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Analysis of the Redundant Energy in UW-OFDM
Heidi Steendam, Senior Member, IEEE

Abstract—In this paper, we consider unique-word (UW)
OFDM, where the guard interval, filled with known samples, is a
part of the inverse FFT output. In order to construct the known
samples in the UW-OFDM signal, a number of carriers needs to
be reserved as redundant carriers. The information modulated
on these redundant carriers depends on the transmitted data.
However, the energy transmitted on the redundant carriers
strongly depends on the positions of these redundant carriers. In
this paper, we consider the distribution of the redundant carriers
from [1] that is suboptimal but yields an average redundant
energy that is close to the minimum, and analytically evaluate
the redundant energy as a function of the system parameters, i.e.
the FFT length, the number of redundant carriers and the length
of the unique word. Based on our results, a simple rule of thumb
can be obtained for the selection of the system parameters, which
is helpful in the design of UW-OFDM systems.

Index Terms—Multicarrier systems, redundant carriers, en-
ergy consumption.

I. INTRODUCTION

IN multicarrier systems like OFDM, the bandwidth is
divided into a large number of narrow subchannels, i.e.

the subcarriers; the data is transmitted in parallel over these
subcarriers and converted to a time-domain signal using an
inverse FFT (IFFT). Because of the narrow bandwidth of
these subcarriers, the subchannel can be considered frequency-
flat, which implies that multicarrier systems are robust against
channel dispersion. Hence, multicarrier transmission is able to
achieve a high bandwidth efficiency in dispersive channels and
is therefore the basis for various standards [2]-[4]. In order
to avoid that sequentially transmitted OFDM blocks overlap
in time and cause intersymbol interference, traditionally a
guard interval is inserted between the different IFFT blocks.
There exist several guard interval techniques like cyclic prefix,
zero padding and known symbol padding [5]-[6]. Common
to these techniques is the extension of the length of the
OFDM symbol in the time domain which reduces the effective
throughput of the OFDM system. Recently, a new approach
has been introduced in [7], i.e. unique-word (UW) OFDM. In
this technique, in contrast with the traditional guard interval
techniques, the guard interval is a part of the IFFT block: the
last part of an IFFT block in UW-OFDM does not depend on
the transmitted data but is a known sequence, the unique word.
To be able to construct this unique word, however, we have to
sacrifice subcarriers – these subcarriers are called redundant
subcarriers.
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In [8], two different methods were introduced to construct
UW-OFDM. In the direct approach, the unique word is directly
formed by properly selecting the information modulated on the
redundant subcarriers, whereas in the two-step approach, first
the information modulated on the redundant carriers is selected
such that the part of the time domain signal corresponding to
the unique word is set to zero, and the unique word itself is
added afterwards. In [8], it is shown that the two-step approach
requires less redundant energy than the direct approach. As in
the two-step approach first a signal is generated with a block
of zeros in the time domain, the UW-OFDM technique can be
compared with a Reed-Solomon code [9].

When we compare the throughput efficiency of UW-OFDM
with that of CP-OFDM, it can easily be verified that, assuming
the same bandwidth and guard interval duration, and a guard
interval length equal to 25% of the FFT length, the throughput
efficiency equals 75% in UW-OFDM and 80% in CP-OFDM.
Hence, the throughput efficiency in UW-OFDM is slightly
lower than in CP-OFDM. This implies that in an AWGN
channel, CP-OFDM will slightly outperform UW-OFDM: this
effect is shown in [8]. However, UW-OFDM will outperform
CP-OFDM in frequency selective channels. This has been
shown in [8] for the uncoded case and [7] and [10] for
the coded case. This can be explained by the redundancy
that is present in the frequency domain: translating the UW-
OFDM system in coding terms, the redundancy will introduce
a coding gain as compared to CP-OFDM. The effect of this
coding gain will be larger when there are more deep fades
in the channel. Note that the effect of deep fades in CP-
OFDM can be counteracted by using precoding. However,
this requires the presence of channel state information (CSI),
which is difficult to obtain timely and sufficiently accurate at
the transmitter. In UW-OFDM, such CSI is not necessary. The
performance gain in UW-OFDM however comes with a price
in complexity: whereas in CP-OFDM a simple linear data
detector is sufficient, sophisticated detectors that fully exploit
the redundancy in the signal are necessary for UW-OFDM.
Further, the information in the guard interval in CP-OFDM
depends on the data symbols and is thus prior unknown at
the receiver, whereas in UW-OFDM, the information in the
guard interval does not depend on the data symbols, and is
prior known at the receiver. The known symbols in the guard
interval can therefore easily be used for parameter estimation.
In this sense, UW-OFDM is similar to KSP-OFDM, where
it is shown that channel estimation and synchronization is
more accurate than in CP-OFDM thanks to the presence of
the known samples in the guard interval [11]-[13].

In [7] and [8], the authors considered only the case where
the number of redundant carriers equals a power of two. In
that case, it was shown through simulations that a (close
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to) uniform distribution1 for the redundant carriers over the
bandwidth resulted in the minimum average redundant energy.
In this paper, we analytically prove that the uniform distri-
bution for this case is indeed optimal. When the number of
redundant carriers is no longer a power of two, the situation
becomes more complex. In [1], it is shown that the uniform
distribution is no longer optimal. Moreover, the energy needed
for the redundant carriers strongly depends on the positions
of the redundant carriers – this redundant energy increases
exponentially when the redundant carrier positions are not
carefully selected. So it is of major importance to use an
appropriate redundant carrier distribution. We select the dis-
tribution that minimizes the average redundant energy. For the
general case where Nr is not a power of 2, the minimization
of the average redundant energy is a computationally hard
problem: an exhaustive search must be carried out to find
the optimal positions. For small values of N (N ≤ 32),
the optimal positions were determined through an exhaustive
search, but for larger values of N (N > 32), this was
practically not possible. No simple rule of thumb was found to
extend the results for small values of N to larger values of N
to obtain the positions for the redundant carriers that minimize
the average redundant energy. However, in [1], a distribution
for the redundant carriers is proposed where the redundant
carrier positions are selected according to a simple analytical
expression. For small values of N , this distribution yielded for
almost all cases an average redundant energy relatively close to
the minimum obtained with the exhaustive search. For larger
values of N , extensive simulations were carried out to find
the optimal distribution. The distribution from [1] in this case
always gave the lowest average redundant energy. Hence, the
distribution from [1] is a good compromise between optimality
and complexity.

