
4948 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 9, SEPTEMBER 2010

Near Optimal Iterative Channel
Estimation for KSP-OFDM

Dieter Van Welden and Heidi Steendam

Abstract—In this correspondence, we propose an iterative “turbo”
channel estimation algorithm for known symbol padding (KSP) orthog-
onal frequency-division multiplexing (OFDM), where the guard interval
is filled with pilot symbols. Additional pilot symbols are transmitted on
some of the OFDM carriers. The channel estimation algorithm is based
on the expectation-maximization (EM) algorithm. In the initialization
phase of this iterative algorithm, the received time-domain samples are
first converted to the frequency domain, and the initial channel estimate is
based on the observation of the pilot carriers only. Then the EM-algorithm
switches back to the time-domain and updates the channel estimates until
convergence is reached. The proposed estimator performs very good: the
mean square error (MSE) performance of the proposed estimator is close
to the Cramér–Rao lower bound (CRB) corresponding to the all pilots
case, for the SNR region of practical interest, and the resulting bit error
rate essentially coincides with the case of the perfectly known channel.

Index Terms— Channel estimation, iterative methods, OFDM.

I. INTRODUCTION

Multicarrier transmission (MC) [1] is widely accepted as the
transmission technique most suited for high data rate transmission
over dispersive channels. This is demonstrated by the various stan-
dards based on the MC-technique: xDSL [2], digital audio and video
broadcasting [3], [4], wireless LAN [5], etc. To avoid intersymbol
interference between successively transmitted MC blocks, a guard
interval is inserted between the MC blocks. Among the most popular
guard interval techniques, we find the cyclic prefix (CP) technique and
the zero-padding (ZP) technique [6], [7]. In the CP technique [6], the
last samples of each MC block are copied and added in front of the
MC block, whereas in the ZP technique [6], no signal is transmitted
during the guard interval. In these two guard interval techniques, max-
imum-likelihood (ML) channel estimation from pilot carriers is trivial
and equalization can be performed in the frequency domain with low
complexity [8]. However, for these two guard interval techniques have
no control about the content of the guard interval, which makes the
guard interval not very useful for channel estimation and sometimes
insufficient for synchronization tasks [9], and therefore a waste of
resources. Indeed, the main disadvantage of these two guard interval
techniques is the ambiguity problem that occurs in low-complexity
timing synchronizers [8], [10]. This unability to find the boundaries
of the transmitted OFDM blocks will cause residual intersymbol
interference, resulting in an overall performance degradation.

In this contribution, we consider another guard interval technique,
i.e., known symbol padding (KSP) [9], where the guard interval con-
sists of known pilot samples. As the guard interval does not contain any
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data symbols, the pilot symbols in the guard interval can be optimized
to obtain desirable properties for synchronization tasks. In [11], it is
shown that this technique, unlike CP-OFDM and ZP-OFDM, does not
suffer from this ambiguity in timing synchronization [9]. As the sam-
ples of the guard interval are known, they can be used for data-aided
channel estimation. However, usually the length of the guard interval
is only slightly larger than the duration of the channel impulse re-
sponse, so the number of pilot symbols in the guard interval is not
sufficient to perform accurate channel estimation. Therefore, extra pi-
lots are inserted in the transmitted MC signal to improve the channel
estimation accuracy. In the literature, several channel estimation tech-
niques have been proposed [12]–[16]. It turns out that channel esti-
mation in KSP-OFDM is harder than in CP-OFDM and ZP-OFDM,
because of the combination of frequency-domain pilots and time-do-
main pilots. ML channel estimation in KSP-OFDM is very complex
and suboptimal estimation techniques must be used. The algorithms
from [12]–[14] assume that the unknown data symbols are Gaussian
distributed. In [14], a suboptimal ML-based channel estimation algo-
rithm is proposed. However, [14] assumes that the autocorrelation ma-
trix of the disturbance (containing contributions from the noise, the data
symbols and the channel) is known. Hence, before this channel esti-
mator can be used, first the autocorrelation matrix must be estimated
from the received signal. Further, even if the autocorrelation matrix
is perfectly known, the resulting mean square error (MSE) shows an
error floor at high SNR, indicating that the presence of the unknown
data symbols disturbs the channel estimation. In [13] channel estima-
tion for KSP transmission over stationary frequency-selective channels
is considered, which is a special case of the situation considered in [14].
In [15], the signals transmitted on the pilot carriers are selected such
that the last IFFT outputs correspond to the pilot symbols from the KSP
sequence. Before the OFDM block, the same samples are transmitted,
so we can consider this situation as a special case of CP-OFDM. An
equalizer is then trained based on the received KSP sequences of sev-
eral consecutive blocks. The transmitted signals on the pilot carriers
also contain a contribution of the unknown data symbols, so only the
KSP sequence in the time domain can be used to perform synchroniza-
tion. In [16], the effect of the data symbols on the channel estimation
is reduced by applying a linear transform to the observed time-domain
samples; the resulting observations can be split into a part that depends
on the data symbols and a part that is (nearly) independent of the data
symbols. In the subset estimator from [16], only the latter subset of ob-
servations is used to estimate the channel. Although performing better
than the estimator from [14], the subset estimator also shows an error
floor at high SNR because of the residual interference from the data
symbols.

