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On the Selection of the Redundant Carrier
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Abstract—Unique-word (UW) OFDM is a new multicarrier
technique that was recently proposed in [M. Huemer, C. Hofbauer,
and J. B. Huber, “The Potential of Unique Words in OFDM,
Proc. InOWo, Hamburg, Germany, Sep. 2010, pp. 140–144]. In
this technique, the guard interval that contains a priori known
samples is part of the FFT interval. To be able to construct the
UW-OFDM signal, some carriers must be sacrificed to transmit
redundant information—these carriers are called the redundant
carriers. It turns out that the average redundant energy needed
strongly depends on the positions of the redundant carriers. In this
paper, we look for the redundant carrier placement that minimizes
the average redundant energy. However, this optimization is a
NP-hard problem. Therefore, we reformulate the optimization
problem and implement a branch and bound (B&B) algorithm to
find the optimum. The results of the B&B search algorithm are
compared to a theoretical lower bound, and with the results for
two low cost redundant carrier placements, i.e., the quasi-uniform
(QU) distribution [H. Steendam, “The Quasi-Uniform Redundant
Carrier Placement for UW-OFDM,” Vehicular Technology Conf.,
Fall 2012, Quebec, Canada, Sep. 2012], for the case where no guard
bands are present, and the maximum distance (MD) distribution,
in case forbidden guard bands are present. We show in this paper
that when the full band is available for redundant carriers, both
the redundant carrier placement found with the B&B algorithm
and the QU distribution result in a redundant energy that is
very close to the theoretical lower bound. Although the B&B
slightly outperforms the QU distribution, this implies that the QU
distribution is a good low cost solution to the redundant carrier
placement problem in the case of no guard bands. However, when
there are forbidden guard bands in which the redundant carriers
cannot be placed, the QU distribution can no longer be used. In
that case, the results of the B&B algorithm are compared to that
of the MD distribution. We show in this paper that the proposed
B&B algorithm outperforms the MD distribution in the sense that
it needs noticeably lower redundant energy.

Index Terms—Multicarrier, redundant energy, UW-OFDM.

I. INTRODUCTION

T HE multicarrier technique (as e.g., OFDM) is a technique
that is suitable for high rate communication over disper-

sive channels [3]. This can be explained as the multicarrier
technique splits the bandwidth in many narrow subchannels
over which the data is transmitted in parallel. Because of the

Manuscript received April 06, 2012; revised August 08, 2012 and September
27, 2012; accepted November 27, 2012. Date of publication December 11, 2012;
date of current version February 08, 2013. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Merouane
Debbah. This work was supported by the Flemish Fund for Scientific Research
(FWO).
The author is with the TELIN Department, Ghent University, Ghent B9000,

Belgium (e-mail: Heidi.Steendam@telin.ugent.be).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2232657

narrow bandwidth of each subchannel, the channel behaves for
each subchannel as a frequency-flat channel such that equaliza-
tion becomes simple as compared to single carrier techniques.
Because of this property, the multicarrier technique forms
the basis of many wired and wireless standards, e.g., [4]–[7].
Intersymbol interference between successively transmitted
multicarrier blocks is avoided by separating the different mul-
ticarrier blocks in the time domain by a guard interval. In the
literature, several types of guard interval can be found [8]–[10],
i.e., the cyclic prefix, zero padding, known symbol padding and
time domain synchronous padding. Among these, the cyclic
prefix is the most widespread. Common to these guard interval
techniques is that the length of the multicarrier symbol is
extended in the time domain. Recently, another technique was
introduced, i.e., unique word (UW) OFDM [1], [11]. In this
approach, in contrast with the other guard interval techniques,
the guard interval is a part of the inverse fast Fourier transform
(IFFT) block, i.e., the last samples of the IFFT block do not
contain a data contribution but exist of known samples—the
unique word. This specific structure of the UW-OFDM block,
however requires that some of the carriers cannot transmit
data, but have to transmit information that depends on the data
symbols transmitted on the other carriers. Therefore, these
carriers are called the redundant carriers.
Two methods to construct the UW-OFDM signal have been