In this paper, we consider the distribution from [1] and
analytically evaluate the effect of the system parameters (i.e.
the FFT length, the length of the unique word and the number
of redundant carriers) on the average redundant energy. For the
special case where the number of redundant carriers equals
the unique word length, a closed expression for the average
redundant energy is derived. For the general case, where
the number of redundant carriers is larger than the unique
word length, the average redundant energy can indirectly be
calculated. From our analysis, we are able to derive a simple
rule of thumb for the selection of the system parameters such
that the redundant energy is small. This rule of thumb is useful
for the design of UW-OFDM systems.

II. SYSTEM DESCRIPTION

We use the two-step approach to construct the UW-OFDM
signal [8]. The time-domain signal consists of blocks of length
N (where N is a power of 2) samples generated at a sample
rate 1/T . In a block of N time-domain samples, the first

1In [7], the authors consider guard bands in the frequency domain where
no information can be transmitted. With a uniform distribution, some of the
redundant carriers should be placed on a zero carrier belonging to the guard
band, which is not allowed. The optimization in [7] takes into account the
restriction of the guard bands and results in a close to uniform distribution
where some of the redundant carriers are shifted as compared to the uniform
distribution. In this paper, however, we do not take into account guard bands.
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Fig. 1. Time-domain signal of UW-OFDM.

N −Nu samples depend on the data and the last Nu samples
contain the known sequence corresponding to the unique word,
as shown in Figure 1. To be able to construct in the first step
the block of Nu zeroes in the time domain, we need to replace
Nr data carriers by redundant carriers, where Nr ≥ Nu.
We define xd = (xd(1) . . . xd(N − Nr))

T as the vector of
Nd = N−Nr data symbols and xr = (xr(1) . . . xr(Nr))

T as
the vector of Nr redundant symbols. The time-domain signal
in this first step is given by

y = F−1
N P

(
xd

xr

)
, (1)

where FN is the N × N FFT matrix with (FN )k,� =
1√
N
e−j2π k�

N and P is the permutation matrix. This per-
mutation matrix determines the positions of the data and
redundant carriers. The N ×N matrix P can be decomposed
as P = [Pd Pr], where Pd is N×Nd and Pr N×Nr. The
Nd columns of Pd consist of the unit-weight vectors with
the ’1’ at the positions ñ� ∈ Id, where Id is the set of Nd

data carrier positions. Similarly, the Nr columns of Pr are
the unit-weight vectors with the ’1’ at the positions n� ∈ Ir,
where Ir is the set of Nr redundant carrier positions.

We define the transform matrix M as M = F−1
N P. The

transform matrix is decomposed as follows

M =

(
M11 M12

M21 M22

)
, (2)

where M11 is (N − Nu) × Nd, M12 is (N − Nu) × Nr,
M21 is Nu ×Nd and M22 is Nu ×Nr. The requirement that
the last Nu samples in the time domain must be zero, results
in the set of linear equations M21xd + M22xr = 0. This
implies the following relationship between the data symbols
and redundant symbols2

xr = −M†
22M21xd = Txd, (3)

where M†
22 = MH

22(M22M
H
22)

−1 is the Penrose-Moore
pseudo-inverse. Hence, the time-domain signal y can be
rewritten as

y = M

(
INd

T

)
xd = Gxd, (4)

2When Nr > Nu, an infinite number of solutions exists for this underde-
termined set of equations. However, it can easily be verified that the solution
corresponding to the Penrose-Moore pseudo-inverse has the minimum average
redundant symbol energy E[xH

r xr].
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Fig. 2. Split redundant carrier distribution for Nr = 15: Nr,1 = 8, Nr,2 =

4, Nr,3 = 2, Nr,4 = 1. The spacings equal Δ1 = Δ2
2

= Δ3
4

.

where INd
is the Nd × Nd identity matrix. In the matrix G,

the last Nu rows are zero rows.
The average energy of the time domain samples y is given

by

Pt = E[yHy] = Pd + Pr, (5)

where Pd = NdEs and Pr = Estrace(THT) are the
average energy of the data symbols and redundant symbols,
respectively, and E[xd(i)x

∗
d(j)] = Esδi,j is the energy of

a data symbol. To obtain a high power efficiency, it is of
importance that the average energy of the redundant symbols
is as small as possible. Taking into account (3), the average
energy of the redundant symbols can be rewritten as

Pr = Estrace[M21M
H
21(M22M

H
22)

−1], (6)

where we have used the property trace(ABC)=trace(CAB)
[14]. Let us take a closer look at the matrices M21 and M22.
The elements of these matrices are given by

(M21)k,� =
1√
N

ej2π
kñ�
N e−j2π

Nuñ�
N ñ� ∈ Id (7)

(M22)k,� =
1√
N

ej2π
kn�
N e−j2π

Nun�
N n� ∈ Ir (8)

with k = 0, . . . , Nu − 1. Hence, the matrices M21M
H
21 and

M22M
H
22 from (6) are Hermitian Toeplitz matrices:

(M21M
H
21)k,k′ =

1

N

Nd−1∑
�=0

ej2π
(k−k′)ñ�

N (9)

(M22M
H
22)k,k′ =

1

N

Nr−1∑
�=0

ej2π
(k−k′)n�

N (10)

where k, k′ = 0, . . . , Nu − 1. Taking into account that Ir ∪
Id = {0, . . . , N−1}, it can easily be verified that M21M

H
21+

M22M
H
22 = INu .

Let us first consider the special case where Nr is a power
of 2. In [7], the authors have shown through simulations that
evenly spreading the redundant carriers over the bandwidth
resulted in the minimum redundant energy. When Nr is no
longer a power of 2, the situation becomes more complex.
In [1], it is shown that the uniform distribution for the
redundant carriers is no longer optimal, as in some cases,
the matrix M22M

H
22 becomes (close to) singular. In [1], a

new distribution was introduced that resulted in essentially
minimal average redundant energy. In this ’split’ distribution,

it is assumed that the number Nr of redundant carriers is
decomposed as a sum of powers of 2:

Nr =

Lr∑
�=1

Nr,�, (11)

where Nr,� = 2x� , x� is integer and Nr,1 > Nr,2 > . . . >
Nr,Lr ≥ 1. The set Ir of Nr redundant carriers is split in
Lr subsets Ir,� with Nr,� redundant carriers. Within each set
Ir,�, the positions of the Nr,� redundant carriers are uniformly
distributed over the bandwidth with spacing Δ� = N

Nr,�
,

resulting in the carrier indices

nm,� = n0,� +mΔ�, m = 0, . . . , Nr,� − 1. (12)

The offsets n0,� of the carrier positions within the different
sets Ir,� equal

n0,1 = n0

n0,� = n0,�−1 +
Δ�−1

2
+m�Δ�−1, � > 1, (13)

where 0 ≤ n0 < Δ1 and m� is integer3. In the special case
when m� =

Nr,�−1

2Nr,�
− 1, ∀� > 1, the offsets n0,� reduce to

n0,� = n0+
N

2Nr,�
− N

2Nr,1
. Figure 2 shows the split distribution

for the case where Nr = 15 with m� = 0. When Nr is a
power of 2, it is clear that the proposed distribution reduces
to a uniform distribution of the redundant carriers over the
bandwidth.