To deal with the unknown data symbols, we can apply the expecta-
tion-maximization (EM) algorithm [17], which is an iterative algorithm
that converges to the ML estimate. In [18], EM-based channel estima-
tion algorithms operating in the frequency domain are proposed for
CP-OFDM. However, when this algorithm is applied to KSP-OFDM,
the pilot symbols from the guard interval cannot optimally be used for
the channel estimation, as in the algorithm from [18], the samples from
the guard interval are thrown away. The extension of this algorithm to
take also into account the guard interval samples to estimate the channel
in the frequency domain is not straightforward. Therefore, we propose
in this correspondence an iterative channel estimator for KSP-OFDM
operating in the time domain, using both the samples from the data
part and the samples from the guard interval. To initialize the algo-
rithm, first the channel is estimated using a data-aided estimator that
operates in the frequency domain. Because of the orthogonality of the
carriers, the pilot carriers can easily be separated from the data carriers.
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Fig. 1. Time-domain signal of KSP-OFDM a) transmitted signal b) received
signal and observation interval.

As the observations used for the channel estimation are the FFT out-
puts corresponding to the pilot carriers, the observations are indepen-
dent of the unknown data symbols, and therefore the data symbols will
not disturb the channel estimation. Therefore, unlike the algorithms in
[14] and [16], this initial frequency domain channel estimate causes
no error floor at high SNR. After the initialization phase, the estimator
switches back to the time domain, allowing all available information to
be used to iteratively update the channel estimate. The performance of
the proposed algorithm is compared with the estimator from [14], the
subset estimator from [16] and the Cramér–Rao lower bound (CRB)
corresponding to the all pilots case. It turns out that the proposed esti-
mator has nearly optimal performance. For the SNR region of practical
interest, the MSE performance of the proposed estimator is close to the
former CRB. Further, the resulting bit error rate essentially coincides
with the case of the perfectly known channel.

II. SYSTEM DESCRIPTION

We consider a KSP-OFDM system with � carriers and a guard in-
terval length � , as shown in Fig. 1. The guard interval (dark gray area in
Fig. 1) consists of � known pilot samples�� � ������ � � � ��������� .
The � symbols transmitted on the carriers during the �th OFDM block
are denoted �� � ������� � � � � ���� � ���� . This vector �� consists
of � � � pilot symbols and � �� � � information-carrying data
symbols, denoted as ����� � ��

���
� ��� � � � �

����������
� �� and ����� �

��
���
� ��� � � � �

���
� �� � � � � � ���� , respectively. Hence, the total

number of pilots transmitted on the carriers and in the guard interval
equals� . We define the sets �� and �� as the sets of carriers modulated
by pilots and data, respectively, where �� � �� � ��� � � � � � ���. The
� � � time-domain samples during block � are then given by