considered in the literature [12]: a direct approach, where the
symbols transmitted on the redundant carriers not only depend
on the data symbols that are transmitted on the data carriers,
but also on the known samples from the unique word, and a
two-step approach, where the redundant carrier symbols do not
depend on the known samples. In this second technique, first the
data part of the time-domain signal is generated with the IFFT,
containing a block of zero samples at the positions of the unique
word, and in the second step the known samples are added. This
latter method is preferable, as it requires less redundant energy
to be transmitted than the direct approach [12].
Although the UW-OFDM technique has a slightly lower

throughput efficiency than CP-OFDM—this is because the
guard interval is for UW-OFDM a part of the IFFT block
whereas it is not for CP-OFDM—and the energy needed for
the redundant carriers is non-negligible, it is shown in [12] for
the uncoded case and in [1] and [13] for the coded case, that
UW-OFDM outperforms CP-OFDM in terms of BER in the
case of a dispersive channel. In an AWGN channel, however,
the lower throughput efficiency of UW-OFDM will cause a
small degradation as compared to CP-OFDM. The explanation
for the success of UW-OFDM can be found by taking a closer
look at the structure. The UW-OFDM time-domain signal
contains a block of zeros in the time domain. This requires
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the introduction of redundancy in the frequency domain, i.e.,
the redundant carriers. In that sense, UW-OFDM is equivalent
to a Reed-Solomon code [14]. The receiver for UW-OFDM
acts like a decoder—despite the required redundant energy, a
receiver fully exploiting the redundancy is able to transform it
into a coding gain. The coding gain turns out to be larger when
the dispersive channel contains more deep fades. This implies
that in channels with deep fades, UW-OFDM is more favorable
than CP-OFDM. Note that precoding is able to mitigate the
effect of deep fades in CP-OFDM [15]–[17]. However, to
obtain optimal performance, this requires channel state infor-
mation (CSI) to be available at the transmitter side, which is not
obvious to obtain in a sufficiently accurate and timely manner.
In contrast, UW-OFDM does not need CSI.
The performance gain in UW-OFDM comes at a price: the

receiver will be more complex than the simple linear data
detector for CP-OFDM. Further, one of the main differences
between CP-OFDM and UW-OFDM is the content of the guard
interval. In CP-OFDM, the guard interval samples depend
on the data symbols and are therefore not a priori known at
the receiver, whereas in UW-OFDM, the receiver knows the
content of the guard interval. Therefore, the guard interval in
UW-OFDM can be used more easily for parameter estimation.
In that sense, UW-OFDM is comparable to known symbol
padding (KSP) OFDM, where it has been shown in [18] that
because of the known samples from the guard interval, channel
estimation and synchronization in KSP-OFDM is more accurate
than in CP-OFDM. Further, UW-OFDM has lower out-of-band
emission than traditional OFDM systems [11].
In [19], the effect of the redundant carrier placement on the

redundant energy is studied for equidistantly spaced redundant
carriers and the split distribution. It is shown that the energy
needed for the redundant carriers strongly depends on the posi-
tions of the redundant carriers—when these positions are not ap-
propriately chosen, the redundant energy explodes, as e.g., with
the equidistant distribution. To keep the redundant energy low,
the redundant carrier positions have to be selected carefully. The
split distribution, which was further studied in [20], has a redun-
dant energy that is still far from the theoretical lower bound. The
search for the optimal placement of the redundant carriers that
minimizes the average redundant energy started in [2]. Unfor-
tunately, this is a NP-hard combinatorial optimization problem,
such that an exhaustive search becomes prohibitively computa-
tionally complex for even small values for the FFT size and the
number of redundant carriers. Based on the exhaustive search
for small values of the FFT size, the quasi-uniform (QU) distri-
bution was introduced in [2]. Although the QU distribution is
suboptimal, its corresponding redundant energy is already close
to the theoretical lower bound, such that it is a good low cost so-
lution to select the positions of the redundant carriers. However,
when the OFDM spectrum contains guard bands in which the re-
dundant carriers cannot be placed, the QU distribution cannot be
used. To solve the redundant carrier placement problem in this
case, we go back to the combinatorial optimization problem. In
this paper, we reformulate the optimization problem to obtain a
related optimization problem that can be implemented with ac-
ceptable computational cost using a branch and bound (B&B)
algorithm, and determine its performance for the cases with and

