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Abstract

This paper focuses on performance bounds for 
estimating the frequency and the phase of a received 
signal when the complex amplitude of the signal is non-
constant and unknown. Receivers need to perform such 
an estimation in many application fi elds, including digital 
communications, direction-of-arrival estimation, and 
Doppler radar. While in digital communications the non-
constant complex-signal amplitude is a discrete random 
variable related to the transmitted information bits, in many 
other signal-processing fi elds this non-constant amplitude 
is typically modeled as multiplicative Gaussian noise. 
Fundamental lower bounds on the mean square error of any 
frequency-offset and phase-shift estimator are continuously 
employed in all these application fi elds. They serve as a 
useful benchmark for judging the performance of practical 
estimators. We present an overview of such bounds with 
their respective areas of interest, and their associated 
derivations in closed form.

1. Introduction and Motivation

Let us consider digital bandpass communication over 
an additive white Gaussian noise (AWGN) channel, using 
linear modulation. An information bit sequence is fi rst 
channel-encoded, and then mapped to a block of complex 
numbers (data symbols) belonging to a discrete symbol 
constellation set,  . The channel encoder introduces 
structured redundancy in the transmitted bit sequences: this 
makes it possible to detect and correct at the receiver some 
of the bit errors that have occurred. Symbol mapping is 
performed to improve the bandwidth effi ciency. The 
resulting data symbols are fi rst applied to a square-root 
Nyquist transmitting fi lter, and then multiplied to a sinusoidal 
transmitting carrier signal in order to obtain a signal that 

Nele Noels and Heidi Steendam are with the Department 
of Telecommunications and Information Processing, 
University of Gent, St-Pietersnieuwstraat 41, B-9000 
Gent, Belgium; E-mail: nele.noels@telin.ugent.be. 
Philippe Ciblat is with TELECOM ParisTech (formerly, 
Ecole Nationale Supérieure des Télécommunications), 
Communications and Electronics Department, Digital 
Communications Research Team, 46 rue Barrault, 75013 
Paris; E-mail: PhilippeCiblat@telecom-paristech.fr.

This is an invited Review of Radio Science from 
Commission C. 

is suitable for transmission over the bandpass channel. At 
the receiver end, the received signal is multiplied with a 
carrier signal matched to the transmitted carrier signal, 
applied to a fi lter matched to the transmitting fi lter, and 
sampled at the correct instants in time. 

To enable reliable detection of the transmitted 
information bits from the resulting observation samples, it 
is imperative that the carrier signals at the transmitter and 
the receiver have almost exactly the same frequency and 
phase. However, as the carrier oscillators at the transmitter 
and receiver operate independently, their frequency and 
phase are not the same. The demodulation at the receiver 
is performed using a local reference carrier signal that 
exhibits a frequency offset, 1 , and a phase shift, 02 , 
vis-à-vis the received modulated carrier signal. In this case, 
the observation samples can be modeled as a noisy version 
of a complex sinusoid with frequency 1  and phase 02
and with a non-constant complex-valued amplitude equal 
to the unknown transmitted data symbols or realizations of 
a multiplicative Gaussian noise process. In order to cope 
with the unknown parameters, 0  and 1 , the receiver is 
fi tted with an estimation unit, which has to estimate the 
quantities 0  and 1  from the observation samples. Once 
the frequency offset and the phase shift have been estimated, 
the demodulated signal is corrected in order to compensate 
for them. The detection unit of the receiver subsequently 
decides upon the received information bits based on the 
corrected observation samples, assuming perfect frequency-
offset and phase-shift compensation. A result of the latter 
assumption is that the accuracy of the estimation unit has 
direct repercussions on the accuracy of the detection unit. 

Aside from a mismatch between the transmitting and 
receiving carrier frequency, the frequency offset, 1 , can 
also result from the Doppler effect. If a vehicle is transmitting 
information to the receiver side and is simultaneously 
moving, the transmitted carrier frequency is modifi ed by 
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the Doppler effect, and the receiver is not well adapted in 
frequency. This Doppler effect – which is a drawback in 
digital communications – can be of great interest in some 
applications. For instance, radar based on the Doppler effect 
is able to fi nd the velocity of a target. In other applications, 
such as direction-of-arrival (DOA) estimation, the spatial 
frequency related to the angle-of-arrival in an array 
processing can be mathematically seen as a carrier-frequency 
offset. As a consequence, besides digital communications, 
there are a lot of applications for which estimating a 
frequency disturbed by a non-constant amplitude is needed. 
Unlike digital communications, this non-constant amplitude 
is not associated with information bits, but with other 
parameters, such as the Doppler spread for Doppler radar, 
or the spatial distribution of the source for direction-of-
arrival estimation [1-3]. 

The estimation accuracy is usually measured by 
the mean square estimation error (MSEE). This is the 
expected value of the squared difference between the 
estimated and the true values of the frequency offset and 
the phase shift. The estimation unit that minimizes the 
mean square estimation error is referred to as the minimum 
mean square error (MMSE) estimator. In many practical 
situations, minimum mean square error estimation gives 
rise to a prohibitive computational burden, and one has to 
resort to approximation techniques. The various existing 
estimation units are the result of applying these techniques 
(see, e.g., [4]). 

Rapid developments in digital communications [5-
8] and signal-processing applications [1-3] have caused 
a nonstop increase in the requirements that are imposed 
on the estimation units’ design. This has also provided a 
constant impulse to the research on the fundamental lower 
bounds on the attainable estimation accuracy (see, e.g., [1-
3, 9-20, 20-31]). On the one hand, such bounds serve as a 
useful benchmark for judging the performance of practical 
estimators. On the other hand, if interpretable closed-form 
expressions exist, they also might provide useful insight 
into the infl uence of the various signal parameters on the 
achievable estimation accuracy. 

 In this tutorial, we focus on the derivation and 
the analysis of such bounds. One of the most celebrated 
performance limits is the Cramer-Rao bound (CRB) [32], 
which is known to be a tight bound for a wide class of 
estimators, provided that the SNR (signal-to-noise ratio) 
is suffi ciently high. In the applications considered, the 
statistics of the observation samples depend not only on the 
frequency offset and the phase shift to be estimated, but also 
on the statistics of the non-constant amplitude. This makes 
the computation of the Cramer-Rao bound far from trivial. 
In order to avoid the computational complexity associated 
with the true Cramer-Rao bound, several alternative Cramer-
Rao-like bounds have also been proposed in the literature 
(see, e.g., [2, 9, 10, 14, 26, 31]). We present an overview 
of these bounds with their respective areas of interest and 

their associated derivations in closed-form for various cases 
(coded/non-coded digital modulation, circular/non-circular 
multiplicative noise). It is well known that the Cramer-
Rao bound (and, in particular, the Cramer-Rao bound for 
frequency-offset estimation) is not accurate at low SNR 
and/or when the number of observation samples becomes 
too small [33]. The large gap between the Cramer-Rao 
bound and the mean- square estimation error of practical 
frequency-offset estimators is the result of the estimators 
sporadically making large errors, referred to as outliers. To 
analyze this phenomenon, we also discuss the Barankin 
bound (BB) [27-29] and the Ziv-Zakai bound (ZZB) [20] 
for frequency-offset estimation. These are more-complicated 
bounds to compute, but they are considerably tighter than 
the Cramer-Rao bound at low SNR.