�� �
�

� � �

����

��
	 (1)

In (1), � is the � � � matrix corresponding to the fast Fourier
transform (FFT) operation, with �	
� � ��


�
������
�	����, and

the superscript + denotes the Hermitian transpose. Hence, the matrix
�� corresponds to the inverse FFT (IFFT) operation. We assume that
the data symbols are independently and identically distributed (i.i.d.)
and have energy per symbol ������
���	 � ��. Further, we assume
that ������
���	 � ����������	 � ��. The normalization factor
�
�� � �� in (1) implies that �������	 � ���.
The KSP-OFDM signal is transmitted over a dispersive channel

with � taps; the channel impulse response is given by the vector
� � ������ � � � � ���� ���� . We select � � � � � in order to avoid
interference between successively transmitted OFDM symbols. The
signal is disturbed by additive white Gaussian noise �, of which
the statistically independent components ���� have zero mean and
variance ��. Without loss of generality, we restrict our attention to the

detection of the OFDM block with index � � �, and we drop the block
index for notational convenience. Considering the observation interval
shown in Fig. 1(b), we can write the received � � � time-domain
samples as

� � ������	 (2)

The �� � ��� �� � �� channel matrix ��� is given by

�����	
	 � � �� � ������ (3)

where ���� is the modulo-� reduction of � yielding a result in the
interval ��� ��.

For data detection, the contribution from the guard interval pilots
must first be subtracted from the received signal. Then, the last � sam-
ples from the observation interval, which now contain only a data com-
ponent as the contribution from the guard interval pilots is removed,
are added to the first � samples of the OFDM symbol, and the resulting
samples are transformed to the frequency domain by applying an FFT.
Note however that the guard interval pilots are affected by the unknown
channel; hence, before their contribution can be subtracted from the re-
ceived signal, the channel has to be estimated first.

III. CHANNEL ESTIMATION

For channel estimation, we rewrite the observation model (2) as

� � 	��
���	 (4)

In (4), the �� � �� � � matrix 	 contains the contributions from
the pilot symbols. It can be split into the contribution from the guard
interval pilots and the pilot carriers: 	 � 	� � 	�. The matrix 	�

contains the contributions from the pilot carriers and is given by

�	��	
� �
�

� � �
���� � ��	 (5)

The vector �� equals the � -point IFFT of the pilot carriers only, i.e.,
�� � ����, where the � � �� � �� matrix �� consists of a subset
of columns of the IFFT matrix �� corresponding to the set �� of pilot
carriers. Note that ����� � � for � � � or � � � . The contribution
	� from the guard interval pilots is given by

�	��	
� �
�

� � �
�� ��� � �� ������ (6)

with ����� � � for � � � . The contributions from the unknown data
symbols in (4) are collected in the �� � ��� � matrix 
:

�
�	
� �
�

� � �
���� � �� (7)

where �� � ���� and �� consists of the � � � �� columns of ��

corresponding to the data carrier positions ��. We introduce the matrix
� to write (4) in a more compact form

� � ���� (8)

where � � 	 �
.

A. EM Estimation

The EM algorithm [17] is an iterative method to obtain an ML esti-
mate of a parameter vector ��� based on an observation �, where � de-
pends on unobserved data �. Each iteration consists of an expectation
(E) step, and a maximization (M) step. In the E-step, the log-likelihood

�� ������ ���� is averaged over the unobserved data, given the observa-
tion � and the last estimate of ���

������
���	��� � 
�� ������ ���������� 
���	����� (9)
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where � is the iteration index and ������� denotes the estimate of ��� ob-
tained in the previous iteration. The M-step comprises the maximiza-
tion of (9) with respect to ���:

����� � ������
���

�������������	� (10)

B. Step 1: The Initial Channel Estimate

It is clear from (9) that, in order to start up the EM-algorithm, an
initial estimate of the channel should be available. In this correspon-
dence, we consider a data-aided estimation method to initialize the iter-
ative algorithm. To obtain the estimator, we follow a similar reasoning
as in [16]: we consider an invertible transform independent of the pa-
rameter to be estimated that results in a part of the observation to be
data-free. However, in contrast with [16], we do not make any approx-
imations. As it is impossible to find a linear transform independent of
the channel vector � that makes the last � samples of the observation
interval data-free, a truly data-free observation consists of� �� sam-
ples only.