Fig. 1. Position of the guard bands.

without guard bands. We show in the paper that in more than
97% of the cases, this algorithm is able to find with a low com-
putation cost the optimum, and for the cases where the optimum
was not found, the resulting redundant energy was very close to
the minimum. For the forbidden guard band case, we consider
the maximum distance (MD) distribution, a low cost distribu-
tion similar to the QU distribution, that is based on a pilot car-
rier placement studied in [21]. This distribution maximizes the
distance between the different redundant carriers, taking into ac-
count the presence of forbidden carrier positions, as e.g., shown
in Fig. 1. Note that when no guard bands are present, the max-
imum distance distribution reduces to the quasi-uniform distri-
bution. We show in this paper that the B&B algorithm outper-
forms the MD distribution, although for large FFT size, the MD
distribution turns out to be an acceptable suboptimal solution.

II. THE UW-OFDM SYSTEM

In UW-OFDM, the transmitted signal consists of blocks of
samples that are generated at a rate . Each block of samples
can be decomposed into two parts: the first samples
contain the data part, and the last samples are the unique
word with prior known samples. The time-domain structure is
shown in Fig. 2. To obtain the UW-OFDM time-domain signal,
first the data part is generated with an inverse FFT, such that the
last samples are zero. This requires that redundant
carriers have to be modulated with a linear combination of the
data symbols transmitted on the data carriers. The time-domain
samples of the data part can be written as

(1)

where the vector contains
the data symbols and the vector

the redundant symbols. The permu-
tation matrix defines the positions of the data and redundant
carriers, and the IFFT matrix is given by

. We decompose the permutation matrix in two sub-
matrices , where and
determine the data and redundant carrier positions, respectively.
The sets and contain the data carrier positions and redun-
dant carrier positions, such that the columns of and con-
sist of unit-weight vectors with a ‘1’ at the positions
and , respectively. In the second step, the unique word
is added to .
The redundant symbols consist of a linear combination

of the data symbols :

(2)
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Fig. 2. Time-domain signal of UW-OFDM.

where is the Penrose-Moore
pseudo-inverse, and is decomposed as

(3)

with is is is
and is . Hence, the time domain signal

(1) can be rewritten as

(4)

with is the identity matrix. Note that the last
rows in are zero rows.
The average energy of the time-domain signal is given by

. The average data energy equals
, where is the energy of

a data symbol. The average redundant energy can be rewritten
as . Taking into account the
definition of (2), this results in

(5)

where we have used the property trace
[22]. The matrices and from (5) are Hermi-
tian Toeplitz matrices with as elements

(6)

(7)

where . Taking into account that
, it can easily be verified that

.
In [2], it is shown that a cyclic shift of all carrier positions

has no influence on the average redundant energy. Further, a
theoretical lower bound on the average redundant energy was
derived in [20], resulting in the average redundant energy

(8)

This lower bound requires the matrices and
to be diagonal matrices. As it is not certain that this requirement
can be achieved by any redundant carrier placement, it is a the-
oretical lower bound on the average redundant energy. In [20],
it is analytically shown that when is a power of 2, a uniform
distribution of the redundant carriers over the bandwidth is op-
timal, and the lower bound on the average redundant energy is
reached. The indices of the redundant carriers are in this case
given by , where
and . However, when is not a power of 2, it
was shown in [19] that this equidistant distribution can result in
a high average redundant energy, as in some cases the matrix

in (5) will become (close to) singular.