Although we have assumed in this paper that all carriers
are modulated, the proposed redundant carrier distribution can
also be applied to systems containing a guard band with zero
carriers. The only requirement is that the distribution must
avoid these zero carriers. Typically, zero carriers are placed
in the center of the frequency band and at the edges of the
frequency band. As normally the number of zero carriers in
the center of the frequency band is small, the main concern
is therefore the zero carriers at the edges of the bandwidth.
As long as the total number of zero carriers at the edges of
the frequency band is smaller than the smallest spacing Δ1 =
N

Nr,1
, it is possible to select an appropriate offset n0 in order

that none of the redundant carriers must be placed on a zero
carrier. Fortunately, in most practical cases Nr and thus Nr,1

is much smaller than N , such that this spacing is sufficiently
large to be able to avoid practical guard bands. In other words,
given a number of zero carriers in the guard band, there will
be a maximum on the number of redundant carriers that can
be placed according to the proposed algorithm.

III. SPECIAL CASE: Nu = Nr

In this section, we consider the special case where the
number of redundant carriers is the minimum possible, i.e.
Nr = Nu. In this case, the matrices M11 and M22 in (2)
are square matrices. With the split distribution, M11 and M22

are not singular, so they are invertible. It turns out that the
redundant energy and total energy exhibit several symmetries
as function of Nr.

3It can be verified that a shift of n0,� over a multiple of Δ�−1 does not
influence the average redundant energy. This property might be interesting
in a system with guard bands: in that way we might be able to avoid zero
carriers.
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Proposition 1: The redundant energy is symmetrical in Nr

around N/2, i.e.

Pr(Nr) = Pr(N −Nr). (14)

Proof: For the case of Nr redundant carriers, we define the
transform matrix M, the set of redundant carriers Ir and the
set of data carriers Id. For the case of N − Nr redundant
carriers, the transform matrix is M̃, and the sets of redundant
carriers and data carriers are Ĩr and Ĩd, respectively. Taking
into account the distribution of the redundant carrier positions
of the previous section, it can easily be verified that the posi-
tions of the data carriers also satisfy the same distribution but
with Nd = N −Nr positions instead of Nr positions. Hence,
the two cases with Nr and N −Nr redundant carriers can be
interpreted as if the positions of the data carriers and redundant
carriers are interchanged, i.e. Ĩd = Ir and Ĩr = Id. This
implies the following relationship between the transform ma-
trices M and M̃: M̃11 = M22diag{e−j2π

(N−Nr)n�
N }, M̃12 =

M21diag{e−j2π
(N−Nr)ñ�

N }, M̃21 = M12diag{ej2πNrn�
N } and

M̃22 = M11diag{ej2πNrñ�
N }, where diag{y�} is a diagonal

matrix with as diagonal elements y�. Hence, the energy of the
redundant carriers for the case with N−Nr redundant carriers
yields:

Pr(N −Nr) = Estrace[M̃21M̃
H
21(M̃22M̃

H
22)

−1]

= Estrace[M12M
H
12(M11M

H
11)

−1]. (15)

Taking into account that M is a unitary matrix, i.e.
MMH = IN , it follows that M12M

H
22 + M11M

H
21 = 0.

As M11 and M22 are square invertible matrices, M12 =
−M11M

H
21(M

H
22)

−1 such that (15) can be rewritten as

Pr(N −Nr) = Estrace[M11M
H
21(M22M

H
22)

−1 ·
M21M

H
11(M11M

H
11)

−1]

= Estrace[M21M
H
21(M22M

H
22)

−1]

= Pr(Nr), (16)

where we have used trace(ABC)=trace(CAB) [14].�
Taking into account this symmetry and Pt(Nr) = Es(N −
Nr) + Pr(Nr), it follows that

Pt(Nr) = Es(N − 2Nr) + Pt(N −Nr). (17)

Proposition 2: The total energy is symmetrical in Nr in
the intervals [Nx

r,i, N
x
r,i +

N
2i+1 ] around Nx

r,i +
N

2i+2 , where
Nx

r,i = N
∑i

�=1 2
−� = N − N

2i , for i = 0, . . . , log2 N − 1, i.e.

Pt(N
x
r,i+x) = Pt

(
Nx

r,i +
N

2i+1
− x

)
, 0 ≤ x ≤ N

2i+1
. (18)

Proof: First, we show that

Pt

(
N

2i+1
− x

)
= Pt(x) + 2Es(2

i − 1)

(
N

2i+1
− 2x

)
(19)

for x ∈ [0, N
2i+1 ], i = 0, . . . , log2 N − 1.

When there are x redundant carriers, there are Nd,1+Nd,2

data carriers, with Nd,1 = N − N
2i+1 and Nd,2 = N

2i+1 − x.
The transform matrix M in this case can be decomposed as

M =

⎛
⎝ C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎠ , (20)

where Cjj′ has dimension dj × dj′ , where {d1, d2, d3} =
{Nd,1, Nd,2, x}. Comparing (20) with (2), it follows that
M21 = [C31C32] and M22 = C33.

When there are N
2i+1 − x redundant carriers, the transform

matrix can be written as

M̃ =

⎛
⎝ C̃11 C̃12 C̃13

C̃21 C̃22 C̃23

C̃31 C̃32 C̃33

⎞
⎠ , (21)

where C̃jj′ has dimension d̃j × d̃j′ , where
{d̃1, d̃2, d̃3} = {Nd,1, x,Nd,2}. Similarly, M̃21 = [C̃31C̃32]
and M̃22 = C̃33. The relationship between the submatrices of
M and M̃ is given by C̃�,m = Cz(�),z(m)Dz(�),z(m), where
{z(1), z(2), z(3)} = {1, 3, 2}, D�,m = diag{ej2π x�ym

N },
{x1, x2, x3} = {0,−d2, d3} and {y1, y2, y3} =
{ñ�,1, n�, ñ�,2}. The carrier indices ñ�,1 and ñ�,2 correspond
to the Nd,1 and Nd,2 data carriers, and n� to the x redundant
carriers from case 1, respectively.