Let us consider the following invertible transform:

�
� �

� �

� ��

��

�

�

� ��

�
�
� �� (11)

where �� is the � �� identity matrix. According to this transform,
the last � samples from the observation interval are added to the first
� samples [as indicated in Fig. 1(b)]; this restores the orthogonality
(over the first � samples) between the carriers of the OFDM system.
Then an � -point FFT is applied to the first� samples (i.e., we convert
these samples to the frequency domain) while the last � samples are
not transformed. As the carriers are orthogonal, data carriers do not
interfere with pilot carriers. Hence, if we use as observation subset the
��� FFT outputs at the pilot carrier positions only, these observations
are data-free and ML estimation of the channel is simple.

The � � � observations corresponding to the set 	� of pilot carrier
positions can be collected in the vector ���:

�
�

� � �
�
� 
�

� (12)

where the noise component�� is zero-mean Gaussian distributed with
autocorrelation matrix 	� given by

�	�	��� � �� 
��� 

�

�

���

���

��	�
 (13)

and �� � �
�
� 
�

�
� is a �� � �	 � � matrix. The matrix ��

� corre-
sponds to the contributions from the pilot carriers, i.e.,

�
�

� ���
�

�

� 
 �

���	�

�	�
 � � 	�� � � �� 
 
 
 � ��� (14)

and ��
� to the contributions from the guard interval pilots, i.e.,

�
�

� �
�

� 
 �
�������� (15)

where �����	��� � ���
�
�	��	�
���
��, � � 	�, � � �� 
 
 
 � � � �

and �����	��� � 
���� � ���	.
The ML estimate of � based on the observation ��� is defined as [19]

���� � ������
�

� �
�

��� � (16)

The ML estimate of � is easily found to be

���� � ����
	
���
�
�	
��
�
��
	
���
�
�

� (17)

and its MSE is given by

MSE � ����� ����
	
���
�
�	
��

� (18)

The MSE is proportional to �����, so there will be no error floor for
����� � �. This MSE still depends on the pilot symbols 
� and 
�.
The averaging of the MSE (18) over all possible pilot sequences is not
straightforward, so we derive a lower bound instead. Since the inverse
of a matrix is a matrix convex function, Jensen’s inequality for matrices
[20] can be applied: ������

	
���

�
�	��� � ������

	
���

�
��	��.

We assume that the pilot symbols are selected in a pseudorandom way.
For the computation of �����

	
���

�
��, we approximate 	� by the

diagonal matrix ����� 
�	��	���� because �	�	��� � �	�	��� ,
for �� 	� �. In that case, �����

	
���

�
�� is essentially equal to

�����
	
���
�
��

���

�
�
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 �

�
��

��
���

�	�




�

� 
 �

�
�

��

�

�
���

���

��� ��

�	�
 �������� �� ��	

(19)

where �������� �� ��	 � ��
������ ���	
����� � ����	�. When the
pilot symbols are evenly distributed over the carriers and � � � di-
vides� , the first term in (19) reduces to �����
�		�������	���
�	
��� . The computation of the second term in (19) is carried out in the
Appendix. Hence, �����

	
���

�
�� is essentially equal to ����� 


�		������	�� � �	��,1 from which it follows that the MSE lower
bound is given by

MSE	
 ������ �����
	
���
�
��

��
�

� 
 �

�

��

��

�

� � �
� (20)

i.e., the MSE lower bound is inversely proportional to the number of
pilot carriers. In Section IV we will show that the actual MSE is close
to the lower bound.

The matrices�� and	� depend only on the known pilot symbols and
the known positions of the data carriers and the pilot carriers. Hence,
�
� and 	� are known at the receiver and ����

	
���

�
�	�����

	
���

can be precomputed. Therefore, the estimate (17) can be obtained with
low complexity.

