB MCRB decreases as

increases. At very low SNR, the CRB
converges to its low-SNR asymptote that is given by

CRB (21)

Fig. 2. CRB/MCRB for the reference phase estimate in k = k .

i.e., the ratio CRB MCRB

converges to . At very high SNR, the CRB
converges to its high-SNR asymptote, i.e., the ratio
CRB MCRB converges to
one.

B. True CRB for Frequency Estimation

Fig. 3 corresponds to the frequency estimation error.
At low and intermediate SNR, increasing the number
of PSs ( ) decreases the ratio CRB
MCRB [Fig. 3(a) versus Fig. 3(b)]. In contrast

with CRB MCRB , the ratio
CRB MCRB also depends
on the specific position of the PSs within the burst. For a
fixed number of PSs ( ), the ratio CRB
MCRB decreases as the spacing in-
creases. At very low SNR, the CRB becomes
close to its low-SNR asymptote that is given by [3], [10]

CRB

(22)
i.e., assuming , the ratio CRB
MCRB converges to (1 3 3

, where . For fixed and fixed , the low
SNR asymptote of the CRB is the same for
burst structures #1 and #2, as (22) is not affected by a time-shift
of the pilot sequence within the burst. At very high SNR, the
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Fig. 3. CRB/MCRB for the frequency estimate.

CRB converges to its high-SNR asymptote, i.e.,
the ratio CRB MCRB con-
verges to one. For both burst structures #1 and #2, it can be easily
verified that, assuming and for a fixed value of

, the ratio CRB MCRB
is mainly determined by the ratio . Simulation results, not
reported here, indicate that the assumption holds
even for the relatively small values of and from Fig. 3.

C. CRB Versus CRB and
CRB

It follows from both Figs. 2 and 3 that the CRB
is smaller than both CRB and CRB

. This indicates that it is potentially more accurate to
estimate the carrier phase and frequency of a hybrid burst
with a hybrid algorithm that exploits both PSs and DSs (in
some intelligent way) than with an algorithm that only uses the
PSs (and ignores the DSs) or with an algorithm that uses all
received symbols (PSs+DSs) but ignores the a priori knowledge
about the PSs. The ratio CRB CRB
(CRB CRB ) depends on the
operating SNR and on the burst structure, and indicates to what
extent synchronizer performance can be improved by making
clever use of the presence of the DSs (of the knowledge about
the PSs) in the estimation process.

D. Effect of the Burst Structure

For a fixed and fixed , burst structures #1 and #2 yield the

same CRB , while the asymmetric burst struc-
ture #1 yields the smallest CRB (at any SNR).
However, as the following example illustrates, we should be
very careful when interpreting these results. Fig. 4 depicts the
CRB for the reference phase error as a function
of the symbol index at for burst structures #1
and #2 with and . The following observations
can be made.

1) Although burst structure #1 yields the smallest
CRB , its CRB on the reference phase
error variance at is larger than for burst structure
#2. This can be explained by noting that, at a value
of SNR as low as 2 dB, the distance ( ) between the
positions of the minimum and maximum value of the
CRB is significantly larger for burst
structure #1 than for burst structure #2.

2) Although burst structure #2 results in the smallest
maximum for CRB over the burst, other
than for burst structure #1, this maximum value is reached
near both edges of the burst interval. This implies that in
burst structure #2 more symbols are affected by a large
instantaneous phase error variance than in burst structure
#1.

Hence, the “best” burst structure depends strongly on the op-
erating SNR and on the maximum allowable phase error vari-
ance for proper symbol detection.
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Fig. 4. CRB for the reference phase estimate at E =N = 2 dB.

V. PRACTICAL ESTIMATORS FOR HYBRID BURST STRUCTURES

In this section, we consider some practical joint carrier phase
and frequency estimators for hybrid burst structures.

A. DA Synchronization

The DA estimates are given by [2]

(23)

(24)

Of the received samples, only the known PSs
are used. For , the estimates and from (23) and (24)
are unbiased [2]. The mean square estimated errors (MSEEs)
of (23) and (24) are lower bounded by the CRB (with
CRB CRB ). This implies that DA
synchronization is intrinsically suboptimal, especially at high
SNR where CRB CRB for .
Still, it is interesting to understand the behavior of the DA al-
gorithm since multistage synchronization procedures are often
initialized with a DA estimate (see Section V-B and -C).