It can easily be verified that C21C
H
21 =

Nd,1

N Ix̃, C31C
H
31 =

Nd,1

N Ix and C21C
H
31 = 0 where x̃ = N

2i+1 −x = Nd,2. Hence,
the total energy in the two cases can be written as

Pt(x) = Es(N − x)

+ Estrace

[(
Nd,1

N
Ix +C32C

H
32

)(
C33C

H
33

)−1
]

= Es(N − x)

+ Esα trace
(
C33C

H
33

)−1

+ Estrace
[
C32C

H
32

(
C33C

H
33

)−1
]

(22)

Pt(x̃) = Es(N − x̃)

+ Estrace

[(
Nd,1

N
Ix̃ +C23C

H
23

)(
C22C

H
22

)−1
]

= Es(N − x̃)

+ Esαtrace
(
C22C

H
22

)−1

+ Estrace
[
C23C

H
23

(
C22C

H
22

)−1
]

(23)

where α = 1−2−(i+1). Because of the unitary character of the
matrix M, i.e. MMH = IN , it follows that

∑3
i=1 CijC

H
ij =

Id̃j
, j = 1, 2, 3 and

∑3
i=1 CjiC

H
ki = 0, with j, k = 1, 2, 3

and j �= k. Using C21C
H
21 =

Nd,1

N Ix̃, C31C
H
31 =

Nd,1

N Ix
and C21C

H
31 = 0, this implies C22C

H
22 +C23C

H
23 = 1

2i+1 Ix̃,
C32C

H
32 + C33C

H
33 = 1

2i+1 Ix and C22C
H
32 + C23C

H
33 = 0.

Rewriting these relations yield

1

2i+1
(C22C

H
22)

−1 = Ix̃ +C23C
H
23(C22C

H
22)

−1

1

2i+1
(C33C

H
33)

−1 = Ix +C32C
H
32(C33C

H
33)

−1

C23 = −C22C
H
32(C

H
33)

−1. (24)

Substitution in the total energy from (22) and (23) yields

Pt(x) = Es

(
N + 2(2i − 1)x

)
+ Es2

i+1trace
[
C32C

H
32

(
C33C

H
33

)−1
]

(25)

Pt(x̃) = Es

(
N + 2(2i − 1)x̃

)
+ Es2

i+1trace
[
C23C

H
23

(
C22C

H
22

)−1
]
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= Es

(
N + 2(2i − 1)x̃

)
+ Es2

i+1trace
[
C32C

H
32

(
C33C

H
33

)−1
]
. (26)

Comparing these two expressions, and taking into account that
x̃ = N

2i+1 − x, it follows that

Pt

(
N

2i+1
− x

)
= Pt(x)+2Es(2

i−1)

(
N

2i+1
− 2x

)
. (27)

In the second step, we show that Pt(N
x
r,i+x) = Pt(N

x
r,i+

x̃), i.e. that the total energy is symmetric as function of Nr

in the interval [Nx
r,i, N

x
r,i +

N
2i+1 ], where Nx

r,i = N − N
2i , x̃ =

N
2i+1 − x and x ∈ [0, N

2i+1 ].
The total energy Pt(N

x
r,i + x) can be rewritten as

Pt(N
x
r,i + x) = Pt(mx,i)− Es(N − 2mx,i)

= Pt(x)− 2x(2i − 1)Es, (28)

where mx,i =
N
2i − x. We have used (17) and (27) to obtain

the first and second line in (28), respectively. The total energy
Pt(N

x
r,i + x̃) equals

Pt(N
x
r,i + x̃) = Pt(x̃)− 2x̃(2i − 1)Es

= Pt(x)− 2x(2i − 1)Es

= Pt(N
x
r,i + x). (29)

where the first line follows from (28) and the second line from
(27).�

It can easily be verified from (5) that Pt(0) = NEs and
Pt(1) = 2(N − 1)Es. Based on these initial values for the
total energy and the symmetries in the total and redundant
energies, a recursive relation for the total energy for all other
values of Nr can be derived (see the appendix):

Pt(2
y + Y ) = Pt(Y ) + Es

(
N − 2y+1 − N

2y
Y

)
(30)

where 0 ≤ y ≤ log2 N − 1 and Y < 2y. Taking into account
that Nr =

∑L
i=1 Nr,i =

∑L
i=1 2

xi , this recursive relation
can be written after some straightforward manipulations as
a closed expression for the total energy:

Pt(Nr) = Es(N − 2Nr)

+ Es

Lr∑
i=1

(
N − N

Nr,i

Lr∑
�=i+1

Nr,�

)
. (31)

IV. GENERAL CASE: Nu ≤ Nr

When Nr > Nu, the matrix M22 is no longer a square
matrix. In this case, a profound analysis of the average
redundant energy can be achieved by evaluating the eigen-
values of the matrices M21M

H
21 and M22M

H
22. Assuming

the eigenvalues and eigenvectors of the matrix M22M
H
22 are

given by λm and vm, m = 1, . . . , Nu, respectively, it follows
from M21M

H
21 + M22M

H
22 = INu that the eigenvalues and

eigenvectors of M21M
H
21 are 1−λm and vm, m = 1, . . . , Nu,

respectively. Taking this into account, the average redundant
energy (6) can be rewritten as

Pr = Es

Nu∑
m=1

1− λm

λm
. (32)

As M22M
H
22 is a Hermitian matrix, its eigenvalues are real

valued. Further, the matrix M22M
H
22 is positive semi-definite:

xHM22M
H
22x =

Nr−1∑
�=0

∣∣∣∣∣ 1√
N

Nu−1∑
k=0

xke
−j2π

kn�
N

∣∣∣∣∣ ≥ 0, (33)

such that the eigenvalues are positive: λm ≥ 0. Similarly,
M21M

H
21 is positive semi-definite, such that 1 − λm ≥ 0.

Hence, the eigenvalues λm are restricted to the interval 0 ≤
λm ≤ 1.

As trace(M22M
H
22) = NrNu

N , the sum of the eigenvalues
equals

∑Nu

�=1 λm = NrNu

N . Taking into account (32), it can
easily be verified that the average redundant energy is mini-
mized when all eigenvalues are equal and given by λm = Nr

N .
It can easily be shown that this implies that the matrix
M22M

H
22 should be a diagonal matrix: M22M

H
22 = Nr

N INu .
In that case, the redundant energy equals Pr,min = Es

NuNd

Nr
.