C. Step 2: Decision Directed Channel Estimation

The obtained channel estimate (17) is used to start up the EM-algo-
rithm. In our case, we need to compute in the E-step (9) of the EM-al-
gorithm, the average of the log likelihood ��� ������� �����	 over the
unknown data vector �� given the observation � and the last obtained
estimate of the channel vector �����. The vector of received samples �
(8), given the channel vector � and the data symbols ��, is Gaussian
distributed with mean �� and autocorrelation matrix ������ , so the
log likelihood ��� ��������	 is given by

��� ��������	 � � �

��
�����	������	� (21)

The averaging of (21) over the unknown data vector yields

�� ��� ������� �����	 � � �

��

������ �� ���� �� ���
� 
 �

� �	��	 (22)

1For the special case that � � � � � we have shown in the Appendix that
��� � � � has two non-diagonal elements, but they are much smaller
than the diagonal elements, so we neglect them.
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where

�� ��� ����� ������ (23)
��� ��� ���

���� ������� (24)

Taking into account that � � � � �, the former equations can be
rewritten by

�� ��� �� ����� ������ (25)
��� ���

� � �� ���
� ���

� ���
���� ������� (26)

The posterior distribution of the data symbols �� given the obser-
vation � and the last obtained estimate of the channel vector �����, is
given by

������� ������ � ������� ������������ (27)

We assume that all data sequences are equiprobable. Using (21), where
we substitute � by its estimate �����, the posterior distribution of the
data symbols (27) can be rewritten as

������� ������ � ���� �� � � �� �� � (28)

where

�� �
� � �

�
�� �

�
�
�	�
���

�	�����

��

(29)


� �
	

��
���

�
�
�	�
�������

������� (30)

The �� � ���� matrix �	��� mentioned in (29), is defined as

� �	������� � ������	�
�� (31)

Note that ������	� � 
 for 	 � 
 or 	 � �. Further, the matrix
�	�
���

�	��� is a Toeplitz matrix. For large � we can approximate
�	�
���

�	��� by a circulant matrix. The eigenvectors of a circulant��
� matrix are given by the columns of the � �� FFT matrix �. The
matrix �� consists of a subset of those eigenvectors so �� can be ap-
proximated by a diagonal matrix. This means that the data symbols ��,
given � and ����� can be considered as (approximately) statistically in-
dependent.

To obtain �� and ��� we need to compute

� 
��
���� ����� �
� ���


��
�� 
��
���� ����� (32)

and

� 
��
�
���

����� �����

�
��� 
 � 
�

� 
��
���� ����� � 
��

����� �����

�

� 
 �� 
� (33)

for 
�
� � 
� � � � � � � � � � � 	. Substituting 
��
� and

��
�
���


�� by their respective expected values (32) and (33) in �
and ��

� yields �� and ��� .
The new estimate ��� obtained in the M-step can be written as a

closed-form expression

��� � � ����
�� ���

�� (34)

The algorithm terminates once the estimate has reached convergence.
To evaluate the MSE performance of the EM-based estimator, we

will compare it with the all pilots case. In [16], it is shown that the

MSE of the ML estimate for the all pilots case also equals its CRB.
The ML estimation in this case is based on the observation (8), where
the matrix � is filled with pilots only and therefore a priori known at
the receiver, i.e., the data symbols are replaced by known pilots. This
results in the MSE (and CRB) given by

MSE��� �	�
�� � �
��� ����
�
���� � (35)

Similarly, as in Section III-B, we want to obtain a lower bound
for the average of the MSE (35) over all possible pilot se-
quences. Again, we apply Jensen’s inequality for matrices [20]:
�����

����� � �����
�����. We assume that the pilots are se-

lected in a pseudorandom way. The average ����
�� is given by

�����
������ � ���� � ������ � ������ , from which it follows

that the MSE lower bound is equal to

MSE��� �	�
���	
 �
� � �

�

��

��

�

� � �
�

�

�

��

��

� (36)

The MSE lower bound of the all pilots case is proportional to the length
� of the channel and inversely proportional to the FFT size � .