2. Problem Formulation

Throughout the paper, the following signal model 
is considered:

        0 12 j nr n a n e w n    , (1)

for 0 0,..., 1n k k N   , where:

•  a n  is a priori unknown and is referred to as either 
“multiplicative noise” or “non-constant amplitude.”

• 0  and 1  are the normalized phase shift (at 0n  ) 
and the normalized frequency offset of the received 
signal, respectively. These parameters are also a priori 
unknown to the receiver and need to be estimated. The 
absolute value of 0k  determines the difference (in 
number of symbol intervals) between the start of the 
received signal and the time instant at which the phase 
shift, 0 , is estimated. 

•  w n  is circularly symmetric complex-valued additive 
white Gaussian noise with zero mean, and variance 2

w
. 

By stacking all the available observations into a row vector, 
we have

   0 1,  r aS w , (2)

where: 

• w  is a Gaussian noise vector with zero mean, 
T

N   w w 0 , and H 2
w N   w w I , where k0  

represents a k k  null matrix, and kI  represents a k k  
identity matrix. The superscripts  T  and  H  stand 
for the transposition and the conjugate-transposition 
operators, respectively. 
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•   0 1, S  is a diagonal matrix with the nth diagonal 
element given by

      0 12
0 1, ; , j nS n n e      ,

such that

      H
0 1 0 1, , N    S S I .

The signal model of Equations (1) and (2) is 
encountered in several application fi elds. A fi rst example 
is that of digital bandpass communication over an additive-
white-Gaussian-noise channel using linear modulation. In 
that case,  a n  represents the nth data symbol passing 
through the digital bandpass communication channel. The 
data symbols result from an information bit sequence that 
is fi rst channel encoded (for better bit-error protection), 
and then mapped (for higher-bandwidth utilization) to a 
block of complex numbers belonging to a discrete set  , 
referred to as the symbol constellation. In the digital-
communications case, we will also consider that 

2
0w sN E  , with 0N  and sE  assumed to be known. 

Here, 0N  denotes the noise-power spectral density, and 
sE  is the symbol energy. The ratio 0sE N  is an important 

measure of the signal quality at the receiver, and is commonly 
referred to as the signal-to-noise ratio (SNR).

As already stated, other application fi elds where the 
signal model of Equation (1) can be encountered are that 
of direction-of-arrival estimation and Doppler radar. In 
direction-of-arrival estimation,  a n  represents the spatial 
distribution of the source. In Doppler radar,  a n  represents 
the Doppler spread of the reference signal. In both cases, 
it is standard to model the non-constant amplitude as a 
Gaussian process [1, 3, 34]. Even in digital communications, 
the process  a n  can sometimes be viewed as a Gaussian 
process: indeed, in a fl at fading channel,  a n  can be the 
product between a transmitted symbol and a non-constant 
complex amplitude related to the channel quality. Due to 
the various scatterers, in a non-line-of-sight (NLOS) channel 
it is usual to consider that non-constant amplitude as a 
Gaussian process, and there for to consider its magnitude 
as a Rayleigh process. It is therefore also referred to as the 
Rayleigh channel (e.g., [35]).

For the sake of completeness, we note that Equation (1) 
is only approximate and, in particular, valid only when 

1 1   [15]. 

From the observation samples   r n  in Equation (1), 
we now want to recover the value of a deterministic 
parameter vector u  with components 0u , 1u , .... This 
vector contains (but is not restricted to) the unknown phase 
shift, 0 , and the frequency offset, 1 . A common approach 

to evaluate the quality of an unbiased estimator for u  
consists in comparing its resulting mean-square estimation 
error with a Cramer-Rao bound, or some other tight, 
fundamental lower bound on the achievable mean-square 
estimation error. 

3. Deriving the 
Cramer-Rao Bound

The Cramer-Rao bound results from the inequality 
1 uR J 0  [32]. Here, uR  is the error correlation matrix 

related to the estimation of a deterministic parameter vector 
u . The notation A 0  indicates that A  is a positive semi-
defi nite matrix, and 1J  denotes the inverse of the Fisher 
information matrix (FIM), J . The elements of J are given 
by

    , ; ;
k lu u k lJ    u r u r  , (3)

where ,k lu uJ  corresponds to the joint Fisher information 
for the parameters  ,k lu u , where    denotes averaging 
with respect to  |p r u , and where

    ln
;k

k

p
u






r u
u r

is a shorthand notation for the derivative of  ln p r u  with 
respect to the kth parameter, ku , of u . It easily follows 
from 1 uR J 0  that

    2ˆ CRBk k ku u u    
 , (4)

where  CRB ku  is the kth diagonal element of the inverse 
of the Fisher information matrix, J. The right-hand side of 
the above expression is referred to as the Cramer-Rao 
bound.

3.1 Non-Constant Complex 
Amplitude = Digital Data Symbol

In this section we derive the exact Cramer-Rao bound 
– or, equivalently, the exact Fisher information matrix – for 
the deterministic parameter vector    0 1 0 1, ,u u   u  
from N samples of a received linearly modulated digital 
communication signal in additive white Gaussian noise. 
We recall that we consider the signal model given by 
Equations (1) and (2). As is usually done in digital 
communications, we model the symbol vector, a, as a 
discrete random vector with the following uniform a priori 
distribution:



The Radio Science Bulletin No 335 (December 2010) 29

   0

0

2Pr
0,        

,   
 \

bN   


aa a
a



 

. (5)

Here,   denotes the set of all possible vectors of N symbols 
taking values in the symbol constellation set  , and 0    
denotes the subset of these vectors that result from encoding 
and mapping an information bit sequence. The distribution 
of Equation (5) refl ects that a one-to-one correspondence 
exists between the set of all possible sequences of bN  
information bits and the data symbol vectors in 0S , while 
the receiver has no prior knowledge about the transmitted 
information bit sequence. It is further standard to assume 
that   0a  and that H

N   a a I . This assumption 
holds true for transmissions without channel encoding, and 
is approximately valid for most practical coded-modulation 
schemes [36].

A brute-force numerical evaluation of the Fisher 
information matrix related to the estimation of u involves 
replacing the statistical average    in Equation (3) by 
an arithmetical average over a large number of realizations 
of r that are computer-generated according to the conditional 
distribution  |p r u . The numerical evaluation of the 
Fisher information matrix further requires the computation 
of the derivatives  ;k u r , 0,1k  , which correspond to 
the realizations of r given u. These derivatives can be put 
into the following form [37]:

 
   ln ,

; Pr ,k
k

p
u

 
    

a

r a a u
u r a a r u






. (6)

As  ,p r a u  is Gaussian, the logarithm  ln ,p r a u  is 
readily available in closed form:

 
    2

0
ln , sE

p
N

  r a u r aS u
.