In the special case where Nr is a power of 2 and the redundant
carriers are uniformly distributed over the bandwidth4, the
matrix M22M

H
22 reduces to M22M

H
22 = Nr

N INu : the average
redundant energy equals Pr = Pr,min. Hence, this confirms
the results from [7] where the authors have shown through
simulations that a (close to) uniform distribution was optimal
for Nr equal to a power of 2. This implies that the total energy
to construct the data part of the UW-OFDM block equals
Pt = NdEs

(
1 + Nu

Nr

)
. In case Nu = Nr, the extra energy

needed for UW-OFDM to create a Nu length zero interval
in the time domain equals the energy needed for the data
symbols: UW-OFDM doubles the energy needed to transmit
Nd data symbols. This does not yet take into account the
energy needed for the unique word! So at a first sight, UW-
OFDM is very energy inefficient. However, this extra energy
is used to create redundancy in the signal, as in an error
correcting code. At the receiver, using a data detector that fully
exploits all redundancy available in the signal will transform
this extra energy into a sort of ’coding gain’, such that the
performance of UW-OFDM is comparable to standard OFDM
techniques.

Note that when one or more of the eigenvalues λm is small
as compared to the other eigenvalues, the redundant energy
(32) can strongly increase. In the following, we evaluate
the eigenvalues λm from M22M

H
22. We rewrite the matrix

M22M
H
22 as

M22M
H
22 =

1

N
ΘHAΘ, (34)

where Θ = diag{ej2π kn0
N }, k = 0, . . . , Nu − 1 and A is a

real-valued symmetric Toeplitz matrix with as first row the
vector [a(0) . . . a(Nu − 1)] with

a(n) =

Lr∑
�=1

Nr,�

Mr,�∑
m=0

(−1)mδ(n−mNr,�), (35)

where Nu = Mr,�Nr,� + Kr,�, and 0 ≤ Kr,� < Nr,�.
Taking into account that the matrix Θ is a unitary matrix,
the evaluation of the eigenvalues of M22M

H
22 reduces to the

4Note that in this paper we have restricted our attention to N equal to a
power of 2. In the case where N is not a power of 2, every Nr that is a
factor of N combined with a uniform distribution of the redundant carriers
yields M22MH

22 = Nr
N

INu and hence minimum average redundant energy.
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search for the eigenvalues of A. Note that as A is independent
of N , also its eigenvalues will be independent of N .

Let us define [x]≤ = argmin
m

{x ≥ Nr,m|Nr,m ∈ Jr},

with Jr = {Nr,1, . . . , Nr,Lr}, i.e. [x]≤ is the index of the
largest value in Jr that is equal to or smaller than x. Further,
the m ×m Hadamard matrix Hm can be constructed in the
following recursive way:

H2m =
1√
2

(
Hm Hm

Hm −Hm

)
(36)

with H1 = 1. The Hadamard matrix Hm is a symmetric
unitary matrix.

Let us first consider the special case where Nu is a power
of 2. In that case, it can be verified that the Hadamard matrix
HNu diagonalizes the matrix A: HNuAHNu = diag{λk},
k = 1, . . . , Nu. The eigenvalues of A in that case are λ =∑[Nu]≤

�=1 Nr,� with multiplicity μ and λ =
∑[Nu]≤

�=1 Nr,� +Nu

with multiplicity Nu − μ, where μ is given by

μ =

{
Nu −∑Lr

�=[Nu/2]≤ Nr,� Nu > Nr,[Nu]≤∑Lr

�=[Nu/2]≤ Nr,� Nu ≤ Nr,[Nu]≤
. (37)

When Nu is not a power of 2, the following strategy can be
used to determine the eigenvalues of A. First, we decompose
Nu into a sum of powers of 2:

Nu =

Lu∑
�=1

Nu,� (38)

with Nu,� > Nu,�+1, Nu,� = 2x� and x� integer. Further, we
decompose the matrix A as

A =

(
α1 β1

βT
1 γ1

)
(39)

with α1 is Nu,1 ×Nu,1, β1 is Nu,1 × (Nu −Nu,1) and γ1 is
(Nu−Nu,1)× (Nu−Nu,1). The characteristic equation of A,
determining the eigenvalues, is given by det(A−λINu) = 0.
This equation can be rewritten as [14]

det(A− λINu) = det(α1 − λINu,1)

· det(γ1 − λINu,1 − βT
1 (α1 − λINu,1)

−1β1). (40)

The matrix α1 can be diagonalized by multiplying it with the
unitary Hadamard matrix HNu,1 , i.e. Λ1 = HNu,1α1HNu,1 .
The eigenvalues of α1, i.e. the diagonal elements of Λ1 are
ρ1 =

∑[Nu,1]≤
�=1 Nr,� with multiplicity ν1 and ρ1 +Nu,1 with

multiplicity Nu,1 − ν1, where

ν1 =

{
Nu,1 −

∑Lr

�=[Nu,1/2]≤ Nr,� Nu > Nr,[Nu]≤∑Lr

�=[Nu,1/2]≤ Nr,� Nu ≤ Nr,[Nu]≤
. (41)

Further, the product βT
1 (α1 − λINu,1)

−1β1 can be rewritten
as

βT
1 (α1 − λINu,1)

−1β1 = βT
1 HNu,1(Λ1 − λINu,1)

−1HNu,1β1

=
1

ε1 − λ
βT

1 β1 (42)

where

ε1 =

{
ρ1 +Nu,1 Nu > Nr,[Nu]≤

ρ1 Nu ≤ Nr,[Nu]≤
. (43)

The second line in (42) follows from the fact that HNu,1β1 has
zero rows where Λ1 has diagonal element different from ε1,
and non-zero rows where the diagonal element of Λ1 equals
ε1. Hence, the matrix (Λ1−λINu,1)

−1 can be replaced by the
matrix 1

ε1−λINu,1 . Further, it can easily be verified that the
product βT

1 β1 equals

βT
1 β1 =

{
Nu,1(γ1 − ρ1INu,1

) Nu > Nr,[Nu]≤

Nu,1((ρ1 +Nu,1)INu,1
− γ1) Nu ≤ Nr,[Nu]≤

(44)
where Nu,i = Nu −∑i

�=1 Nu,�. Hence, the second factor in
(40) can be rewritten as

det(γ1 − λINu,1 − βT
1 (α1 − λINu,1)

−1β1) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

det
[

ρ1−λ
ρ1+Nu,1−λ(γ1 − (λ−Nu,1)INu,1

)
]
,

Nu > Nr,[Nu]≤

det
[
ρ1+Nu,1−λ

ρ1−λ (γ1 − (λ+Nu,1)INu,1
)
]
,

Nu ≤ Nr,[Nu]≤ .

