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On the Pilot Carrier Placement in
Multicarrier-Based Systems

Heidi Steendam, Senior Member, IEEE

Abstract—In traditional multicarrier systems, the pilot carriers
used to estimate the channel are placed as uniform as possible over
the bandwidth. However, with the raise of cognitive radio systems,
where themulticarrier system is used by the secondary users, parts
of the bandwidth are not available for transmission as primary
users are active in these bands. Therefore, the multicarrier system
must introduce guard bands in which the carriers may not be used.
Hence, a problem might occur when placing the pilot carriers. In
this paper, we investigate the effect of the positions of the pilot car-
riers on the MSE performance of channel estimation, and look for
the pilot carrier placement that minimizes the MSE. We do not
restrict our attention to multicarrier systems with a cyclic prefix,
but we also consider other types of guard interval that are used
for multicarrier transmission. It is known that an equidistantly-
spaced distribution of the pilot carriers is in general not the op-
timal placement of the pilot carriers, as the corresponding MSE
can become very high. In this paper, we use a heuristic algorithm
to search for the best pilot placement, which is able to deliver a
pilot carrier placement that outperforms the maximum distance
distribution from [S. Song and A. C. Singer, “Pilot-Aided OFDM
Channel Estimation in the Presence of the Guard Band,” IEEE
Trans. Commun., vol. 55, no. 8, pp. 1459–1465, Aug. 2008] in terms
of the MSE, and results in an MSE that is close to the case where
no guard bands are present. Based on the results of the algorithm,
we can derive some simple rules of thumb to select the positions of
the pilot carriers.

Index Terms—Carrier placement, channel estimation, guard in-
terval, OFDM.

I. INTRODUCTION

M ULTICARRIER (MC) transmission [2] is one of the
most popular transmission techniques ever, witness the

many standards based on this technique, thanks to its robustness
to channel dispersion. Since the advent of multicarrier transmis-
sion, much research has been devoted to channel estimation (see
e.g. [3]). To be able to efficiently estimate time varying chan-
nels, typically pilot carriers are sparsely inserted in the time-fre-
quency grid of the MC signal, and based on the observations of
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these pilot carriers, the channel on the other (data) carriers is
estimated. Commonly used pilot carrier insertion schemes are
the block type and comb type pilot schemes [4]. Based on the
pilot carrier observations, two approaches exist for estimating
the overall channel. In the first approach, the underlying channel
model is not taken into account, and interpolation is used to
obtain the channel estimates for the intermediate data carriers.
As the optimal 2D Wiener interpolation is hard to implement
in practice, low complexity solutions as e.g. linear, quadratic or
spline interpolation have been proposed [5]–[7]. Although these
low complexity interpolation techniques are robust to the under-
lying channel model, the main drawback of these methods is the
performance error floor they exhibit for the bit error rate (BER)
at high signal-to-noise ratio (SNR).
In the second approach, the underlying channel model is as-

sumed to be sparse in the sense that the channel can be mod-
elled using a small number of channel taps, an assumption that
turns out to be valid for most practical situations. Based on the
pilot carrier observations, an estimate of the channel taps is ob-
tained, fromwhich the channel response at the intermediate data
carriers can be computed straightforwardly. In contrast with the
interpolation approach, the sparse channel model approach does
not suffer from a performance error floor [1]. The performance
of the sparse channel pilot aided channel estimation (PACE),
however, depends on the selection of the pilot carrier positions.
The first ones that tried to optimize the positions of the pilot
carriers were Nehi and Cioffi in [8]. However, they restricted
their attention to the case where the number of pilot carriers
divides the total number of carriers , resulting in equispaced
pilots. The same results were obtained by [9] and [10] for integer

. When is not integer, the uniform, equispaced pilot
carrier placement is no longer the optimal placement: to the con-
trary, the performance can become very bad. In [10], the authors
proposed an ad hoc solution for the general case when is
not integer. The resulting sub-optimal quasi-uniform pilot car-
rier placement turns out to have satisfactory performance. Since
then, other researchers have tried to find the best pilot carrier
placement for the general case. In [1], the authors maximize the
distance between adjacent pilot carriers; this distribution gen-
eralizes the quasi-uniform distribution from [10] for the case
when guard bands are present. In [11], the authors minimize the
coherence in partial DFT matrices to obtain the pilot carrier po-
sitions. In [12], the pilot carrier placement is selected based on
the minimization of a function of the Cramer-Rao lower bound
(CRB). In [13], the authors propose a cubic parametrization of
the pilot carriers together with convex optimization. In [14], the
authors propose a pilot design based on the norm of theMSE
of the channel/symbol estimate to jointly optimize a preamble
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and the pilot positions. Common to al these techniques is the
sub-optimality: none of proposed techniques really minimizes
the MSE of the channel estimate. Further, except for [1], [13]
and [14], that consider the presence of guard bands at the edges
on the frequency band, none of the other papers takes into ac-
count guard bands that are distributed over the whole frequency
band.
Note that the aforementioned papers all deal with OFDM