The DA estimates and , resulting
from (23) and (24), are not affected by a time-shift of the
pilot sequence within the burst. This implies that, for a given
value of and , the corresponding MSEEs are the same

for burst structures #1 and #2. It is well known that, at high
SNR, the MSEE reaches the CRB . Considering the

burst structures from Fig. 1, CRB and CRB
are given by (21) and (22). Increasing the number of PSs ( )
decreases CRB , thus improving the performance of
the DA reference phase estimate at at high SNR.
Increasing the number of PSs ( ) and/or the spacing ( )
decreases CRB , thus improving the performance of the
DA frequency estimate at high SNR. However, below a certain
SNR threshold, the performance dramatically degrades across
a narrow SNR interval, resulting in an MSEE much larger
than the CRB . This so-called threshold phenomenon
results from the occurrence of estimates with large errors, i.e.,
outlier estimates [2]. The presence of important secondary
peaks in the likelihood function results in a large probability of
generating outlier frequency estimates at lower SNR, because
these secondary peaks can more easily exceed the central peak
when noise is added. The SNR threshold decreases with the
number of available signal samples . For consecutive
PSs (as in burst structure #1), the threshold is very low so that
the DA estimator usually operates above threshold. However,
the SNR threshold tends to increase as the PSs are separated by
DSs [3], [10].

The simulation results, reported in Fig. 5, illustrate this be-
havior and show that provides a good compromise
between a small value of CRB and a low SNR threshold.
A minimum of 10 trials have been run to ensure accuracy. Each
trial a new phase and frequency offset FT is taken from a
random uniform distribution over and [ 0.1, 0.1], re-
spectively. The estimated reference phase error was measured
modulo 2 , i.e., in the interval .

B. NDA Synchronization

Assuming a QPSK constellation, the NDA estimates are
given by [2], [11]

(25)

(26)

All ( ) received samples are taken into account, but the
knowledge of the PSs is disregarded. For and

, the estimates and from (25) and (26) are
unbiased [2]. The resulting MSEE converges to CRB at
high SNR. Simulation results indicate, however, that the value
of SNR at which the MSEE becomes close to the CRB
may be quite large. The SNR threshold for the NDA estimator
is much higher than for the DA estimator, as the nonlinearity
increases the noise level. To cope with this problem, a two-stage
coarse–fine DA-NDA estimator has been proposed in [10]. An
ML DA estimator is used to coarsely locate the frequency offset,
and then the more accurate NDA estimator attempts to improve
the estimate within the uncertainty of the coarse estimator. In
fact, the search range of the NDA estimator is restricted to the
neighborhood of the peak of the DA based likelihood function.
This excludes a large percentage of secondary peaks from
the search range of the NDA estimator, and thus considerably
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Fig. 5. The ratio MSEE/MCRB for DA synchronization.

reduces the probability to estimate an outlier frequency.
Assuming the MSEE of the initial DA estimate equals the
CRB , this uncertainty range can be determined as

CRB , where should be carefully chosen.
When the parameter increases, the search region increases,
as well as the probability of comprising outlier peaks, which
may result in a degradation of the performance at low SNR
(outlier effect). However, if decreases, the search region
decreases, as well as the probability of comprising the (correct)
central peak, which in turn may result in a degradation of the
performance at high SNR. After frequency and phase correc-
tion, the samples for are compared to the original PSs
and, if necessary, an extra multiple of 2 is compensated for.

A major disadvantage of this DA-NDA algorithm is that
it does not exploit the knowledge of the PSs in the NDA
fine estimation step. Therefore, its MSEE is lower bounded
by the CRB (with CRB
CRB ). This implies that the DA-NDA al-
gorithm is intrinsically suboptimal (especially at low and
intermediate SNR) in the sense that under no circumstances its
performance may meet the CRB . Some other estimator
may yield an MSEE between CRB and CRB , but it
should fully exploit the knowledge of the PSs.

C. Iterative DD Synchronization

DD estimators extend the sum over in (23) and (24) with
terms over in which the quantities are replaced by hard
(hDD) or soft (sDD) decisions that are based upon a previous
estimate of . For QPSK 1 1 , the soft decisions
are given by [4]

(27)
In (27), . The hard deci-
sions are determined as the constellation points closest to

. The normal operating SNR of the DD estimators is situ-
ated above threshold (large number of available samples ( ), no
noise enhancement). The required initial estimate
can be obtained from the NDA method; however, the perfor-
mance below the NDA threshold rapidly degrades, because of
an inaccurate initial estimate. If PSs are available, it is better to
use DA initialization. We will further refer to these schemes as
DA-hDD and DA-sDD. After phase and frequency correction,
the samples for are compared to the original PSs and, if
necessary, an extra multiple of 2 is compensated for.