Differentiating with respect to ku  yields

 

     H

0

ln , 2 s

k k

p E
u N u

 
 

       
 









r a u S u
r aS u a

The joint symbol a posteriori probabilities (APP) Pr ,  a r u  
in Equation (6) can be computed from  ,p r a u  and  Pr a  
according to

 
   

   
Pr ,

Pr ,
, Pr

p
p

     
a

a r a u
a r u

r a a u a a


  . (7)

Although this procedure yields the exact derivatives 
 ;k u r , 0,1k  , the summations in Equations (6) and 

(7) give rise to a computational complexity that is 
exponential in the burst size, N.

It was shown in [16] and [37] that the computational 
complexity associated with the evaluation of the Cramer-Rao 
bound can be drastically reduced by taking into account the 
specifi c (linearly modulated) structure of the useful signal 
in Equation (1). 

Because    H
NS u S u I  does not depend on u , 

we obtain

 

    H
H

0

ln , 2 s

k k

p E
u N u

           

r a u S u
r a

.

Substituting the above expression into Equation (6) then 
yields

 

     
H

H

0

2
; ,s

k
k

E
N u

       
   

S u
u r r r u 

, (8)

where  ,r u  is a shorthand notation for the a posteriori 
average of the symbol vector a with N components:

    ; , ,n a n    ar u r u  (9)

 
 Pr ,a n


 


    r u

, (10)

where   denotes the set of constellation points, and 
the averaging ,  a r u  is with respect to Pr ,  a r u . 
We emphasize that no approximation is involved in obtaining 
Equation (10): the right-hand side simply expresses the a 
posteriori average of the nth data symbol  a n  in terms 
of the marginal a posteriori probabilities of  a n , rather 
than the joint a posteriori probabilities of all components 
of a.

Computing the marginal a posteriori probabilities 
from the joint a posteriori probabilities still requires a 
complexity that increases exponentially with N. However, 
in most practical scenarios, the required marginal symbol 
a posteriori probabilities can be directly computed in an 
effi cient way by applying the sum-product algorithm to a 
factor graph (FG) representing a suitable factorization of 
the joint-symbol a posteriori probabilities [38]. The 
application of the sum-product algorithm on a graph that 
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corresponds to a tree (i.e., a cycle-free factor graph) is 
straightforward, and yields the exact marginals. When the 
graph contains cycles, the sum-product algorithm becomes 
an iterative procedure that yields only an approximation of 
the marginals after convergence. However, when the cycles 
in the graph are large, the resulting marginals turn out to 
be quite accurate. When using this factor-graph-based 
approximation technique to compute the required marginal 
symbol a posteriori probabilities, computing the derivatives 

 ;k u r , 0,1k   according to Equation (8) for a given 
realization of r given u yields a complexity that is linear 
(and not exponential) in the number of data symbols N. 
The above expression and evaluation procedure is the main 
result for the Cramer-Rao bound derivations. It allows a 
fast evaluation of the Cramer-Rao bound, and holds for 
any channel code and any symbol constellation.

For specifi c hypotheses about the channel code and 
the symbol constellation, the complexity associated with 
evaluating the Fisher information matrix, or, equivalently, 
the Cramer-Rao bounds, can be further reduced (see, 
e.g., [12-13, 15, 19]). We mention a result from [15] for 
arbitrarily mapped uncoded linear modulation. In that case, 
all transmitted data symbols are statistically independent 
and equi-probable, such that the a priori distribution of a, 
Equation (5), reduces to 

  Pr 2 ,  bN   a a a   . (11)

Taking into account Equation (11), it is easily verifi ed from 
Equations (9), (10), and (7) that the components of the a 
posteriori average of the data-symbol vector a reduce to

 

 

    

    

22 0 1

0

22 0 1

0

2

2
; ,

j ns

j ns

E r n e
N

E r n e
N

e
n r n

e

  

  

 



 






  

  

  
 
 

    







  
 
 

   







  





u

,  
  (12)

which only depend on r through  r n . Taking this into 
account, it was shown in [15] that with N odd-valued and 

 0
1 1
2

k N    (i.e., 0  is the phase shift at the burst center), 
the Cramer-Rao bounds can be written in the following 
form:

 
  1 2

0
0 0

CRB 8 s sE E
NR

N N
 


 

  


 



, (13)

 
   

 2
11

1 0

1
CRB CRB

12

N
   

     
, (14)

where

 

      2

0 0

2
; , , ;s sE E

R n r n r n S n n
N N

 
   
         

u u
  

  (15)

It was further shown in [15] that 
0 1 1 0, , 0J J     . This 

means that the estimation of the phase shift, 0 , at the 
center of the observation interval is independent of the 
frequency ( 1 ) estimation problem. We observe that 

 0CRB   is inversely proportional to the number of 
available signal samples, N, whereas  0CRB   is inversely 
proportional to  2 31N N N  , where the approximation 
holds for large N. We further observe that  0CRB   and 

 1CRB   are proportional to the same factor 
0

sE
R

N
 
 
 

 
that depends on the symbol constellation and on the SNR, 
but not on the number of available signal samples. The 
numerical evaluation of the Cramer-Rao bounds from 
Equations (13) and (14) involves replacing the statistical 
average    in Equation (15) by an arithmetical average 
over a large number of realizations of    , ;r n S n n u . 
This procedure is signifi cantly less complex than the 
evaluation of the Fisher information matrix entries according 
to Equations (3) and (8)-(10) using the factor-graph-
approach, because the a posteriori symbol average, 
Equation (12), is available in closed form, and the average 
that needs to be computed in Equation (15) is with respect 
to a complex-valued scalar, rather than a complex-valued 
vector of size N.

In spite of all the efforts made in the literature with 
respect to computing the Fisher information matrix for 
linear modulation, an explicit analytical closed-form 
expression for the Cramer-Rao bounds still does not exist. 
The main contributions of the research conducted in [12-
13] and [15-19] was in the derivation of new procedures 
that allow a more-effi cient (hence, faster) numerical 
evaluation of the Cramer-Rao bounds. Unfortunately, the 
expressions that lead to (and/or come as by-products of) 
these evaluation procedures usually don’t bring much 
insight into the behavior of the Fisher information matrix 
(e.g., as a function of the parameters that describe the coded 
modulation scheme).

 We will see in the simulation section of the paper that 

• For a given symbol constellation set, Cramer-Rao 
bounds for coded and uncoded transmission are 
equal at suffi ciently high SNR. However, at lower 
SNR the Cramer-Rao bound for coded transmission 
is signifi cantly lower than the Cramer-Rao bound for 
uncoded transmission. 

• For a given channel code, the Cramer-Rao bounds 
increase when the minimum Euclidean distance between 
the constellation points decreases.

To avoid the computational complexity associated 
with the evaluation of the true Cramer-Rao bounds, 
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asymptotic Cramer-Rao bounds (ACRBs) were considered 
in [14] and [11] for the case of uncoded linear modulation. 
This resulted in closed-form analytical expressions for the 
Cramer-Rao bound that only hold for suffi ciently low or 
high SNR. The high-SNR asymptotic Cramer-Rao bounds 
are shown to coincide with the modifi ed Cramer-Rao bound 
(MCRB). This is another lower bound on the mean square 
estimation error of any unbiased estimator, which is simpler 
to evaluate but looser than the exact (true) Cramer-Rao 
bound. We will come back to the modifi ed Cramer-Rao 
bound later in this paper. For the low-SNR asymptotic 
Cramer-Rao bounds, the following expressions were 
presented in [14], assuming N odd valued and  0

1 1
2

k N  

  
22

1 2
0 |lowSNR

0
ACRB 8

!