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of both the frequency
domain estimator and the iterative channel estimator. Without loss of
generality, we assume the comb-type pilot arrangement [21] is used for
the pilots transmitted on the carriers. The considered channel is a fre-
quency selective Rayleigh fading channel consisting of � � � channel
taps with equal variance. The channel impulse response is normalized:

	��
�
� �����	���� � 	. The pilot symbols are randomly generated and

BPSK modulated. We assume that the pilots are equally spaced over the
carriers, i.e., the positions of the pilot carriers are �� � ����
��
 �

� � � � �� � � � 	�, where � � ���
����� � ���, �� 	 �
� � � � � ��
and � � � � 	� �� � � � 	��. The simulation results in this corre-
spondence are based on the estimates (17) (for the frequency domain
estimator) and (34) (for the EM-algorithm), and are averaged out over
10 000 different channel realizations and pilot symbol values.

A. Frequency Domain Estimator

First, we evaluate the performance of the frequency domain esti-
mator, which is used in the initialization phase of the iterative estimator.

In Fig. 2, the MSE of the frequency-domain estimator is shown as
function of �����. In addition, the MSE of the subset estimator from
[16] and the MSE from the estimator from [14] are shown. The esti-
mator from [14] is slightly modified to take into account all pilot sym-
bols, and not only the guard interval pilots. The analytical expressions
for this modified estimator are given in [7, (21)]. As can be observed,
the proposed frequency-domain estimator does not suffer from an error
floor at high �����, in contrast with the subset estimator and the esti-
mator from [14]. Further, the CRB for data-aided channel estimation,
derived in [16], is shown. It can be observed that the MSE of the fre-
quency domain estimator is close to the CRB, and is inversely propor-
tional to �����.

To further evaluate the MSEs and the CRB from Fig. 2, we consider
the normalized MSE (NMSE) and the normalized CRB (NCRB), de-
fined as NMSE � SNR 
 MSE and NCRB � SNR 
 CRB, where
SNR � ����� � ����������. From Fig. 3, it follows that at low
�����, the subset estimator slightly outperforms the frequency-do-
main estimator. This follows from the fact that the subset estimator
uses a larger subset of observations than the frequency domain esti-
mator (i.e., � observations for the subset estimator versus � � � ob-
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Fig. 2. MSE performance and CRB, � � �,� � ����,� � ��.

Fig. 3. Normalized MSE and CRB, � � �,� � ����,� � ��.

servations for the frequency domain estimator). The NMSE of the fre-
quency domain estimator is constant with �����, whereas the NMSE
of the subset estimator strongly increases for high �����. This can
be explained as in the frequency domain estimator, the observations
are data-free and therefore the data symbols have no influence on the
performance of the estimator, whereas in the subset estimator, the data
symbols cause an increasing amount of interference, resulting in the
error floor in Fig. 2. From Fig. 3, it also can be observed that the
MSE resulting from the frequency-domain estimator is close to the
CRB from [16]. Further, it follows from the figure that the NMSE of
the frequency-domain estimator is close to the theoretical lower bound
������� corresponding to (20), as was shown in Section III-B. This
verifies the approximations made to obtain the lower bound (20).

Fig. 4 shows the influence of the number of pilots on the MSE of the
frequency-domain estimator. We first assume that the pilot carriers are
equally spaced. As expected [see (20)], the MSE is essentially equal
to ����� � ���SNR�� for a wide range of � , i.e., the MSE is in-
versely proportional to the number of pilot carriers. For large � , the
pilot spacing becomes � � � (for ��� � � � � � ��� � ���) and
� � � (for � � � 	 ��� � ���); in that case pilots are not evenly

Fig. 4. Influence of� on the normalized MSE, � � �,� � ����.

spread over the carriers but grouped in one part of the spectrum, such
that (19) can no longer be approximated by SNR�� � ��
��� . This
causes the peaks in the figure.

