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Abstract—This paper considers carrier phase recovery in trans-
mission systems with an iteratively decodable error-control code
[turbo codes, low-density parity check (LDPC) codes], whose
large coding gains enable reliable communication at very low
signal-to-noise ratio (SNR). We compare three types of feedback
phase synchronizers, which are all based upon the maximum-like-
lihood (ML) estimation principle: a data-aided (DA) synchronizer,
a non-code-aided (NCA) synchronizer, and an iterative code-aided
(CA) synchronizer. We introduce a blockwise forward–backward
recursive phase estimator, and we show that the mean-square
phase error (MSPE) of the NCA synchronizer equals that of the
DA synchronizer when the carrier phase is constant and the loop
filter gain is the same for both synchronizers. When the signal
is affected by phase noise, the NCA synchronizer (as compared
with the DA synchronizer) yields a larger MSPE due to phase
fluctuations. We also show that, at the normal operating SNR of
the considered code, the performance of the CA synchronizer is
very close to that of a DA synchronizer that knows all transmitted
symbols in advance.

Index Terms—Carrier synchronization, error control coding,
feedback phase estimation.

I. INTRODUCTION

THE last decade has seen the development of powerful
error correcting codes such as turbo codes and low-density

parity check (LDPC) codes. The impressive bit error rate (BER)
performance of the associated iterative decoding processes im-
plicitly assumes coherent detection, meaning that the carrier
phase must be recovered accurately before the data is decoded.
However, since the decoder usually operates at extremely low
signal-to-noise ratio (SNR) values, accurate carrier recovery
is a challenging task. Numerous efforts to tackle this problem
have resulted in a myriad of different receivers [1]–[10].

In [1] and [2], the phase estimator ignores error-control
coding and assumes that the transmitted symbols are mutually
independent [non-code-aided (NCA) operation], whereas in
[3]–[10], the code properties are exploited in the phase esti-
mation process (CA operation). In [11], it was shown that the
second approach is potentially more accurate.

The iterative scheme in [5], which is based on the expecta-
tion-maximization algorithm, is optimal in the sense that it con-
verges to the true maximum-likelihood (ML) carrier phase esti-
mate [12], [13]. The algorithm does not require modification of
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the decoder operation, and the resulting receiver is only margin-
ally more complex than the conventional receiver that a priori
knows the exact value of the phase. Unfortunately, its perfor-
mance rapidly degrades in the presence of a time-varying car-
rier phase.

In [2], [6]–[8], and [10], feedback phase estimation has been
adopted to cope with carrier phase variations. The ML-based re-
ceiver proposed in [10] combines the low complexity from the
approach in [5] with the ability to automatically track a slowly
varying carrier phase. Simulation results in [10] show the inter-
esting potential of this approach. As opposed to the algorithms
in [2], [6], and [7], the derivation of the phase estimation algo-
rithm stems directly from the ML criterion and can therefore
be seen as the feedback counterpart of the receiver presented in
[5]. Moreover, its computational complexity is lower than that
of the algorithms in [8] and [9], which modify the decoder oper-
ation by either taking into account the phase statistics or using
per-survivor phase estimates inside the decoder.

This contribution zooms in on the approach that was adopted
in [10]. By means of theoretical analysis and computer simu-
lations, we compare the tracking performances resulting from
the iterative code-aided (CA) synchronizer from [10], the data-
aided (DA) synchronizer, which knows all transmitted symbols
in advance, and the NCA synchronizer, which neglects the un-
derlying encoding rule. It is shown that CA feedback phase es-
timation outperforms NCA feedback estimation when the phase
to be estimated varies with time; when the carrier phase is con-
stant over the observation interval, both synchronizers yield es-
sentially the same mean-square phase error (MSPE). We also
show that, at the normal operating SNR of the considered code,
the performance of the CA synchronizer is very close to that
of a DA synchronizer that knows all transmitted symbols in ad-
vance. This illustrates the optimality of the CA synchronizer.