L
Ls L fE

N
N L

   
  

 
   ,

 
   

 2
11

1 0|lowSNR |lowSNR

1
ACRB ACRB

12

N
  

   


   ,  
   
  (16)

where L is related to the symmetry angle 2
L
  of the 

constellation, and   L
Lf a k    . We observe that at 

sufficiently low SNR, the Cramer-Rao bounds are 
determined by the symmetry angle of the constellation, and 
evolve in inverse proportion to the Lth power of the SNR. 

3.2 Non-Constant Complex 
Amplitude = A Gaussian Process

We recall that we consider the signal model given by 
Equation (1). In the rest of this section, we just assume that 

0 0k  . However, in this section we add extra assumptions 
on the non-constant amplitude  a n . As usually done in 
Doppler radar, direction-of-arrival estimation, or digital 
communication over a Rayleigh fl at-fading channel, the 
non-constant amplitude,  a n , is assumed to be a zero-
mean Gaussian stationary process with correlation 

     ac n na a       and pseudo-corre la t ion 
     ap a n a n     . The spectrum and pseudo-

spectrum are respectively denoted as follows:

    2 2i f i f
a aC e c e  


 


 



and 

 
   2 2i f i f

a aP e p e  


 


 

 .

By construction, one can remark that    2 2i f i f
a aP e P e 

Moreover, the entire statistics     ,a ac p


 


 of  a n  
only depend on a fi nite number, K, of real-valued unknown 
parameters, denoted by   1, ,k k K  

. The non-constant 
amplitude process,  a n , can be real-valued or complex-
valued. In the case of a complex-valued process,  a n  can 
further be circular (which means the process distribution 
is insensitive to any rotation, and thus means that 

    0a n a n      for all  ) or noncircular (there exists 
at least one 0  such that    0 0a n a n     ). One can 
notice that a real-valued process is by defi nition noncircular. 
Based on the Cramer-Rao bound, we will see hereafter that 
the estimation quality can be split into two classes in regard 
to the circularity/non-circularity property of the process. 
In contrast, the estimation performance is independent of 
the nature of the process’ values (real or complex). For 
further information on the non-circularity property, the 
reader may refer to [15, 39].

Below, we will fi rst derive the Fisher information 
matrix when the number of available samples, N, is fi nite 
(i.e., the non-asymptotic case). Since once again the 
expression obtained for the Fisher information matrix does 
not provide additional insights, it is of great interest to 
further simplify the Fisher information matrix expression 
by also considering the case for N going to infi nity (i.e., 
the asymptotic case). The resulting Cramer-Rao bounds 
are referred to as Gaussian Cramer-Rao bounds (GCRB).

3.2.1 Non-Asymptotic Case

We next derive the exact Gaussian Cramer-Rao bound, 
or, equivalently, the exact Gaussian Fisher information 
matrix, J, for the deterministic parameter vector 

2
0 1 1, , , , ,w K       u , when N samples of  r n  are 

available. In order to use well-known results on the Fisher 
information matrix [40], we work with real-valued 
processes. We consider     ,   rr r , which is a 
multivariate Gaussian variable with zero mean and 
covariance matrix rC


.

The Fisher information matrix for a multivariate 
Gaussian observation vector r  has a special form. As one 
can check that rC


 is symmetric, formula (5.2.1) in [40] 

holds, and this leads to 

 

1 1
,

1 Tr
2k lu u

k l
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u u
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  
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r r

C C
C C

  

,

where  Tr   is the trace operator.

After straightforward algebraic manipulations, we 
can show that 
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1 Tr
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,



32 The Radio Science Bulletin No 335 (December 2010)

where rC  is the covariance matrix of the random vector 
,    r r r , and takes the following form:

 
 

 
  
  

r r
r

r r

C P
C

P C


with H   rC E r r  and T   rP E r r . 

One can remark that  2 H
2 w N r aC S C I S    , where 

    0 1 0 1, , ; , ,N N         S S 0 0 S , and where aC  is 
defi ned in a similar way as rC . As aC  does not depend 
on the phase parameters, we obtain the following expressions 
for the Fisher information matrix:

 ,k l
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w k
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where  , ; ,k k N N k D d 0 0 d  for 0,1k   with 0 Nd I  
and  1 diag 0, , 1N   d  . The above expressions were 
given in [31], and partially in [3] when  a n  was circular 
and complex-valued. When  a n  is circular and complex-
valued, the term 

0 0, 0J   , which means that the constant 
phase is not identifi able when the pseudo-correlation is 
zero. Consequently, only a non-null pseudo-correlation 
enables us to estimate the constant phase. Apart from this 
comment about the constant phase, it is diffi cult to provide 
more insights with these expressions, and to distinguish 
the difference between the circular case and the noncircular 
case. We therefore now move on to the asymptotic case, 
i.e., for N suffi ciently large. 

3.2.2 Asymptotic Case

When N becomes large, we have to separately treat 
the circular case and the noncircular case. Let us begin 
with the circular case. 

3.2.2.1 Circular Case

When the signal,  r n , is circular, one can remark 
that  r n  is stationary, due to our signal model given in 
Equation (1). This enables us to simplify the asymptotic 
expressions for the Fisher information matrix by applying 
Whittle’s formula [41]. 

In [3], the asymptotic expressions for the Cramer-Rao 
bound are given for  aC   real valued and positive. The 
latter assumption has been justifi ed by many other authors 
[1, 23-25]. For instance, if  a n  is associated with the 
Doppler-spread phenomenon,  aC   often follows the 
Jakes model [42, 43], and thus    2

0a aC J    , where 
2
a  is the variance of  a n ,   is the Doppler spread, and 
 0J   is the Bessel function of fi rst kind. In such a case, 

one can prove that the estimates of  0 1,   are decoupled 
from the other parameters, 2

1, , ,w K   
  . As remarked 

in the previous subsection, the phase, 0 , cannot be 
estimated in the circular case. As a consequence, we can 
focus only on 

1 1,J  . After tedious algebraic manipulations, 
one can fi nd that
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and where  2i f
aC e   is the derivative function of 

 2i f
aC e   with respect to f. As the Cramer-Rao bound is 

the inverse of the Fisher information matrix, we have

 
 1

1GCRB
N





 (circular case). 

We remark that the frequency can be estimated as soon as 
0  , i.e., as soon as the process  a n  does not have a 

fl at spectrum. We thus need to have a colored Gaussian 
non-constant amplitude process – and not a white Gaussian 
non-constant amplitude process – to be able to estimate the 
frequency, if the process is circular. Moreover, the Cramer-
Rao bound is proportional to 1 N , and so the minimum-
achievable mean square estimation error decreases quite 
slowly with respect to the number of available samples. 