The influence of random pilot carrier positions on the frequency do-
main estimator performance is also shown in Fig. 4. The MSE is shown
for 50 randomly generated pilot carrier positions, along with the av-
erage over the simulations. For small � , we observe that the perfor-
mance of the frequency domain estimator strongly depends on the pilot
positions, whereas for large � , the frequency domain estimator be-
comes essentially independent of the pilot positions. This indicates that
for small � , the second approximation (i.e., the pilots are evenly dis-
tributed) to obtain the MSE lower bound (20) is no longer valid. Hence,
for small � , fixed, equally spaced pilot positions are preferred. For
large � , equally spaced pilot positions are not suitable because of the
peak in the MSE. Therefore, at large � , random pilot positions are
advised.

B. Iterative Channel Estimator

In this correspondence, we consider the case of uncoded transmis-
sion, but the results can easily be extended to coded transmission, as
long as the decoder provides the posterior probabilities of the trans-
mitted bits given the observation (as is the case for turbo codes, LDPC
codes, convolutional codes decoded using the BCJR algorithm, etc.).
The EM algorithm uses the data-aided (DA) frequency domain es-
timator to initialize the estimation, and then iteratively updates the
channel estimates in a soft decision directed (DD) way. The MSE re-
sults shown are the results obtained after convergence, unless men-
tioned otherwise.

Fig. 2 shows the MSE of the EM algorithm as function of �����

for different numbers of iterations. Also shown are the MSE of the fre-
quency domain estimator and the all pilots estimator. As mentioned
in Sections III-B and III-C, the MSE of the frequency domain esti-
mator coincides with ����� � ���SNR�� and the MSE of the all
pilot estimator with ����� � ���SNR��, where SNR � ����� �
����������. The MSE of the EM algorithm converges to the MSE of
the all pilots estimator for high�����, while for low����� this is not
the case. However, there is still an improvement in performance if we
compare with the MSE of the frequency domain estimator. From Fig. 2,
we observe that less than 10 iterations of the EM-algorithm are neces-
sary to obtain convergence. In the rest of the simulations, we therefore
use 10 iterations as a stopping criterion for the EM-algorithm.
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Fig. 5. Influence of � on the MSE, � � �,� � ����, � �� � 20 dB.

Fig. 5 shows the influence of the number � of pilot symbols on
the performance of the EM algorithm. Again, the analytical MSE per-
formance of the frequency domain estimator (20) and the all pilot es-
timator (35) are added to the figure. As mentioned above, the MSE of
the all pilot estimator coincides with ���������SNR�� and does not
depend on the number � of pilot symbols. We observe that the MSE
of the EM algorithm is very close to the MSE of the all pilot estimator
and is almost independent of � for a large range of � . This proves
that the approximations made to obtain (35) are good approximations.

Fig. 6 shows the BER performance when using the EM algorithm
and the frequency domain estimator. The transmitted data symbols
consist of BPSK symbols. The performance of a receiver with perfect
channel knowledge is also added. The BER of a receiver with perfect
channel knowledge, averaged over the distribution of the channel was
computed analytically and is given by [22]

BER �
�

�
��

�

� � �
(37)

where � � ����� � �����������. The BER curve corresponding
to the EM estimator is close to the BER of the receiver with perfect
channel knowledge for the considered range of�����. The iterative al-
gorithm results in a significantly lower BER compared to the frequency
domain estimator.

V. CONCLUSIONS

In this correspondence, we have proposed an iterative channel es-
timation algorithm for KSP-OFDM based on the EM-algorithm using
pilots that are present in the guard interval as well as on pilot carriers.
To initialize the EM algorithm, we propose a DA channel estimator,
that operates in the frequency domain. This estimator exploits only the
� � � FFT outputs at the pilot carrier positions. In contrast with the
estimator from [14] and the subset estimator from [16], the proposed
estimator does not suffer from an error floor in the MSE performance
at high SNR, because the pilot carriers are not affected by the data car-
riers. At low SNR, the proposed estimator performs only slightly worse
than the subset estimator. The MSE of this frequency domain estimator
is inversely proportional to the SNR. Further, we have analytically de-
rived a lower bound on the MSE which is inversely proportional to the
number of pilot carriers and essentially proportional to ���� � ��.
The MSE of the frequency domain estimator is very close to its lower

Fig. 6. Influence of the channel estimation errors on the BER, BPSK, � �

����, � � �, � � ��.

bound. At low � , the MSE strongly depends on the pilot carrier posi-
tions, whereas at high � , the performance is essentially independent
of the pilot positions. Further, the MSE is essentially independent of
the FFT size. However, the frequency domain estimator still causes a
strong degradation of the BER.