III. OPTIMAL REDUNDANT CARRIER PLACEMENT

Finding the redundant carrier placement that minimizes the
redundant energy is an NP-hard integer combinatorial optimiza-
tion problem. Hence, an exhaustive search over all possible
redundant carrier positions is prohibitively complex, even for
small values of and . Therefore, we consider a reformu-
lation of the optimization problem to obtain an algorithm with
a computation time that is polynomial in and . The goal
of this section is to make use of algebraic manipulation and
linear programming techniques to generate a limited set of re-
dundant carrier placements out of which the optimal placement
can be found, instead of considering all possible redundant car-
rier placements in the optimization.
Let us first rewrite the average redundant energy (5).

Defining and taking into account that
, the average redundant en-

ergy is equal to

(9)

Hence, minimizing the average redundant energy is equivalent
with minimizing . Note that is a Hermitian
Toeplitz matrix with as elements , where

(10)

Let us assume that the matrix has eigenvalues
. Because of the Hermitian nature of , the eigen-

values are real valued. Further, and are positive
semi definite matrices, such that . Taking this into
account, . Hence, to minimize the re-
dundant energy, the following optimization problem should be
solved:

(11)

In theory, when the eigenvalues could take all values (no condi-
tioning on ), the average redundant energy is minimized when
all eigenvalues are equal: . This implies that the ma-
trix is a diagonal matrix, and results in the theoretical lower
bound from the previous section.
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Let us look closer at the optimization problem (11). First
note that the function is a strictly convex function
for , i.e., the second derivative . Hence, the
function to be minimized in (11) is a strictly convex function.
This implies that the minimum corresponding to
is a unique minimum. Hence, for general and , the
eigenvalues corresponding to the minimum redundant energy
will be in the neighbourhood of this unique minimum, i.e., the
eigenvalues will all be close to , resulting in a small
eigenvalue spread , where and are the
largest and smallest eigenvalue of , respectively. Therefore,
instead of minimizing (11), we look for the redundant carrier
placements that have a small eigenvalue spread

(12)

Gerschgorin [22] defined bounds on the eigenvalues of a ma-
trix by deriving a set of circles in the complex plane, in which the
eigenvalues must be located. Applying the Gerschgorin theory
to the matrix , we find the following set of circles:

(13)

where

(14)

Taking a closer look at these Gerschgorin circles, it turns out
that they define a set of concentric circles around
. Further, taking into account that the eigenvalues of are

real-valued, it follows that the set of Gerschgorin circles reduce
to a set of intervals on the real axis:
. Hence, the minimum and maximum eigenvalue of are

bounded by:

(15)

where . If we can make this maximum radius

as small as possible, the eigenvalue spread will also be
small. So, we reformulate the optimization problem (12) to
make as small as possible, which results in a minimax
problem on :

(16)

Assume that the eigenvector corresponding to eigenvalue
is given by . Because of the Hermitian nature of ,

its eigenvector matrix is an orthogonal
matrix. This implies that and

. Further, as ,
where , the components of the matrix
can be rewritten as

(17)

Let us consider the following sum:

(18)

Hence, the sum of squared moduli of a row of is upper
bounded by , i.e., the largest eigenvalue. Rewriting (18)
results in

(19)

In the case of the minimum redundant energy, the maximum
eigenvalue will be close to . Hence the right hand
side in (19) will be small, such that the non-diagonal values of
must have a small amplitude for the optimal redundant carrier
placement. This implies that for redundant carrier placements
that have a redundant energy that is close to the minimum, the
different will be close to each other. Therefore, instead of
considering the minimax problem on , we restrict our attention
to the minimization of :

(20)

Let us take a closer look at the minimization of . This
problem can be rewritten as

(21a)

(21b)

(21c)

(21d)

where

(22)

In (21a), we have added the constant , and (21b) fol-
lows from the fact that is a monotonically increasing function
for . In (21c), we have inserted the definition of (10),
and (21d) follows straightforwardly from the rearrangement of
(21c). Note that is a symmetric function:
and . As the redundant carrier position is
an integer between 0 and is an integer in the
interval . Hence, (21d) is a func-
tion of the relative differences of the redundant carrier positions
only. The function (22) is shown in Fig. 3 for different values
of .
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Fig. 3. The function .