3.2.2.2 Non-Circular Case

Unlike [3], here we cannot apply Whittle’s formula 
[41], because  r n  is not stationary with respect to its 
pseudo-correlation. Below, the results introduced are in 
fact obtained via theorems dealing with the inversion of 
(large) Toeplitz matrices [44, 45].

After simple but tedious calculations, the Fisher 
information matrix was found in [31] to be
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 We next study different scenarios. First, we consider the 
case where the receiver knows 2

1, , ,w K   
  , i.e., the 

statistics of multiplicative and additive noise. In this case, 
the Gaussian Cramer-Rao bounds result from the inverse 
of the 2 2  Fisher information matrix 
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Second, in the case where 2
1, , ,w K   

   are 
unknown at the receiver, we obtain (see [31]) 

  0 |noise statistics unknownGCRB 
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Here, m is a bounded scalar taking the following form:
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where

 , 1 ,( )k l k l K   ,

  1k k K  
,

  1k k K   .

Using the previous expressions for the asymptotic 
Cramer-Rao bound, we make the following comments:

• The convergence rates for the phase and frequency 
estimations are 1 N  and 31 N , respectively, regardless 
of the color of the multiplicative noise. Recall that for 
circular complex-valued processes, the phase is not 
identifi able, and the frequency is identifi able only if the 
multiplicative noise is colored, with a convergence rate 
of 1 N . Notice that a real-valued process can be viewed 
as a specifi c case of a noncircular complex-valued 
process where the imaginary part is zero. Consequently, 
in terms of performance, the main cutoff is not complex/
real, but circular/noncircular. 

• We recall that the Cramer-Rao bound associated with 
the “pure” frequency-estimation issue (i.e., only 
disturbed by a constant amplitude) is proportional to 

31 N  [46]. Consequently, thanks to the non-circularity 
property of the non-constant amplitude, the non-constant 
amplitude does not lead to a significant loss in 
performance. 

• Surprisingly, the same frequency-estimation performance 
is obtained whether the statistics of  a n  are known 
or not. 

• The frequency-estimation performance depends only 
on  , which refers to an information rate provided by 
the non-circularity. Indeed, the performance improves 
when   increases. 

• In the noiseless case, we observe a fl oor effect (i.e., 
 1CRB 0   when 2 0w  ). This effect vanishes if

        2 2 2 2i f i f i f i f
a a a aC e C e P e P e    

 This condition is fulfi lled, for example, when the 
multiplicative noise is real-valued.

As a conclusion, we remind the reader that the 
Gaussian Cramer-Rao bound is of interest in many 
applications: Doppler radar, direction-of-arrival estimation, 
and digital communication over Rayleigh fl at-fading 
channels. If the non-constant amplitude is non-Gaussian, 
the Gaussian Cramer-Rao bound is not a lower bound for 
the estimation problem anymore. Nevertheless, it is still of 
interest, since the Gaussian Cramer-Rao bound is a lower 
bound for any second-order-based estimator (well-adapted 
to, e.g., digital BPSK modulation) [47]. Consequently, the 
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Gaussian Cramer-Rao indicates what is the best expected 
performance if we carry out an estimator based only on 
mean and correlation. 

Actually, in the non-Gaussian case, the non-circularity 
may also play a signifi cant role. For example, if  a n  is 
assumed to belong to a QAM modulation,  a n  is circular 
at second order (i.e.,     0a n a n    , but is non-circular 
at fourth order (         0a n a n a n a n    ). Thanks to 
this fourth-order non-circularity, we are able to build an 
estimator for which the mean-square estimation error is 
proportional to 31 N , and not 1 N  [47, 48]. This is not 
in contradiction with the previous results, since a QAM 
modulation is not Gaussian, and so the high-order statistics 
of  a n  strongly help to improve the estimation 
performance. 

4. Deriving the 
Modifi ed Cramer-Rao Bound

To overcome the complexity concern of deriving the 
true Cramer-Rao bound1 in the non-Gaussian case, it is 
possible to defi ne other lower-Cramer-Rao-bound-like 
bounds that are easier to compute but less tight than the 
true bound. The most well-spread is the so-called modifi ed 
Cramer-Rao bound (MCRB) [9, 10]. Once again, we will 
restrict our analysis to the estimation of  0 1, u . The 
elements of the modifi ed Fisher information matrix (MFIM) 
are then defi ned as follows:
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After standard algebraic manipulations, we obtain 
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For large N, the resulting modifi ed Cramer-Rao bounds 
were given in [9, 10]. We have 
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We note that in the case of linear modulation it was assumed 
that   10ac  , such that the above modifi ed Cramer-Rao 

bounds, for N large and odd valued and  0 1 2k N  , 
reduce to the Cramer-Rao bounds from Equations (13) and 
(14) upon the factor  2

wR  
  from Equation (15). We have 

the following comments:

• The derivation of the modifi ed Cramer-Rao bounds is 
very easy and enables us to obtain simple closed-form 
expressions. 

• These expressions seem to be “too” simple and do not 
provide a lot of information, since the Cramer-Rao 
bound does not depend on the nature of  a n  (circular/
noncircular in the Gaussian case, channel code and 
symbol constellation in the non-Gaussian case), while 
we have seen before that this is crucial information (see 
the previous discussion in the Gaussian case and the 
asymptotic Cramer-Rao-bound expressions in non-
Gaussian case). 

• Nevertheless, the modifi ed Cramer-Rao bound can 
sometimes be of great interest. Indeed, if  a n  belongs 
to a fi nite set of symbol constellation points  , the 
true Cramer-Rao bound (for which no explicit 
expressions are available) is well approximated by the 
modifi ed Cramer-Rao bound at high SNR [11]. 

• An unexpected consequence of the previous remark is 
the following. Let us consider the modifi ed Cramer-Rao 
bound for estimating the frequency offset in the case 
of digital communication using a BPSK symbol 
constellation set, i.e.,  a n  takes values in the set  1,1
which implies that 2L   and  0 1L af c  . We have
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.

 Due to the previous item, there is equivalence between 
MCRB and ACRB at high SNR for BPSK. We therefore 
know that
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 and, thanks to Equation (16), we get
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Obviously, at low SNR, the true Cramer-Rao bound 
for BPSK starts to seriously deviate from the modifi ed 
Cramer-Rao bound. 

If we inspect the Gaussian Cramer-Rao bound for 
uncorrelated and real-valued Gaussian  a n , we obtain 
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Surprisingly, the Gaussian Cramer-Rao bound 
predicts the performance of a BPSK based non-constant 
amplitude well for both low and high SNR, whereas a 
BPSK constellation is not Gaussian at all! Consequently, 
the Gaussian Cramer-Rao bound is a powerful tool for 
analyzing the frequency mean-square estimation error in 
the BPSK context, whereas the modifi ed Cramer-Rao bound 
is not (except at high SNR).