(45)

As the structure of γ1 is the same as the structure of A,
this suggests that the eigenvalues of A can be calculated in a
recursive way.

Let us define the block matrix

γi−1 =

(
αi βi

βT
i γi

)
, (46)

where γ0 = A, αi is Nu,i × Nu,i, βi is Nu,i × Nu,i

and γi is Nu,i × Nu,i. The matrix αi can be diagonalized
with the Hadamard matrix HNu,i , yielding the eigenvalues
of αi λ = ρi with multiplicity νi and λ = ρi + Nu,i

with multiplicity Nu,i − νi, where ρi =
∑[Nu,i]≤

�=1 Nr,� and
νi = Nu,i −

∑Lu

�=[Nu,i/2]≤ Nu,�. When Nu > Nr,[Nu]≤ , the
recursive equation yields

det(γi−1 − λiINu,i
) =

(ρi − λi)
νi+Nu,i(ρi +Nu,i − λi)

Nu,i−Nu,i−νi

· det(γi − λi+1INu,i+1
) (47)

where λi+1 = λi −Nu,i and λ0 = λ. When Nu ≤ Nr,[Nu]≤ ,
the recursive equation yields

det(γi−1 − λiINu,i
) =

(ρi − λi)
νi−Nu,i(ρi +Nu,i − λi)

Nu,i+Nu,i−νi

· det(γi − λi+1INu,i+1
) (48)

where λi+1 = λi + Nu,i. Note that in the first case, the
eigenvalues of A are ρi+

∑i−1
�=1 Nu,� and ρi+

∑i
�=1 Nu,� with

multiplicities νi+Nu,i and Nu,i−Nu,i−νi, respectively, and
in the second case ρi−

∑i−1
�=1 Nu,� and ρi+Nu,i−

∑i−1
�=1Nu,�

with multiplicities νi−Nu,i and Nu,i+Nu,i−νi, respectively.
In both cases, it turns out that the eigenvalues of A are integer
values.

Let us consider the special case Nu = Nr. In this case,
Nu,� = Nr,�, such that ρi =

∑i
�=1 Nu,� and νi = Nu,i −∑Lu

�=i+1 Nu,�. Hence, the eigenvalues of A are given by
λ = Nu,i with multiplicity νi−Nu,i = Nu,i−2

∑Lu

�=i+1 Nu,�

and λ = 2Nu,i with multiplicity 2
∑Lu

�=i+1 Nu,�, for i =
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1, . . . , Lu. The energy of the redundant carriers is then given
by

Pr = Es

Lu∑
i=1

(
N −Nu,i − N

Nu,i

Lu∑
�=i+1

Nu,�

)
(49)

Taking into account hat Pd = (N − Nr)Es, this expression
leads to the expression (31) for the total energy, obtained in
the previous section.

When Nr > Nu, in general no closed expression for the re-
dundant energy can be derived. Hence, the eigenvalues should
be calculated for this case, and based on these eigenvalues, the
redundant energy can be computed. However, for some special
cases, a closed form expression for the redundant energy can
be found. When Nr = 2m − 1, the eigenvalues of A are
λ = 2m − Nu with multiplicity ν = 1 and λ = 2m with
multiplicity ν = Nu − 1, resulting in the redundant energy

Pr = Es

(
N − 2m +Nu

2m −Nu
+ (Nu − 1)

N − 2m

2m

)
. (50)

When Nr = 2m + 1 and Nu ≤ 2m, the eigenvalues are λ =
2m+Nu with multiplicity ν = 1 and λ = 2m with multiplicity
ν = Nu − 1, resulting in the redundant energy

Pr = Es

(
N − 2m −Nu

2m +Nu
+ (Nu − 1)

N − 2m

2m

)
. (51)

Although in the previous paragraphs, we have derived a
method to effectively calculate the eigenvalues of the matrix
A, it still requires computation time. It might be of interest to
obtain bounds for the minimum and maximum eigenvalues of
A that can be computed at no cost. In the following, we give
some bounds for the minimum and maximum eigenvalues that
can directly be calculated from Nu and Nr. This might be a
valuable tool in the design of an UW-OFDM system.

Proposition 3: The eigenvalues of A are within the interval
[λmin, λmax], where λmin =

∑[2Nu,1]≤
�=1 Nr,� and λmax =

λmin + 2Nu,1. Further, the minimum eigenvalue of A is
upper limited by λ̃min =

∑[Nu,1]≤
�=1 Nr,� and the maximum

eigenvalue is lower limited by λ̃max = λ̃min +Nu,1.
The proof of this proposition is a direct consequence of the

interlaced eigenvalue property [14, chapter 7]:
Interlaced eigenvalue property: Let Bn be a Hermitian

n× n matrix with eigenvalues β1 ≤ β2 ≤ . . . ≤ βn. Let c be
a n×1 vector and d a real-valued scalar. We can construct the
bordered Hermitian matrix Bn+1 of size (n+ 1)× (n+ 1):

Bn+1 =

(
Bn c
cH d

)
. (52)

The eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn+1 of Bn+1 are
interlaced with those of Bn: λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ . . . ≤
βn ≤ λn+1.

Proof of Proposition 3: First we show that the eigen-
values of A are bounded by λmin and λmax. We define
the 2Nu,1 × 2Nu,1 real-valued symmetric Toeplitz matrix
Ã2Nu,1 similarly as the matrix A (see (35)). The first row
of Ã2Nu,1 is given by [a(0), . . . , a(2Nu,1 − 1)], with a(n) =∑Lr

�=1Nr,�

∑Mr,�

m=0(−1)mδ(n − mNr,�). Note that the matrix
Ã2Nu,1 can be decomposed as

Ã2Nu,1 =

(
A x
xH y

)
(53)

where x is Nu × (2Nu,1 −Nu) and y is symmetric (2Nu,1−
Nu)× (2Nu,1−Nu). The dimension of Ã2Nu,1 is a power of
2, so the Hadamard matrix H2Nu,1 can be used to diagonalize

it, resulting in the eigenvalues λmin =
∑[2Nu,1]≤

�=1 Nr,� and
λmax = λmin + 2Nu,1. The interlaced eigenvalue property
implies that the eigenvalues of A are bounded by the minimum
and maximum eigenvalue of Ã2Nu,1 .