The DD estimators take advantage of both the ( ) PSs and
the ( ) DSs. At high SNR, the DD estimates and are unbi-
ased and their MSEE equals the CRB . However,
the DD estimates become biased at low SNR, implying that the
CRB is no longer a valid lower bound on the estimators’ perfor-
mance in this region.

Fig. 6 illustrates this behavior. The presented results are for
burst structure #2 with , , and . Note
that and are decoupled (with ). The initial phase
error was set to 0.2 rad and the initial frequency offset FT was
set to 10 . The mean estimate is plotted versus the SNR. We
observe that increasing the number of DD iterations enlarges the
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Fig. 6. Mean estimate after n iterations of the sDD and hDD algorithms.

SNR range for which the DD estimates are unbiased. The hDD
algorithm converges somewhat faster to an unbiased estimate at
intermediate SNR, but only the sDD algorithm yields unbiased
estimates up to values of as low as 3 dB.

It can be easily shown that the sDD algorithm proposed in [4]
for carrier phase estimation and extended here to joint carrier
phase and frequency estimation involves a practical implemen-
tation of the ML estimator by means of the expectation-maxi-
mization (EM) algorithm. This algorithm converges iteratively
to the ML estimate provided that the initial estimate is suffi-
ciently accurate [12].

VI. COMPARING PERFORMANCE WITH TRUE CRB

The true ML estimator is known to be asymptotically optimal
in the sense that it achieves the performance predicted by the
CRB for large data records. However, the performance for fi-
nite signal durations cannot be determined analytically. In this
section we compare the simulated MSEE of the different esti-
mators listed in Section V to the CRB derived
in Section III.

Numerical results pertaining to the different algorithms are
obtained in Fig. 7. We assume a burst with QPSK
symbols, and . The PSs are organized as in
burst structure #2 from Fig. 1. Note that and are decoupled
(with . A minimum of 10 simulations has been run
to ensure accuracy. Each simulation a different phase and fre-
quency offset was randomly generated from and [ 0.1,
0.1], respectively. We have plotted the ratio MSEE/MCRB for
the estimation of and as a function of the SNR. The phase
error is measured modulo 2 and supported in the interval

, except for the NDA estimator. The phase error of
the NDA estimator was estimated modulo 2, i.e., in the
interval 4 4 , as this estimator gives a four-fold phase
ambiguity. For the DA-NDA estimation, we chose . The
performance of the DA estimator is not displayed: as ,
the MSEE of the DA estimates is much larger than the MSEE
resulting from the other estimators. The MSEE resulting from
the DA-hDD estimator reaches a steady state after about five
iterations. The MSEE resulting from the DA-sDD estimator
reaches a steady state after 10 to 15 iterations. We note that
using a combined DA-NDA initialization instead of a DA
initialization, the same steady-state performance as for DA
initialization is obtained after considerably less (no more than
five) iterations, which indicates the importance of an accurate
initial estimate to speed up convergence. Further, our results
show the following.

1) Above its SNR threshold (at about 4 dB), the NDA esti-
mator performs more or less closely to the CRB .

2) At high SNR, the performance of the DA-NDA estimator
matches that of the NDA estimator, but the performance
below the SNR threshold degrades less rapidly and is still
adequate for reliable receiver operation.

3) At low SNR, the DA-hDD estimator performs worse than
the DA-NDA estimator [Fig. 7(b) for frequency estima-
tion]. At (very) low SNR the initial DA estimates become
even more accurate than the steady-state hDD estimates.
Hence, hard decisions are not useful at low SNR.
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Fig. 7. MSEE performance of some algorithms using PSs and DSs. Burst
structure #2, L = 641, N = 128, s = 65.

4) The DA-sDD estimator outperforms by far the DA-hDD
estimator, especially at low SNR, and provides a consider-
able improvement over the DA-NDA estimator. For large

, the DA-sDD estimator performs very closely to the
CRB .

VII. CONCLUSION

In this paper, we have investigated the joint phase and fre-
quency estimation from the observation of a “hybrid burst” that
contains PSs as well as DSs. We have compared the CRB
with the performance of existing carrier synchronizers. Numer-
ical evaluation of the CRB shows how much can be gained in
estimator performance by using a “hybrid algorithm” that ex-
ploits both PSs and DSs (in some intelligent way), rather than
an algorithm that only uses the PSs (and ignores the DSs) or an
algorithm that uses all received symbols but ignores the a priori
knowledge about the PSs. We have pointed out that the hybrid
DA-NDA estimator proposed in [10] is suboptimal because it
does not fully exploit the knowledge about the PSs. Further, we
have shown that the iterative sDD estimator with DA initial-
ization outperforms the DA-NDA estimator and operates very
closely to the CRB .
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