Taking into account the symmetry of , the sum in (21d)
can be rewritten as

(23)

Defining

(24)

and neglecting the irrelevant constants, the minimization of
(21d) results in

(25)

Hence, we finally reformulate the optimization problem into

(26)

Although the optimization problems (11), (12), (16), (20) and
(26) are not strictly equivalent in a mathematical sense, it fol-
lows from the derivations that redundant carrier placements that
have a small , will also have a small eigenvalue
spread for the matrix , and thus also a redundant energy that
is close to the minimum. Therefore, we can use (26) to generate
a limited set of redundant carrier placements, out of which the
optimal placement that minimizes (11) can be found.
Taking into account that is a linear combination of the func-

tion , it is clear that optimization of (25) can be achieved
with a branch and bound algorithm, which is a technique to
tackle integer linear programming problems [23]. The first step
in this technique is branching. In this step, we gradually build
up a search tree by adding in each level of the tree an addi-
tional redundant carrier position. In a full tree, all possible re-
dundant carrier placements correspond to a path in the tree from
the root to an end node. For a node at level in the tree, corre-
sponding to the set of positions , the path metric

equals . Our goal is to find the paths (redundant carrier
placements) with the lowest path metric at the end nodes. The
number of end nodes increases exponentially with and , so
the tree must be pruned to reduce the computational complexity
of the search algorithm. This step is called bounding. The two
keywords are to prune the tree as early as possible, i.e., elimi-
nating a branch at level 1 reduces the number of end nodes more
than eliminating a branch at level , and to prune the tree
in an intelligent way. If we do not prune in an intelligent way,
we risk to lose the optimal solution.
The search algorithm that we have used to construct and

prune the tree in an intelligent way is given in Table I, and takes
into account the presence of forbidden guard bands ( is the
set of forbidden carrier positions, if no guard bands are present

). The algorithm contains three parameters: and
. With the parameter , we reduce the number of candidates
for the newly added position at level of the tree: only
the positions with the lowest branch metric (see Table I
for the definition of ) are considered for further processing.
This limits the growth of the tree at each level. The parameter
determines the number of paths in the tree that is kept for the

next level and avoids the number of paths in the tree to grow
too fast. If is selected too small, the risk exists that paths are
eliminated at an intermediate level that have at the end level a
lower metric than the paths that are not eliminated. Hence, if
is too small, we might miss the optimal solution. However,

increasing will result in a higher computational load. On the
other hand, the optimal choice for is correlated to the shape
of . If slowly varies as function of (as for smaller
values for ), larger values for are needed than when
has a sharp peak (as for , see also Fig. 3). When
slowly varies, adding the next carrier position becomes more
difficult: the path metrics will be close to each other, i.e., the
minimum is very broad. To find the optimum in that case, not
only must be larger, but typically also must increase. To
improve the convergence speed in that case, we introduced the
third parameter . By replacing by

(27)

with , we artificially adapt the shape of the function ,
to increase the difference between the path metrics and obtain a
better discrimination between the different carrier positions that
can be added at a level, so that a smaller value for for the
algorithm to converge is required. As is a convex
function for , it has no influence on the solution of the
minimization problem:

(28)

Another issue that is related to the convergence speed is the
presence of duplicate redundant carrier placements in the tree.
Before we add a new redundant carrier position to a path, we
have to check if the resulting set is not already
present in the tree, in the same or a different order. If this is
the case, we would add a path that has the same properties as
the other path in the tree. As such copies of sets will require a
higher to converge to the same result, we should avoid to add
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TABLE I
THE SEARCH ALGORITHM