II. MAXIMUM-LIKELIHOOD CRITERION

We consider the transmission of an arbitrary sequence of
complex-valued symbols over an
additive white Gaussian noise (AWGN) channel. The joint
probability mass function of the symbols is denoted as

. Assuming linear modulation using square-root Nyquist
transmit pulses, and matched filtering at the correct decision
instants, the discrete-time baseband observation is given by

(1)

where denotes the unknown carrier phase,1 and the sequence
consists of independent zero-mean complex-valued

1The carrier phase is initially assumed to be constant over the observation
interval. Later, the observation model will be extended to allow a time-varying
carrier phase.
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Gaussian noise terms; and are statistically
independent and have a variance equal to .

Let us denote by a trial value of the true carrier phase that
has to be estimated by the synchronizer. Then, the ML estimate
of the carrier phase is the value of that makes zero the deriva-
tive of the log-likelihood function with re-
spect to [14]. The probability density of resulting
from (1), given the data sequence and a trial value of the
carrier phase, is (within a factor not depending on ) given
by

(2)

The likelihood function of the carrier phase is obtained
by averaging over the symbol vector , i.e.,

. From a similar reasoning as in [5] and [11],
the derivative of the log-likelihood function with respect
to can be manipulated into the following form:

(3)

where

(4)

is the a posteriori expectation of the symbol condi-
tioned on and , with denoting the
marginal a posteriori probability (APP) of the symbol , and

the set of constellation points with symbol
energy .

When the data symbol vector consists of known pilot sym-
bols , we obtain equal
to 1 for and zero otherwise, yielding
in (4). The log-likelihood function that corresponds to the trans-
mission of pilot symbols is denoted .

In the case of uncoded transmission, the symbols are
statistically independent, so the APPs of reduce to

(5)
where

(6)

As (5) depends only on , we will denote the corresponding
a posteriori average of the symbol as . The log-
likelihood function that corresponds to the transmission of sta-
tistically independent symbols is denoted .

This paper considers systems with an iteratively decodable
error-control code (turbo, LDPC codes). The data symbol vector

is obtained from the encoding of a se-
quence of information bits and a proper mapping of the coded

Fig. 1. General structure of a discrete-time feedback carrier synchronizer.

bits on the signal constellation. In this case, the APPs in (4) are
a function of all components of the vector . To avoid the com-
putational complexity associated with their exact evaluation,2

the marginal APPs are approximately computed by means of
the iterative application of the sum–product (SP) algorithm on
a factor graph with cycles [15]. If the cycles in the graph are
large (which is reasonable for well-designed turbo and LDPC
codes), this iterative procedure (after convergence) yields mar-
ginal APPs that are very close to the correct marginal APPs. The
corresponding log-likelihood function is denoted .

III. ML-BASED PHASE TRACKING FOR CODED SIGNALS

The general structure of a first order discrete-time feedback
carrier synchronizer or phase-locked loop (PLL) is shown in
Fig. 1 [16]. The phase estimate is updated once per symbol in-
terval, according to the following forward3 recursion

(7)

In (7), is the loop filter gain, and denotes the phase error
detector (PED) output. The recursion starts with an initial phase
estimate , that can be obtained from a feedforward synchro-
nizer operating on a short pilot sequence [16].

In the following, we consider three types of ML-based PEDs.
The DA PED (based on ) assumes that all data symbols
are known. The NCA PED (based on ) assumes that the
data symbols are independent, whereas the CA PED (based on

) takes the code properties into account. We obtain
from (3) that

DA operation

NCA operation

CA operation
(8)

Comparison of the PED outputs for NCA and CA operation with
that for DA operation indicates that the a posteriori mean
can be considered as a soft decision (SD) regarding , based
upon the received sample or the received sample sequence

and the phase estimate . Note from (8) that the DA and
the NCA PED output depend only on ; this is in con-
trast with the CA PED output whose computation depends on
the entire vector : all samples have to be

2In principle, the exact marginal APPs Pr[a jr; �] can be obtained as a sum-
mation of joint APPs Pr[ajr; �], which, in turn, can be computed from (2) and
Bayes’ rule. However, the computational complexity of this procedure increases
exponentially with the sequence length K .