5. Deriving the Barankin Bound

Let us reconsider the signal model given in 
Equation (1), with 0 0k   and  a n  a zero-mean Gaussian 

stationary process with correlation  ac   and pseudo-
correlation  ap  . For the sake of simplicity, we further 
assume that the noise statistics, i.e.,     ,a ac p


 

  
and 2

w , are known at the receiver. This assumption was 
made in [49], and was partially made in [28], for deriving 
Barankin bounds (BB) because the computational and 
analytical complexities are otherwise too high. It can also 
be noted that the Cramer-Rao bound for frequency estimation 
is insensitive to the knowledge of the noise statistics as 
soon as the number of samples is large enough (see [31] 
and the Gaussian-Cramer-Rao-bound discussion above). 
We thus can expect that the error induced by neglecting the 
estimation step with respect to the noise statistics will be 
suffi ciently small so that our further conclusions still hold 
in the case of unknown noise statistics.

To well understand the interest of bounds other than 
the Cramer-Rao bound, let us consider the following 

Figure 1. The modifi ed Cramer-Rao 
bound (MCRB), Gaussian Cramer-Rao 

bound (GCRB), and mean-square estima-
tion error (MSEE) for the square-power 

estimator as a function of the SNR.

Figure 2a. The cost function  F   as a function 
of   for SNR = −5 dB.

Figure 2b. The cost function  F   as a function 
of   for SNR = 5 dB.
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example. The signal model is the model from Equation (1) 
with  a n  a real-valued Gaussian process. To estimate the 
frequency, as  a n  is noncircular (since real-valued), one 
can use the so-called square-power estimator [47], defi ned 
as follows:
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21
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j n
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.

In Figure 1, we plot the mean-square estimation error 
of this estimator, and the modifi ed and Gaussian Cramer-
Rao bound, as functions of the SNR, when 100N  . We 
observed that at high SNR, the estimator was powerful and 
even effi cient (the mean-square estimation error equals the 
Cramer-Rao bound). In contrast, at low SNR, there was a 
large mismatch between the mean-square estimation error 
and the Cramer-Rao bound. The question is, is the considered 
estimator not relevant at low SNR, or is the Cramer-Rao 
bound not tight enough at low SNR? We will show that the 
Cramer-Rao bound is not tight enough. To demonstrate 
that, we introduce other lower bounds on the mean-square 
estimation error that are much tighter at low SNR than the 
Cramer-Rao bound. 

We can now attempt to understand why the Cramer-
Rao bound is not tight enough at low SNR. In Figure 2, we 
plot the cost function,  F  , of the square-power estimator 
for SNR 5   dB (Figure 2a) and for SNR 5  dB 
(Figure 2b). The frequency sought is 1 0.1  . We remark 
that at high SNR, the peak around the true value of the 
frequency was well detected, whereas at low SNR, there 
was a mis-detection of the peak, which signifi cantly 
degraded the performance. Consequently, the performance 
degradation was due to a higher peak far away from the 
true frequency. These “bad” realizations are called “outliers.” 
By inspecting in detail the Fisher information matrix from 
Equation (3), we remark that it depends on the behavior of 
the likelihood function around the true frequency, since the 
derivative functions involved are calculated at the true 
frequency. The Cramer-Rao bound is therefore unable to 
take into account the mis-detection of the peak, and 
automatically assumes a correct detection of the peak, even 
if it is wrong. At low SNR (when the mis-detection of the 
peak occurs), the Cramer-Rao bound is thus truly too 
optimistic. 

We are now interested in another bound that inspects 
the likelihood function around the true frequency, but not 
only there. We therefore introduce the following set of so-
called “test-points,”
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, 

at which the likelihood function will be evaluated. We are 
now able to defi ne the Barankin bound of order p as follows:
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  ones ,1p p1
.

The term sup  stands for the smallest upper bound on the 
set  . Furthermore,    , 1 ,k l k l p

B
 

B  is the following 
p p  matrix:
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The mean-square estimation error of any unbiased 
estimator is greater than the Barankin bound of any order 
p ([40]). From an asymptotic point of view (as p  ), 
the Barankin bound is even the tightest lower bound that 
one can fi nd [27, 28]. As for the choice of the test points, 
it is usual to consider the following structure for   [28, 
29]:
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
. (17)

Our main concern hereafter is to derive a closed-form 
expression for the matrix B  for such test points.

Let us now remind the reader of some notation. The 
covariance matrix  rC  of the multivariate process r  
can be written as follows:
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After straightforward algebraic manipulations, we fi nally 
obtain 
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with
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These expressions were introduced in [49] and [28] in a 
slightly different form (due to the circularity assumption on 
the non-constant amplitude), and in [31] for the general case.

We now just focus on our main parameter of interest: 
the frequency, 1 . For the standard test points described 
in Equation (17), the Barankin bound for 1  takes the 
following form [28]:
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The term    2
0,1 0,01 1B B   represents the loss in 

performance due to joint phase and frequency-parameter 
estimation.

We remark that strictly speaking, the Barankin bound 
is not obtained in closed form, since the maximum operator 
still occurs. Nevertheless, the existing expressions enable 
us to very quickly compute the Barankin bound. 

As we will see in the simulation section, the Barankin 
bound enables us to partially predict the outliers effect, i.e., 
the mismatch between the Cramer-Rao bound and the real 
estimator’s performance. Consequently the poor estimation 
performance of the standard square-power estimator (well 
adapted to BPSK or a real-valued Gaussian process) is 
shown to be connected to the poor tightness of the Cramer-
Rao bound. Decreasing the gap between the Cramer-Rao 
bound and the estimator performance for a given number of 
samples at very low SNR is thus impossible. The Cramer-
Rao bound is too optimistic in such a context, and has to 
be replaced with the Barankin bound. 

6. Deriving the Ziv-Zakai Bound

To analyze the mismatch between the Cramer-Rao 
bound and the real estimator’s performance, we have 
considered the so-called Barankin bound in the previous 
section. Even though this Barankin bound is much tighter 
than the Cramer-Rao bound and roughly predicts the 

outliers effect, there is still a mismatch between bound and 
estimator performance. In this section, we will therefore 
introduce a third, much-more-powerful bound, the Ziv-
Zakai bound (ZZB). 

We note that the Ziv-Zakai bound needs a new 
paradigm on the parameters sought: the Bayesian approach. 
Unlike what was previously done, we have to consider the 
parameters sought as a realization of a random variable. 
This random variable is further described by a distribution, 
which characterizes the a priori information available on 
the parameters sought. For instance, for frequency-offset 
estimation, we only know that the frequency is normalized, 
and thus it may uniformly take values in the interval 
 1 2,1 2 .

In [20, 50], it was proven that the following inequality 
holds for any vector  0 1,z zz :
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where uE  denotes the error-correlation matrix related to 
the estimation of a random variable  0 1, u , and
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  (20)

with  0 1,   .

The function  p u  is the a priori density function 
of the bivariate parameter u , and  ,eP u u  is the error 
probability when the optimal detector (namely, the ML 
detector) is used to decide between the following two 
hypotheses:
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where hypotheses 0H  and 1H  are equally likely.