TABLE II
COMPLEXITY OF THE ALGORITHM

such duplicate paths to the tree. This is tested in line 10 of the
algorithm.
The algorithm delivers sets of redundant carrier positions,

out of which the set must be found that minimizes the average
redundant energy. The complexity of the algorithm is discussed
in Table II, where for the main subtasks of the algorithm (task
1 = initialization by computing , task up the
search tree for the B&B algorithm, and task out of
the candidate sequences the one with the smallest redundant en-
ergy) the number of multiplications, additions, etc. is given. To
compute the eigenvalues of the matrices in the last part
of the algorithm we consider the complexity , although
in reality, it is possible to obtain the eigenvalues with lower com-
plexity, as the matrices are Hermitian Toeplitz matrices. How-
ever, the exact computational complexity of such algorithms
cannot be expressed with a simple expression in . The exact
complexity of the last part of the algorithm turns out to be not
that important, as the slowest part of the algorithm is the B&B
part: the complexity of this part increases non-linearly with the
parameter , which is typically several orders of magnitude
larger than the other parameters. As a comparison, for an ex-
haustive search over all possible sequences, we have to consider
the third part of the proposed algorithm only (the computation of
), but with replaced by . It is obvious that the

complexity of the proposed algorithm is much lower than that

of the exhaustive search. On the other hand, the redundant car-
rier positions according to the QU distribution and the MD dis-
tribution can be computed using simple analytical expressions,
as e.g., for the QU distribution: . Hence,
compared to the QU and MD distribution, the B&B algorithm
has higher computational complexity.

IV. NUMERICAL RESULTS

In the simulations, we considered the guard band locations
given in Fig. 1. The two guard bands of width carriers are
located at the two edges of the frequency band, so in total
carriers cannot be used for placing redundant carriers. Note that
the case corresponds to the case without guard bands.
First, we want to evaluate the redundant carrier placements

that are delivered by the branch and bound algorithm. For 156
cases with and different values for and ,
we have computed the optimal redundant carrier placement
through an exhaustive search. For the same cases, we used
the branch and bound algorithm to find the optimal redundant
carrier placement, where the parameters were selected out of
the sets and

. In 152 of the cases, the branch and
bound algorithm found the optimal placement of the redundant
carriers, corresponding to a success rate of more than 97%. In
the cases where the optimum placement was not found, the
B&B algorithm returned a set of redundant carrier positions
with a redundant energy that was maximum 5% above the
optimum. Most of the convergence problems occurred when
was a power of 2. However, in that case, the optimum place-

ment is known: it is the uniform distribution. By combining
the results from the B&B algorithm with the known optima,
only in one case, the optimum was not found, resulting for that
case in a redundant energy that was only 0.00021% above the
optimal redundant energy. Hence, the proposed B&B algorithm
combined with the known optima is able to find the optimal
redundant carrier placement in virtually all considered cases.
Next, the results from the B&B algorithm (with ) are

compared to the results for the quasi-uniform distribution from
[2] for 221 cases with and the same values for

and from the previous test. Only in four cases, the
quasi-uniform distribution resulted in a lower average redun-
dant energy than the redundant carrier placement delivered by
the B&B algorithm. In these cases, the redundant energy for
the quasi-uniform distribution was equal to the theoretical lower
bound, implying that the quasi-uniform distribution was the op-
timal distribution. The B&B algorithm in those cases resulted
in a redundant energy that was only slightly higher than this
optimum. In all other cases, the redundant energy for the B&B
algorithm was lower than or equal to that of the quasi-uniform
distribution. A similar test was carried out for the case where
guard bands are present . When , i.e., for
the cases where the MD distribution does not reduce to the QU
distribution, the MD distribution always resulted in a redundant
energy that was (much) larger than that corresponding to the
carrier placement delivered by the B&B algorithm.
In only a few cases, the best solution was not found with the