3We speak of a forward recursion when the phase updating is performed from
the first symbol interval to the last.
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rotated over an angle and fed to the SP algorithm for pro-
ducing the SD . Hence, in the case of CA operation,
the entire received block must be processed times, whereas
the received block is processed only once in the case of DA or
NCA operation.

In order to avoid the high computational complexity resulting
from the CA PED, the following iterative CA PLL has been
proposed in [10]. During the th iteration, the feedback syn-
chronizer generates estimates essentially
according to (7), but with the PED output given by

iterative CA operation

(9)

where , and
is the a posteriori expectation of the symbol conditioned

on and . Hence, from the phase vector , the re-

ceived vector is processed to compute for
, after which the PLL generates the phase vector

. The iterative process is initialized by means of a phase

vector , which can be obtained from a PLL with NCA op-
eration. When convergence is achieved after iterations, the
vector has been processed times.
When , considerable savings in computation time have
been obtained as compared with the noniterative PLL that uses
the CA PED output from (8). Moreover, when applied to a turbo
or LDPC receiver with iterative MAP detection/decoding, the
proposed phase estimation/compensation scheme yields very
low additional complexity when the synchronizer iterations are
merged with the decoder iterations [4], [5], [10], i.e., after each
synchronizer iteration only one decoder iteration is performed
without resetting extrinsic probabilities.

IV. TRACKING PERFORMANCE ANALYSIS

A. Analytical Results

Computing the exact tracking performance of the iterative CA
feedback phase estimator is much more difficult than for the
NCA and DA synchronizers, because of the iterations involved
and the dependence of the soft decisions on the entire phase
vector. Instead, we will proceed assuming that, at the normal op-
erating SNR of the considered error-correcting code, the MSPE
resulting from the iterative CA phase estimator converges to the
MSPE resulting from a fictitious DA phase estimator that knows
all data symbols in advance.

A motivation for this assumption reads as follows. Note
that in (8) the CA PED output reduces to the DA PED
output when the APP is one for
and zero otherwise. This indicates that the CA PLL essen-
tially behaves like the DA PLL, provided that the ratios

are likely to be
much smaller than 1 for all and all .
Let us introduce the indicator function , which equals one

when for at least one , and equals
zero otherwise. Then, we obtain

(10)

where denotes the set of legitimate coded symbol sequences
of length . We assume that for and

otherwise, where the quantities and denote the
rate of the code and the number of constellation points, respec-
tively. With and for all , (10) is nothing but the
(very small) symbol error rate resulting from an optimal max-
imum a posteriori probability symbol decoder [17]. Hence, for
small phase errors, the fraction of symbol intervals for which

is very small, so that we can safely assume that the
CA PLL operation closely resembles the DA PLL operation, at
the normal operating SNR of the code.

We will now compute the performance of the DA and the
NCA phase estimator. Assuming that at the low SNR supported
by capacity-approaching codes, it is not possible to compute re-
liable data decisions without taking into account the code struc-
ture, we expect the NCA PLL to perform significantly worse
than a DA PLL with perfect knowledge on the data symbols.

In order to allow a time-varying carrier phase, the observation
model (1) is modified into

(11)

where is the phase during the th symbol interval. An often
used phase noise (PN) model is based on a discrete Wiener
process (random walk)

(12)

characterized by independent and identically distributed (i.i.d.)
Gaussian increments with zero mean and standard deviation

, descriptive of the phase noise intensity. It is assumed that
and are statistically independent, and that is uni-

formly distributed in . We define the phase estimation
error during the th symbol period as .4

The DA and NCA PED outputs from (8) that depend only
on can be decomposed as the sum of their average
and their zero-mean statistical fluctuation

(13)

with

(14)

denoting the PED characteristic and the loop noise of the syn-
chronizer, respectively. We show in the Appendix that .