Secondly, we show that the eigenvalues of A are bounded
by λ̃min and λ̃max. We define the Nu,1×Nu,1 Toeplitz matrix
ÃNu,1 . We can write A as

A =

(
ÃNu,1 x
xH y

)
(54)

where x is Nu,1×Nu,1 and y is Nu,1×Nu,1. The interlaced
eigenvalue property implies that the eigenvalues of ÃNu,1 are
bounded by the minimum and maximum eigenvalue of A.
The eigenvalues of ÃNu,1 can be found by multiplying it with
the Hadamard matrix HNu,1 , yielding the eigenvalues λ̃min =∑[Nu,1]≤

�=1 Nr,� and λ̃max = λ̃min + Nu,1. Hence, it follows
that λ̃min is an upper bound for the smallest eigenvalue of A
and λ̃max is a lower bound for the maximum eigenvalue of
A. �

Note that the redundant energy is given by Pr =
Es

∑Nu

m=1(1− λm

N )/(λm

N ), where λm are the eigenvalues of A.
The smaller the relative difference between the eigenvalues,
the smaller the redundant energy, with a minimum when
all eigenvalues are equal. When 2Nu,1 ≤ Nr,[2Nu,1]≤ , it
follows from the previous derivations that λmin = 0 and
λmax = 2Nu,1, whereas when 2Nu,1 > Nr,[2Nu,1]≤ , λmin =∑[2Nu,1]≤

�=1 ≥ 2Nu,1 and λmax ≥ 4Nu,1. In the latter case, the
relative difference between the eigenvalues is smaller, such
that the redundant energy in the latter case will be relatively
smaller than in the former case. Hence, this provides us a rule
of thumb to select the number of redundant carriers and the
length of the unique word.

V. NUMERICAL RESULTS

In this section, we analytically evaluate the data energy
Pd, redundant energy Pr and total energy Pt as function of
the system parameters, i.e. the FFT size N , the number of
redundant carriers Nr and the length of the unique word Nu.

In Figure 3, the energy is shown as function of the number
of redundant carriers, assuming that the number of redundant
carriers is the minimum possible, i.e. Nr = Nu, for N = 32.
As expected, the data energy Pd equals NdEs = (N−Nr)Es.
The symmetry of the redundant energy around N/2 = 16 can
clearly be seen in the figure. Also the symmetries of the total
energy in the intervals [Nx

r,i, N
x
r,i+

N
2i+1 ] around Nx

r,i +
N

2i+2 ,
where Nx

r,i = N
∑i

�=1 2
−� = N− N

2i , for i = 0, . . . , log2 N−
1 can be observed in the figure. As expected from our analysis,
when Nr is a power of 2, the redundant energy equals the data
energy (the curves in the figures coincide for these values of
Nr). Further, we observe that the redundant and total energy
needed for odd values of Nr are larger than for even values
of Nr. This can be explained with the closed form expression
(31) for the total energy. Consider the total energy for the
values Nr = X and Nr = X + 1, where X is assumed to
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Fig. 3. Data, redundant and total energy as function of Nr , Nu = Nr ,
N = 32.

be even. Hence, X can be written as X =
∑Lr

�=1Nr,�, where
Nr,Lr > 1. The difference between the total energies can
easily be derived from (31):

Pt(X + 1)− Pt(X) = Es(N − 2)− Es

Lr∑
�=1

N

Nr,�
. (55)

As Nr,1 ≤ N/2 and Nr,Lr > 1, the sum
∑Lr

�=1
N

Nr,�
can be

upper limited by

Lr∑
�=1

N

Nr,�
≤ N

log2 N−1∑
�=1

1

2�
= N − 2. (56)

Hence, it follows that Pt(X + 1) − Pt(X) ≥ 0. Further,
considering that Pt(X) = Es(N − X) + Pr(X), it follows
that Pr(X + 1)− Pr(X) ≥ Es > 0.

Next, we evaluate the effect of the FFT size on the
energies. In Figure 4, the energy (normalized on NEs) is
shown for different values of Nr = Nu. The normalized
energies increase with N , and reach an asymptote for large
N . Hence, for large N , the three energies (Pd, Pr and
Pt) are essentially linear in N . For given N , doubling Nr

reduces Pd, Pr and Pt. This can be explained as follows.
The data energy equals Pd(Nr) = (N − Nr)Es, such that
Pd(Nr) − Pd(2Nr) = NrEs. For the total energy, it follows
from (31) that Pt(Nr) − Pt(2Nr) = 2EsNr. Further, taking
into account that Pt(X) = Pd(X) + Pr(X), it follows that
Pr(Nr)−Pr(2Nr) = NrEs. Hence, doubling Nr will reduce
Pd and Pr with an amount NrEs and Pt with 2NrEs. Further,
it can be observed in the figure that the normalized energies are
the same when N and Nr = Nu are multiplied with a power
of 2, i.e. Px(N,Nr)/(NEs) = Px(N2z, Nr2

z)/(N2zEs),
where x = d, r, t and z is an integer. For the case of the data
energy, the derivation is straightforward taking into account
that Pd(N2z, Nr2

z) = 2z(N − Nr)Es = 2zPd(N,Nr). For
the total energy, it can easily be derived from the expression
(31), and hence, considering Pt(X) = Pd(X) + Pr(X), it
directly follows for the redundant energy.

In the previous figures, we have restricted our attention
to the case where Nu = Nr. In Figure 5, we consider the

Fig. 4. Data, redundant and total energy as function of N , Nu = Nr .

case where the length Nu of the unique word is varied when
N and Nr are kept constant. The data energy is equal to
Pd = NdEs = (N − Nr)Es and hence independent of
the length of the unique word. When Nr is a power of
2, it was shown that the redundant energy equals NdNu

Nr
Es,

i.e. the redundant energy linearly increases with Nu, and
reaches its maximum Nd when Nu = Nr. When Nr is
not a power of 2, we use the eigenvalues of the matrix A
to evaluate the redundant energy. Recall that the redundant
energy equals Pr = Es

∑Nu

i=1
N−λm

λm
. It becomes minimum

when all eigenvalues are equal, resulting in Pr,min = Es
NuNd

Nr
.