B&B algorithm with the parameter sets used in the two tests.
By increasing and , in the limit the optimum will be found
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nonetheless as the pruned tree will converge to the full tree,
which of course contains the optimum. However, this comes at
the price of an increased computational complexity. For most
of the tests, yielded a good result, only when ,
other values of were necessary to obtain the optimum or a re-
sult that was better than that of the quasi-uniform distribution.
For and already gave
the best result. When , the required and in-
creased to and . This effect was
also described in the previous section: when , the func-
tion has a sharp peak, such that there is a good discrimi-
nation between the different carrier positions out of which the
next carrier position must be chosen. Only a few positions will
compete with each other, resulting in a fast convergence. When

, the minimum is very broad, so the choice for the
next carrier position to be added becomes more difficult, with
as consequence a slower convergence, even when was
used.
In the two tests, for each simulation, we first had to look for

the values of and that resulted in the lowest redun-
dant energy. The selection of the optimal parameters in the al-
gorithm is not straightforward, as three parameters have to op-
timized. The strategy that is used was the following. First, we
selected and , and determined the value of
that results in the lowest redundant energy. Next, for that

value of and , we increased until no further re-
duction in the redundant energy occurred. For the obtained
and , we finally looked for the value of that minimized the
redundant energy. In this way, the three-dimensional parameter
optimization is split into three one-dimensional searches, first
over , then over and finally over . However, based on
the simulations carried out in the two tests, we could determine
some simple rules of thumb for the selection of the parameters,
that resulted in a close to optimal redundant energy. First of all,

yielded in the majority of the cases % the best re-
sult. Hence, the optimization over could be omitted. Secondly,
selecting of the order of always resulted in
a redundant energy that was very close to the theoretical lower
bound. Thirdly, in most cases, a small value of , e.g.,
or , yielded a redundant energy that was close to the
theoretical lower bound. Hence, as a conclusion, the parameters
of the algorithm resulting in a close to optimal performance are

or , and is of the order of .
In the following, we define with

as the average redundant en-
ergy corresponding with the quasi-uniform distribution, the
redundant carrier placement delivered by the B&B algorithm,
the maximum distance distribution, and the theoretical
lower bound, respectively. In Fig. 4, the relative gain in
redundant energy when comparing the carrier placement of
the B&B algorithm with the quasi-uniform distribution is
shown. As can be observed, the quasi-uniform distribution
exhibits a redundant energy that is up to 3% larger than the
redundant carrier placement from the B&B algorithm. In
Fig. 5, the average redundant energy for the quasi-uniform
distribution and the result from the B&B algorithm are shown
relatively to the theoretical lower bound. The results from the
B&B algorithm in this figure corresponded to the optimum

Fig. 4. Relative redundant energy gain of the B&B carrier placement as com-
pared to the quasi-uniform distribution .

Fig. 5. Redundant energy compared to the theoretical lower bound, no guard
bands .

distribution obtained with the exhaustive search. It can clearly
be observed that the theoretical lower bound cannot be reached
in practice, especially for small values of and .
The worst case corresponds to : in that case, the
difference between the redundant energy and its theoretical
lower bound is the largest, not only for the cases in the figure,
but for all cases considered in the simulations. In Fig. 6, we
assume the presence of guard bands. The average energy for
the maximum distance distribution is compared to that of the
B&B algorithm. Similarly as in Fig. 5, the average energy is
shown relative to the theoretical lower bound. The first thing
that we can observe is that the average redundant energy in
the case of forbidden guard bands is increased as compared
to the case of no guard bands. Further, the curves for the
B&B algorithm are always lower than the curves for the MD
distribution. Also, the relative difference between the two
curves is larger than for the no guard bands case in Fig. 5.
Hence, while for the case of no guard bands, the low cost QU
solution is a good alternative for the B&B algorithm, as it has
quasi optimal performance, the low cost MD distribution for
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Fig. 6. Redundant energy compared to the theoretical lower bound, with guard
bands, .