4This definition of the estimation error agrees with the framework in [16].
It should be noted, however, that the estimation error is usually defined as the
inverse of � , i.e., according to ^� � � .
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Assuming small phase errors, the following linearization applies
[16]:

(15)

where is the slope of the PED characteristic and is
the loop noise at . Substituting (15) into (7), we obtain

(16)

where . We show in the Appendix that

(17)

where
DA operation

NCA operation (18)

and . Solving (16) yields

(19)

The phase error (19) at the output of the PLL consists of two
contributions, which are caused by the noise (AWGN, PN) af-
fecting the observation and by the initial phase error , respec-
tively. In all practical cases, the quantity is smaller
than 1 so that the phase error (19) exhibits a decaying acquisi-
tion transient near the start of the observation interval. Assuming
a uniformly distributed initial phase error, the mean acquisition
time in the absence of noise is well approximated by [16]

(20)

where is the one-side bandwidth (normalized to
the symbol rate) of the closed-loop filter with impulse
response and -transform

. We have

(21)

The approximation in (20) and (21) is valid for small . It fol-
lows from (20) that a larger results in a faster acquisition. The
same goes for a larger . At the end of the acquisition period
the phase error enters the tracking mode, during which (19) can
be safely approximated by

(22)

It is easily seen from (22) that the steady-state phase error has
zero mean and that the steady-state MSPE is given by

MSPE MSPE (23)

with

MSPE

MSPE (24)

The linearized steady-state MSPE from (24) consist of two con-
tributions: an additive noise contribution and a phase noise con-
tribution. The PN contribution is inversely proportional to the
slope of the PED characteristic, whereas the AWGN contribu-
tion does not depend on the slope of PED characteristic. This
is because, for given values of and , the reduction of
the PED slope of the NCA PLL (as compared with the
DA PLL) is precisely compensated by the reduction of the loop
bandwidth and of the phase noise variance .
A larger value of yields a larger AWGN contribution but a
smaller PN contribution, and vice versa. When the carrier phase
is time-invariant , the MSPE can be made arbitrarily
small by reducing the value of . A small , however, implies
a large acquisition time. When the carrier phase is time-varying

, there exists an optimal value for that minimizes the
steady-state MSPE. Solving this optimization problem yields

MSPE (25)

where and MSPE denote the optimal value for and
the corresponding minimum value for the linearized steady-state
MSPE, respectively.

B. Numerical Results and Discussion

By means of example, we consider a binary phase-shift
keying (BPSK) signal constellation, an observation interval of

symbol periods and a rate 1/3 turbo code. The turbo
encoder consists of the parallel concatenation of two identical
nonrecursive systematic convolutional encoders with generator
polynomials and in octal notation, separated by
a pseudorandom interleaver of size 333 bits. Fig. 2 shows the
BER after one, two, and ten iterations of the coherent turbo
decoder/detector.

In Fig. 3, the slope of the NCA PED is plotted
against the SNR . Monte Carlo simulation techniques
were used to evaluate the statistical expectation involved in the
expression of (see (A10) of the Appendix). We
observe that, at the normal operating SNR of the turbo code
(say, BER ), the slope of the NCA PED characteristic is
strictly smaller than 1, i.e., than is the slope of the DA PED.

The tradeoff on in case is illustrated in
Fig. 4 showing the numerical evaluation of (24) for

2.77 dB, which is in the operating range of
the turbo code from Fig. 2, and 2 . As the slope of the
DA PED is larger than that of the NCA PED, the optimized
DA PLL yields a smaller acquisition time and a smaller MSPE
than the optimized NCA PLL. The optimal loop filter gain
is around with the NCA PED, and reduces to

with the DA PED. The minimum MSPE for the
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Fig. 2. BER of coherent turbo receiver for a rate 1/3 turbo coded BPSK signal
in AWGN.