The right-hand side of Equation (19) is called the 
Ziv-Zakai bound. By inspecting Equation (19), one can 
remark that the likelihood of u  is scanned over the entire 
search interval of u , as is also the case for the Barankin 
bound [31]. Once again, this contrasts with the Cramer-Rao 
bound, where the likelihood function is only evaluated 
around the true point. We therefore expect that the Ziv-Zakai 
bound can predict the outliers effect at low SNR. 

Let us focus now on the Ziv-Zakai bound for 1 , 
which is obtained by setting  0,1z . Therefore,
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Actually, the mean-square estimation error of any (even 
biased) estimator for the frequency is greater than the 

 1ZZB   [20].

The key task now is to express the function  f   in 
closed form. After some simple derivations, one can see 
that  ,eP u u  is independent of u , so that it can be 
denoted by  0 1,eP   . As a consequence, we have [50]

      0 1 0 1 0 1, , ,ef g P      ,

where

      0 1, min ,g p p d      u u u
.

Since we have no a priori information on u , we assume 
that 0  and 1  are uniformly distributed over  0,1 2 , i.e., 
the a priori distribution of the parameters of interest  p u  
is fl at. We consider the interval  0,1 2  rather than 
 1 2,1 2  because the phase and the frequency can only 
be estimated modulo 1 2  when multiplicative noise occurs 
[50]. Consequently,

     0 1 0 1, 1 2 1 2g       . 

This leads to 
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The rest of the section deals with the evaluation of 
 0 1,eP   . After tedious algebraic derivations that can be 

found in [53], we have
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where 

• { }nv  is a real-valued i.i.d. (independent identically 
distributed) Gaussian random process with zero mean 
and unit variance.

•  The ( )
n
  for 0, , 1n m   (with ( ) 0n

  ) are the 
m  negative eigenvalues,  and ( ) 0n

   for 
, , 2 1n m N   are the positive or null eigenvalues 

of the 2 2N N  matrix  T , defi ned as follows:
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 where   T    r rC r
   with     ,   rr r  and r  is the 

received signal disturbed by phase 0  and frequency 1 .
We now wish to derive a closed-form expression for 

the following term:

    0 1, ProbeP p p     , (22)

where ( ) 2
n n

n
p v 
    is a weighted sum of squared 

independent Gaussian variables. Notice that by construction, 
p  and p  are independent.

If ( ) ( )
n    (respectively, ( ) ( )

n   ) for all 
corresponding n, then p  (respectively, p ) obeys a 2  
distribution with  2N m  (respectively, m) degrees of 
freedom. However, if the weighting coeffi cients are different, 
the p s are not 2  distributed anymore. Further, expressing 
the distribution of p  in closed form is not tractable. 
Nevertheless, it can be well approximated by means of the 
Gamma distribution [51]. We recall that the Gamma 
distribution, denoted  , , is defi ned as follows:
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where     is the Gamma function.

Hence, the distribution of p  is next approximated 
by the Gamma distribution, the fi rst and second moments 
of which are equal to those of p . We thus obtain
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and 
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As p  is now assumed Gamma distributed, 
Equation (22) can be simplifi ed. Indeed, by using the fact 
that the square root of a Gamma-distributed random variable 
is Nakagami distributed, and by using Equation (46) in 
[52], we have that
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where  2 1F   is the hypergeometric function.

The above expression for  0 1,eP    represents the 
main available result on the Ziv-Zakai bound derivations 
[53]. Although this expression is not interpretable, its 
numerical computation will provide interesting results, as 
seen below. Notice also that the expressions obtained for 
the Ziv-Zakai bound are not anymore a bound, strictly 
speaking, since we are not able to prove that the approximate 
expressions are less than the exact (but unavailable) bound. 
However, by checking the approximation numerically, we 
have observed that the approximation is very tight. 

7. Simulation Results

7.1 Non-Constant Complex 
Amplitude = Digital Data Symbol

Figure 3 presents some numerical results for the true 
Cramer-Rao bound regarding the estimation of the frequency 
offset from the observation of 999N   linearly modulated 
signal samples that were obtained by means of computer 
simulations. The following signaling constellations,  , 
were considered:

• M-ary pulse-amplitude modulation} (M-PAM) for which
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

.

• M-ary quadrature-amplitude modulation (M-QAM) for 
which 

 
     

3: ,
2 1 MM

  
       

  


,

 where    and    denote the real and the imaginary 
parts of a complex number.

In the above, 

   1, 3,..., 1m m    
. (23) 

We further considered uncoded and turbo-coded linear 
modulation. The turbo-coded transmission scheme 
encompasses the parallel concatenation of two identical 
binary 16-state rate-1/2 recursive systematic convolutional 
encoders, with generator polynomials  821  and  837  in 
octal notation, via a pseudo-random interleaver with block 
length bN  information bits. An appropriate puncturing 
pattern, so that the block at the turbo-encoder output 
comprises cN  coded bits, was used. This binary turbo code 
was followed by conventional Gray-mapped 2PAM or 

Figure 3. The Cramer-Rao bounds related to the 
estimation of 1  resulting from the observation model, 

Equation (1), as a function of the SNR, 0sE N , for 
random, linear, MPAM, and MQAM, coded and un-

coded, modulations.
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4QAM modulation, giving rise to a block of N random data 
symbols, with 3c bN N N   for the case 2PAM, and 

2c bN N N   for the case of 4QAM. 

Our simulation results confi rmed that the high-SNR 
limit of the Cramer-Rao bounds equals the modifi ed Cramer-
Rao bound. Comparing the Cramer-Rao bounds for coded 
and uncoded transmission, we observed that for a given 
constellation type, they were equal at suffi ciently high 
SNRs. However, at lower SNRs there was a gap between 
the Cramer-Rao bounds for coded and uncoded 
transmissions. When 0sE N  decreased, a point  0s thrE N  
was reached where the Cramer-Rao bounds started to diverge 
from their high-SNR limit. For coded transmission, 
 0s thrE N  corresponded to a coded BER (bit-error rate) 
of about 310 . For uncoded transmission,  0s thrE N  
corresponded to an uncoded BER of about 310 , and 
consequently exceeded  0s thrE N  for coded transmission 
by an amount equal to the coding gain.

For uncoded transmission, the following observations 
can further be made:

• For both constellation types (PAM, QAM), we observed 
that for a given value of 0sE N , the Cramer-Rao bound 
increased with M, which indicated that for the larger 
constellations, carrier recovery was inherently harder 
to accomplish. This effect was clearly evident for 
MQAM, in which case the curves corresponding to 
large M exhibited an almost horizontal portion, but was 
almost unnoticeable for MPAM. Figure 3 also shows 
the limiting curve for M approaching infi nity. This 
situation corresponded to data symbols that were 
continuous random variables, that were uniformly 
distributed in the interval 3, 3 

   for PAM, and in 
a square with side 6  for QAM. In the case of infi nite-
size constellations, the Cramer-Rao bounds do not 
necessarily converge to the corresponding modifi ed 
Cramer-Rao bounds for large SNR, according to [11]. 
This is due to the non-diagonal nature of the Fisher 
information matrix, related to the joint likelihood 
function  ,p r a u  of a and u , with  0 1, u . 