After the initialization phase, the EM algorithm switches back to the
time domain and iteratively updates the channel estimate. Every itera-
tion, the received signal is averaged over the unknown data symbols by
using the channel estimate from the previous iteration, and a new esti-
mate of the channel is obtained. This process is repeated until the EM
algorithm reaches convergence. At high SNR, the MSE of the EM al-
gorithm coincides with the MSE of the all pilot estimator, which is pro-
portional to��� . Simulation results also show that the performance of
the algorithm is almost independent of the number of pilot symbols for
sufficiently high SNR, in contrast with the frequency domain estimator
used for initialization. Further, the EM algorithm causes virtually no
BER degradation as compared to the case of perfect channel knowl-
edge.

APPENDIX

When the pilot symbols are equally spaced over the carriers, the
second term of (19) can be expressed as

�

� � �

�
�

��

�

�

���

��� ��

�� �������� �

�� ����
	��
�


�� �� ���
 (38)

We assume that the total number of pilot carriers � � � is larger than
� � �, so (38) reduces to
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�

���

�

� ��� ��
� ���� �� �
� ���� 


(39)
Now we only need to determine for which values of � and ��,�������
�
��������
������� �� 	: When � � ���, we only have a contribution
for � � ��, so the second term of (19) only has a contribution for the
diagonal elements. In the special case that � � �� �, we have contri-
butions for � � �� and ��� ��� � �	� � � �� and ��� �� 	�. For those
values of � and ��, the second term of (19) is equal to

�
�

� � �

�
��

��
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�

 (40)
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Robust Precoding With Bayesian Error Modeling for
Limited Feedback MU-MISO Systems

Michael Joham, Paula M. Castro, Luis Castedo, and
Wolfgang Utschick

Abstract—We consider the robust precoder design for multiuser mul-
tiple-input single-output (MU-MISO) systems where the channel state in-
formation (CSI) is fed back from the single antenna receivers to the central-
ized transmitter equipped with multiple antennas. We propose to compress
the feedback data by projecting the channel estimates onto a vector basis,
known at the receivers and the transmitter, and quantizing the resulting
coefficients. The channel estimator and the basis for the rank reduction are
jointly optimized by minimizing the mean-square error (MSE) between the
true and the rank-reduced CSI. Expressions for the conditional mean and
the conditional covariance of the channel are derived which are necessary
for the robust precoder design. These expressions take into account the fol-
lowing sources of error: channel estimation, truncation for rank reduction,
quantization, and feedback channel delay. As an example for the robust
problem formulation, vector precoding (VP) is designed based on the ex-
pectation of the MSE conditioned on the fed-back CSI. Our results show
that robust precoding based on fed-back CSI clearly outperforms conven-
tional precoding designs which do not take into account the errors in the
CSI.

Index Terms—Bayesian methods, channel estimation, channel state in-
formation, limited rate feedback, vector broadcast channel.

I. INTRODUCTION

We consider a MU-MISO system or vector broadcast channel (BC),
i.e., a multiple antennas transmitter and several single-antenna re-
ceivers. For this setup, dirty paper coding (DPC) schemes designed
according to signal-to-interference-plus-noise ratio (SINR) criteria are
able to approach the sum capacity [1], [2]. Similar to [3]–[5], these
contributions, however, only consider the ideal case where the CSI at
the transmitter is perfectly known. In the more practical case, where
only an estimate of the CSI is available at the transmitter, the capacity
region of the vector BC has not been found yet. First, the application
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