Fig. 3. Slope of the NCA PED characteristic at � = 0, in the case of BPSK.

NCA PLL is a factor of 0.57 larger than the minimum MSPE
for the DA PLL. This is consistent with (25) and with the
behavior of depicted in Fig. 3.

In Fig. 5, we have plotted the simulated MSPE at the output
of the DA, the NCA, and the iterative CA PLL as a function of
the symbol index . We have taken 2.77 dB and

. The carrier phase is assumed to be either constant
over the observation interval (CCP) or to perform a random walk
with 2 (WPN). The iteration of the CA PLL is an

Fig. 4. Linearized steady-state MSPE as a function of the loop parameter �.

Fig. 5. MSPE of a first order PLL with � = 0:04, tracking a constant carrier
phase (CCP) or Wiener phase noise with � = 2 (WPN).

NCA recursion. In both cases, we find that the MSPE of the it-
erative CA PLL becomes essentially equal to the MSPE of the
DA PLL after only two iterations (i.e., for iterations ). This
confirms the validity of the assumption made at the beginning
of Section IV-A. As the slope of the NCA PED is smaller than
that of the DA PED, the acquisition time and the PN contribu-
tion to the tracking MSPE are larger for NCA operation than for
DA operation (CA operation, ). Conversely, the AWGN
contribution to the tracking MSPE, is the same for NCA opera-
tion and for DA operation (CA operation, ). This implies
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Fig. 6. MSPE of a first-order DA PLL with � = 0:04, tracking a constant
carrier phase and using forward–backward phase updating.

that, when the carrier phase is time-invariant (CCP), the tracking
MSPE cannot be reduced by performing, after the initial NCA
recursion, iterations in the CA mode.

V. FORWARD–BACKWARD PHASE UPDATING

During the acquisition period at the beginning of the obser-
vation interval (see Fig. 5), the MSPE may assume large values.
Assuming that the acquisition transient is no longer present at
the end of the observation interval, accurate phase estimates at
the beginning of the observation interval can be obtained by car-
rying out an additional recursion, using as initial phase estimate
the estimate obtained at the end of the first recursion and up-
dating the phase estimates from the last symbol to the first ac-
cording to the following backward recursion:

backward recursion (26)

The result of this procedure is shown in Fig. 6 for a first-order
DA PLL with , and for 2.77 dB and

. For a DA PLL or an NCA PLL, the edge effect that arises near
the end of the observation interval can be explained as follows.
Substituting (15) into (26), we obtain

(27)

with ,
and given by (18). Taking into account that is given
by (22) with , solving (27) yields

(28)

Fig. 7. f = 2�g (0)n(1� �g (0)) as a function of n.

where . Approximating by 0
for and taking into account that the noise samples
are mutually independent, it can be verified that

MSPE

MSPE (29)

where

(30)

and MSPE and MSPE are given by (24). The terms
proportional to do not occur in (23) and are a result of
the reusing of the samples. The function is plot in Fig. 7,
for . For , it equals zero. As the product of
a linearly increasing function and an exponentially decreasing
function, first increases and then decreases with increasing

. For infinite , converges to zero. This explains the shape
of the edge effect in the MSPE near the end of the observa-
tion interval (where is small). Near the start of the obser-
vation interval (where is large), is negligibly small and
(29) reduces to (23). Assuming that is es-
sentially zero for , the edge effect can be circum-
vented by taking as final phase estimates the estimates at in-
stants from the forward recursion and
those with indexes from the
backward recursion.

In the above, we have considered only two successive recur-
sions, one in the forward and one in the backward direction,
but the forward–backward phase updating principle is easily ex-
tended to a higher number of recursions. In order to reduce the
effect of acquisition transients, the iterative CA PLL is modified
as follows. Instead of performing only forward recursions, an
alternation of forward (for iterations and back-
ward (for iterations ) recursions is carried out,
with each recursion using as initial phase estimate the estimate
obtained at the end of the previous iteration.