Fig. 7. Redundant energy for .

the forbidden guard band case performs not that well. In that
case, we should use the proposed B&B algorithm.
From the previous tests, it followed that the proposed B&B

algorithm is able to deliver a redundant carrier placement that
is if not optimal, then at least close to optimal for small . We
now consider the case of larger . In Fig. 7, the redundant en-
ergy is shown for larger values of when and the
number of redundant carriers equals about 10% of the FFT size.
The curves for the quasi-uniform distribution and the B&B al-
gorithm with perfectly coincide and are close to the theo-
retical lower bound, whereas for , the resulting redundant
energy is higher. The MD distribution does not perform as well
as the B&B algorithm. Also for all other simulations that we
carried out, we found that for and , the best
carrier placement from the B&B algorithm was the quasi-uni-
form distribution. This strongly indicates that the quasi-uniform
distribution is optimum for . This can be intuitively
explained as follows. From the tests of the algorithm, it turned
out that for , sorting the possible sets on the abso-
lute value of their path metric, i.e., on , and selecting the
values with smallest gave better convergence, whereas
for small , the convergence of the algorithm is better when
we just sort on and . Hence, this corresponds to placing

Fig. 8. Relative difference of the redundant energy with the lower theoretical
bound for .

the redundant carriers close to the zero crossings in the function
(22). For , these zero crossings are given by

and . Note that
by selecting the redundant carrier positions
as in the quasi-uniform distribution, the relative differences be-
tween the different carrier positions correspond to an integer
value that is closest to one of these zero crossings.
In Fig. 8, we show the relative difference of the redundant

energy from the QU, MD and B&B carrier placements with the
theoretical lower bound. The curves for the QU and B&B car-
rier placement are very close to the theoretical lower
bound. The difference between the curves for the MD distribu-
tion and the B&B algorithm with is larger, although the
difference decreases with increasing . Also, the gap between
the cases with guard band and the theoretical lower bound de-
creases when the FFT size increases. This indicates that for large
, the low costMD solution is a good suboptimal alternative for

the redundant carrier placement, at the cost of a small increase
in redundant energy as compared to the carrier placement from
the B&B algorithm. However, when , the B&B algo-
rithm turns out to be a better choice to determine the redundant
carrier positions.

V. CONCLUSION

In this paper, we have reformulated the NP-hard combi-
natorial optimization problem to find the redundant carrier
placement that minimizes the average redundant energy in
UW-OFDM. As a consequence, we were able to use a branch
and bound algorithm to reduce the complexity of the optimiza-
tion. In this paper, we have shown that the proposed algorithm
is able to find the optimal carrier placement in the majority
of the cases with reasonably low computational cost, and for
the cases where the optimum was not found, the resulting
carrier placement had a redundant energy that was close to the
optimum. In the special case , and in the absence of
guard bands, the tests with the B&B algorithm indicate that the
quasi-uniform distribution is the optimum carrier placement.
For , the branch and bound algorithm yielded in most
cases a redundant carrier placement that had lower redundant
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energy than the quasi-uniform distribution, although the dif-
ference is small as the quasi-uniform distribution already gave
a result that was close to the theoretical lower bound. Hence,
when the full band is available for placing redundant carriers,
the low cost quasi-uniform distribution is a good low cost
solution for the redundant carrier placement problem.
In the case that the bandwidth of the UW-OFDM system con-

tains guard bands where no information may be transmitted on
the carriers in that guard band, we might not be able to put the
redundant carriers according to the quasi-uniform distribution.
In that case, we proposed the low cost maximum distance dis-
tribution. However, compared to the results of the B&B algo-
rithm, the MD distribution requires a redundant energy that is
noticeable higher. For large values of , the dif-
ference between the two techniques reduces, such that in that
case, the low cost MD distribution is an acceptable technique
to select the redundant carrier positions, at the cost of a limited
redundant energy increase. For smaller values of , the B&B
algorithm clearly outperforms the MD distribution.
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