If one or more of the eigenvalues λm is small as compared
to the other eigenvalues, the redundant energy will strongly
increase. In the figure, for the cases where Nr is not a power
of 2, we have added the curves Pr,min as a reference (i.e. the
grey dotted lines in the figure). When Nr is not a power of 2,
the redundant energy increases faster than Pr,min. For small
values of Nu, the redundant energy is essentially linear in Nu

(close to Pr,min), but when Nu > 2�log2 Nr� (Nu > 8 in the
figure), the redundant energy strongly increases as compared
to Pr,min. This can be explained by observing the eigenvalues
of the matrix A for the different cases. The case Nr = 15
corresponds to the case Nr = 2m − 1 which was discussed in
section IV. In this case, the eigenvalues are λ = 2m = 16
with multiplicity ν = Nu − 1 and λ = 16 − Nu with
multiplicity 1. The redundant energy is given by (50). For
Nu 	 2m and approximating 2m/N ≈ Nr/N , the redundant
energy (50) can be approximated by Pr ≈ Pr,min. Hence, for
small Nu, the redundant energy is approximately minimal.
When Nu � Nr, the eigenvalue with multiplicity one, i.e.
λ = 2m − Nu becomes relatively small as compared to the
other eigenvalues, which explains the strong increase of the
redundant energy in the figure. In Table I, the eigenvalues
and their corresponding multiplicities are shown for Nr = 10.
When Nu ≤ 8, the relative difference between the eigenvalues
is small, and hence the redundant energy is close to the
minimum Pr,min. For Nu > 8, one of the eigenvalues is λ = 2.
As this eigenvalue is relatively small as compared to the other
eigenvalues, the redundant energy is strongly increased. Note
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Fig. 5. Redundant energy as function of Nu, N = 32.

TABLE I
EIGENVALUES λ AND THEIR CORRESPONDING MULTIPLICITIES ν FOR

N = 32 AND Nr = 10.

Nu λ (ν)
1 10(1)
2 10(2)
3 8(1), 10(1), 12(1)
4 8(2), 12(2)
5 8(3), 12(1), 14(1)
6 8(4), 14(2)
7 8(5), 14(1), 16(1)
8 8(6), 16(2)
9 2(1), 8(5), 16(3)

10 2(2), 8(4), 16(4)

that when Nu < Nr, for most cases the average redundant
energy is smaller than the data energy, whereas for Nu = Nr,
the redundant energy is larger than or equal to the data energy.

VI. CONCLUSIONS

One of the main concerns in UW-OFDM is the energy usage
of the redundant carriers. In this paper, we analytically eval-
uate the energy necessary to transmit the redundant symbols.
In [7], the authors have shown through simulations that for
Nr a power of 2, a close to uniform distribution was found
to achieve the minimum average redundant energy given the
restriction that the carriers in the frequency guard bands are
not allowed to be used. In this paper we analytically prove
that, if all carriers may be used, the uniform distribution is
optimal. However, in contrast with [7], we do not restrict
our attention to the case where Nr is a power of 2. As the
uniform distribution in that case is no longer optimal, we use
the suboptimal split distribution from [1].

In the special case where Nu = Nr, i.e. when the number of
redundant carriers is the minimum possible, we derive a closed
form expression for the redundant and total energy, which
avoids the need of extensive computations. Further, we show
the existence of different symmetries in Nr of the redundant
energy and the total energy. It turns out that when Nr =
Nu, the redundant energy for odd Nr is larger than for even
Nr. Further, doubling the number of redundant carriers while

keeping the number of carriers constant decreases the data,
redundant and total energy proportionally with Nr, and when
the number of carriers N is doubled together with Nr, the
energies are doubled.

In the general case where the number of redundant carriers
is no longer equal to the length of the unique word, i.e.
Nu < Nr, we analyse the redundant energy by evaluating
the eigenvalues of the matrix A. When one or more of
the eigenvalues is relatively small as compared to the other
eigenvalues, the redundant energy strongly increases. Hence,
this situation must be avoided. In the paper we have shown that
when 2Nu,1 ≤ Nr,[2Nu,1]≤ , the relative difference between
the eigenvalues is larger than when 2Nu,1 > Nr,[2Nu,1]≤ .
Hence, this inequality can be used as a rule of thumb in the
selection of the system parameters. Further, in this paper, we
have shown that in the general case, the redundant energy
as function of Nu increases faster than Pr,min, which is the
minimum possible redundant energy.

From figures 3-5 it follows that the average redundant
energy is relatively large as compared to the data energy.
However, this high redundant energy will not necessarily lead
to a BER degradation. The explanation is as follows. If at
the receiver only the data carriers were considered for data
detection, the redundant carriers are thrown away and a linear
data detector is used as in CP-OFDM, the high redundant
energy would be a drawback, as the energy in the redundant
carriers is wasted. However, if we use the information that
is available in the redundant carriers to detect the data –
this requires more sophisticated data detectors than in CP-
OFDM – it is shown (see [7], [8], [10] and [15]) that for
Nu = Nr (which yields the maximum average redundant
energy as function of Nu) and in the presence of a frequency
selective channel, the BER for UW-OFDM is lower than that
of CP-OFDM. The redundant part of the UW-OFDM system
acts like an error correcting code, so the high redundant energy
needed will not cause a BER degradation as long as it is
compensated by the ’error correcting capability’ of the UW-
OFDM ’code’.

APPENDIX

In this appendix, we derive the recursive expression for the
total energy (30). We consider the following two cases: 2y =
N/2 and 2y < N/2.
Case 1: 2y = N/2
In this case the total energy yields

Pt

(
N

2
+ Y

)
(17)
= Pt

(
N

2
− Y

)
− 2Y Es

(19)
= Pt(Y )− 2Y Es (57)

Case 2: 2y < N/2
In this case the total energy can be rewritten as:

Pt (2
y + Y )

(17)
= Pt (N − 2y − Y ) + (N − 2y+1 − 2Y )Es

= Pt(N − 2y+1 + 2y − Y )

+(N − 2y+1 − 2Y )Es

(28)
= Pt(2

y − Y )− 2(2y − Y )

(
N

2y+1
− 1

)
Es
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+(N − 2y+1 − 2Y )Es

(19)
= Pt(Y ) + 2(2y − 2Y )

(
N

2y+1 − 1

)
Es

−2(2y − Y )

(
N

2y+1
− 1

)
Es

+(N − 2y+1 − 2Y )Es

= Pt(Y ) +

(
N − 2y+1 − N

2y
Y

)
Es (58)

Note that for 2y = N/2, the expression (58) reduces to (57).
Hence, combining the results yields the recursive expression
(58) for all values of 0 ≤ y ≤ log2 N − 1.
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