Let us reconsider the turbo-coded BPSK signal from
Section IV. Fig. 8 shows the MSPE performance of the NCA
and CA feedback phase estimators with forward–backward
phase updating and , for several values of the phase
noise variance as a function of . The simulated
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Fig. 8. MSPE of a first order ML-based PLL with � = 0:04. CA operation
versus NCA operation, simulation versus analytical computation.

MSPE (continuous lines) is compared with the linearized ana-
lytical result from Section IV (dashed lines). The discrepancy
(which is quite small for larger than about 4 dB) be-
tween the simulations and the computations is the result of the
random occurrence of nonlinear phenomena such as cycle slips
and hang-ups [16]. In the absence of phase noise, the CA al-
gorithm yields essentially the same MSPE as the conventional
NCA algorithm since the latter is given ‘more time’ by the for-
ward-backward recursion to let its transient fade out. In the pres-
ence of phase noise, the MSPE of the CA synchronizer is lower
than that of the conventional NCA algorithm. The relative ad-
vantage of the CA synchronizer over the NCA synchronizer in-
creases with the value of the phase noise variance. It speaks for
itself that the estimation accuracy increases with .

VI. CONCLUSION

This contribution has studied the effectiveness of CA and
NCA ML-based feedback phase synchronizers at the low SNRs
supported by powerful iteratively decodable codes such as turbo
codes or LDPC codes. Under normal operating conditions, the
MSPE resulting from the iterative CA synchronizer converges to
the MSPE resulting from a DA synchronizer that knows all data
symbols in advance. This illustrates the optimality of the CA
ML-based feedback phase synchronizer. By virtue of a forward-

backward multiple-recursion estimator, the linearized MSPE of
the NCA feedback synchronizer equals that of the CA feedback
synchronizer, when the carrier phase is essentially constant over
the observation interval and the loop filter gain is the same for
both synchronizers. Conversely, the presence of Wiener phase
noise results in a NCA feedback synchronizer MSPE that is
larger than the CA feedback synchronizer MSPE. The NCA syn-
chronizer also yields a larger acquisition time than the CA syn-
chronizer. However, assuming that the acquisition transient is
shorter than the observation interval, the effect of the acquisition
transient on the phase error can be circumvented by carrying
out an alternation of forward and backward phase updating re-
cursions, with each recursion using as initial phase estimate the
estimate obtained at the end of the previous recursion.

APPENDIX

We first consider NCA feedback phase synchronization.
Taking in (3) and , we find that the NCA PED
output from (8) can be rewritten as follows:

(A1)
where the probability density is (within an irrel-
evant factor) given by with

as in (6).
The decomposition (13), (14) of (A1) as the sum of the PED

characteristic and the loop noise yields

(A2)

(A3)

Taking the first and the second derivative (with respect
to the true carrier phase ) of both sides of the nor-
malization constraint , and using

, it can be verified that

(A4)

and

(A5)

It follows directly from and (A4) that .
Taking into account that and (11), the PED slope

and the loop noise at are given by

(A6)

(A7)
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Because of the statistical properties of , the loop noise at
is white5 and its power spectral density is given by

(A8)

Taking into account (A5) and (3), we obtain

(A9)
with

(A10)
It can be verified that from (A10) equals the ratio of the
modified Cramér–Rao bound (MCRB) to the true Cramér–Rao
bound (CRB) related to the estimation of an unknown but deter-
ministic carrier phase from the noisy observation of uncoded
data symbols [14]. As CRB MCRB, and CRB converges to
MCRB for large SNR, it is found that ,
and .

The above analysis remains valid for DA operation pro-
vided that we replace with , and with

, which is (within an irrelevant factor) given by
. In this case, we obtain

(A11)
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