• For fi nite M, the Cramer-Rao bound does converge to 
the modifi ed Cramer-Rao bound when 0sE N  is 

Figure 4. The mean-square 
estimation error as a function of 

the SNR.

Figure 5. The mean-square esti-
mation error as a function of N.
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suffi ciently large. The value of 0sE N  at which Cramer-
Rao bound is close to the modifi ed Cramer-Rao bound 
increases by about 6 dB when M doubles (PAM) or 
quadruples (QAM). This indicates that for uncoded 
pilot-symbol-free transmission, the convergence of the 
Cramer-Rao bound to the modifi ed Cramer-Rao bound 
is mainly determined by the value of  2

0

s
M

E
d

N
, with 

Md  denoting the minimum Euclidean distance between 
the constellation points. Furthermore, at the normal 
operating SNR of uncoded digital-communication 
systems, the Cramer-Rao bounds turn out to be very 
well approximated by the corresponding modifi ed 
Cramer-Rao bounds.

7.2 Non-Constant Complex 
Amplitude = Gaussian

The multiplicative noise,  a n , is hereafter assumed 
to be a white non-circular Gaussian process with zero mean, 
unit variance, and pseudo-variance  2ac a n    

 . For 
the sake of simplicity, we also assume that the real part of 
 a n  is independent of its imaginary part. This implies 

that ac  is real-valued. If 0ac  , then  a n  is circular; if 
1ac  , then  a n  is real-valued. Thus, ac  quantifi es the 

non-c i rcular i ty  ra te  of   a n .  We a lso  se t 
 2

10SNR [dB] 10log 1 w .

In each fi gure, we display four curves. Dashed lines 
correspond to the empirical mean-square estimation error 
for the well-known square-power (SP) estimate [1, 31, 34]. 
Solid lines with star-shape markers represent the Ziv-Zakai 
bound. Solid lines with triangular-shaped markers represent 
the Barankin bound. Solid lines with circular-shaped markers 
represent the Cramer-Rao bound [31, 53].

In Figure 4, we plot all the curves as a function of the 
SNR  with 64N  , 1ac  . We observed that the well-
known outliers effect occurred at low and medium SNR 
[33]. We also observed that the Ziv-Zakai bound is 

signifi cantly tighter than the Barankin bound. The SNR 
threshold corresponding to the SP-based estimate was much 
larger than that observed with the Barankin bound, while 
the threshold value predicted by the Ziv-Zakai bound was 
quite close to that obtained empirically with the square-
power estimate. As a consequence, the Ziv-Zakai bound 
seems to be more powerful than the Barankin bound. 

In Figure 5, we plot the curves as a function of N with 
SNR 10 dB, 0.9ac  . Even though the Ziv-Zakai bound 
offered a more realistic value for the N threshold than the 
Barankin bound, the mismatch between the Ziv-Zakai bound 
and the square-power mean-square estimation error 
performance was still quite large.

In Figure 6, the curves are displayed as a function of 
ac  with 64N  , SNR 10 dB. One could notice that the 

more  a n  was non-circular (i.e., ac  increased), the better 
the estimation performance. Furthermore, the outliers effect 
rapidly degraded the performance if  a n  was not 
suffi ciently non-circular. The fi gure confi rmed that accurate 
frequency estimation is really diffi cult to achieve when the 
white signal is not suffi ciently non-circular.

8. Conclusions

In this tutorial, we have focused on the derivation 
and the analysis of fundamental lower bounds on the 
achievable mean-square estimation error for estimating 
the frequency and the phase of a received signal, when 
the complex amplitude of the signal is non-constant and 
unknown. In particular, the following application fi elds 
have been considered: digital communications, direction-
of-arrival estimation, and Doppler radar. An overview of 
lower bounds (the Cramer-Rao bound, modifi ed Cramer-
Rao bound, Barankin bound, and Ziv-Zakai bound), with 
their respective interests and their associated derivations in 
closed form for various cases, has been presented.

Figure 6. The mean-square estima-
tion error as a function of ac .
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Abstract

Recent major natural disasters have brought a greater 
awareness of the social and economic deprivations that 
follow global emergencies. Among other organizations, 
URSI (International Union of Radio Science) is assessing 
its contribution, past and future, to the mitigation of natural 
and human-induced hazards. 

This paper summarizes the way in which radio science 
has contributed to lessening the impact of disasters, both 
in the past and future. Its objective is to encourage all 
radio scientists to think how they can contribute further to 
alleviate the impact of disasters.

1. Introduction to URSI 
Inter-Commission WG1

Between 1975 and 2009, over 10,000 natural 
disasters worldwide killed more than 2,500,000 people, and 
produced estimated damages of over 1.7 trillion US dollars. 
Earthquakes, landslides, tropical cyclones, severe storms, 
fl oods, and infectious diseases were the major causes [1]. 

Science and technology working with society can 
reduce the risk and impact of disasters. 

Radio science pervades society, and has an integral 
role in disaster management and mitigation that is often 
taken for granted. Radio is a vital element in monitoring 
the environment, and in feeding data to prediction models 
that are a major factor in safety and economic wellbeing 
[2]. When the telecommunication infrastructure is 
signifi cantly or completely destroyed in a disaster, then radio 
communications (especially radio-amateur and satellite 
services) become important for disaster-relief operation. 
Building on radio research – which the URSI Commissions 
embrace – the International Telecommunication Union 
(ITU) and World Meteorology Organization (WMO) have 
developed recommendations, reports, and handbooks related 
to the use of radio communications to reduce the impact of 
natural and manmade disasters (including the anticipated 
effects of climate change) [3, 4].

P. J. Wilkinson and D. G. Cole are with IPS, Bureau of 
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In response to an increasing vulnerability to global 
disasters, the 2008 URSI General Assembly created a 
Working Group on Natural and Human Induced Hazards 
(WG1) [5], with the following terms of reference:

a) To study, within the URSI area of competence, methods 
and strategies related to natural and human-induced 
environmental hazards and disasters, such as:

(i) Communication systems suitable for fast-response 
disaster relief;

(ii) The development and application of remote-sensing 
products and other global data for monitoring and 
alerting;

(iii) The evaluation of long-term and short-term risks 
of disasters, and;

(iv) The description of the environment disturbances 
resulting from disasters; 

b) To provide support to initiatives taken in the area of risk 
management and relief related to natural and human-
induced catastrophes and disasters, parti  cularly by 
developing countries. 

This paper provides some background and ideas on 
ways in which URSI has contributed, and will continue to 
contribute, to the reduction of public risk from natural and 
human-induced hazards. The ideas and techniques presented 
here will be further refi ned. Readers are encouraged to 
contact the WG1 Chair and lead author (Phil Wilkinson) 
with any comments, ideas, and additional references, 
including Web references. This information will be added 
to the Working Group Web site, shortly to be linked to the 
URSI Web site (http://www.ursi.com).

2. Stages in Hazard Risk 
Reduction

It is practically impossible to prevent the occurrence 
of natural disasters and subsequent damage. However, it is 
possible to reduce the impact of disasters by the following:

The Role of Radio Science in 
Disaster Management 