using the cyclic prefix (CP) as the guard interval. To our best
knowledge, no research has been done on the effect of the pilot
carrier placement on multicarrier systems using other guard in-
terval techniques as e.g. zero padding (ZP) or known symbol
padding (KSP) (also known as time-domain synchronous (TDS)
OFDM) [15]–[17], and neither on the effect of guard bands due
to the presence of primary users in a cognitive radio system.
In this paper, we consider the effect of the guard interval type
and the presence of guard bands on the pilot carrier placement
that minimizes the MSE. As this optimization problem is an in-
teger combinatorial optimization problem, it is NP-hard. In [18],
we have proposed two heuristic algorithms, belonging to the
class of linear programming algorithms, to solve the pilot carrier
placement optimization problem for CP-OFDM with accept-
able computational complexity. To investigate the optimality of
these two algorithms, in [18] the output of both algorithms is
compared with the results of an exhaustive search. Both algo-
rithms were able to find in the vast majority of the cases (in
more than 95% and 85% of the cases, respectively) the global
optimum, and in the cases where the global optimum was not
found, the resulting MSE was very close to (less than 0.1%
above the) minimum value for the MSE. From the two algo-
rithms proposed in [18], the one based on the hill climbing tech-
nique [19] is the simplest to work with and has the lowest com-
putational complexity. The complexity is a major issue if we
want to use the algorithm in a cognitive radio scenario where
the available frequency bands are dynamic. Therefore, we opted
to adapt the second algorithm to analyze the optimization of the
pilot carrier placement in this paper. The questions we want to
answer in this paper are: 1) Does the optimal pilot carrier place-
ment depend on the guard interval type? 2) Does the perfor-
mance of the channel estimation (strongly) depend on the used
guard interval type? 3) What is the effect of the presence of
guard bands on the optimal pilot carrier placement? 4) Is the
heuristic algorithm that computes the optimal pilot carrier posi-
tions fast enough to be used in a cognitive radio scenario, where
the carriers that can be used by the secondary users are con-
stantly changing? Based on the numerical results in this paper,
we aim to define some simple rules of thumb to select the pilot
carrier positions.

II. THE MULTICARRIER SYSTEM

In this paper, we restrict our attention to the study of
OFDM systems. However, the results can straightforwardly be
used for other types of multicarrier systems as e.g. OFDMA,
MC-CDMA, MC-DS-CDMA, MIMO-OFDM, In the fol-
lowing, we assume that the channel impulse response varies
slowly as compared to the OFDM symbol duration, such that
we can use the block fading model. Hence, during the observed
OFDM symbol, the channel is fixed. We model the channel as

a tapped delay line , . We assume that
the guard interval duration exceeds the length of the channel
impulse response, i.e. . To estimate the channel, we
assume that known symbols are inserted in the frequency
domain at carrier positions , , i.e. the pilot
carriers. At the receiver, we use the discrete Fourier transform
(DFT) outputs corresponding to these pilot carrier positions
as an observation for ML data aided channel estimation. In
the following, we will show that for the three guard interval
techniques, the observation vector can be written as

(1)

where is the channel vector, the matrix
depends on the inserted pilots, and is zero mean

Gaussian distributed with autocorrelation matrix , i.e.
. Based on this observation vector, the ML estimate

of the (deterministic) channel vector is defined as [21]

(2)

where . In case is independent of ,
and is invertible, the ML estimate is given by

(3)

and the MSE of the estimation yields

(4)

It can be verified that under the above conditions, the MSE (4)
coincides with the Cramer-Rao lower bound [21], i.e. the ML
estimate is a minimum variance unbiased (MVU) estimate.
The MSE of the channel estimate depends on the positions

of the pilot carriers through the matrix . Simulations show
that this MSE can strongly vary with the pilot carrier positions,
and when these pilot carriers are badly chosen, the resulting
MSE can be very high. Such a high MSE will have an adverse
effect on the overall system performance, and must therefore be
avoided. Therefore, in this paper, we look for the positions of
the pilot carriers that minimize the MSE.

A. CP-OFDM

In CP-OFDM, the transmitted symbols are converted to the
time domain using an inverse DFT, and the last samples of
this IDFT are copied and placed in front of the OFDM symbol
(see Fig. 1(a)). At the receiver, the samples from the guard in-
terval are removed and the remaining samples of the OFDM
block are converted to the frequency domain. The outputs of the
DFT corresponding to the pilot carrier positions can easily
be derived as

(5)

where , ,

, are the pilot symbols, is a nor-
malization factor for the energy such that the energy per trans-
mitted (data or pilot) symbol equals , and is the additive
Gaussian noise. It can be verified that the autocorrelation matrix
of the noise is given by with the
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Fig. 1. Time-domain signal.

identity matrix, i.e. the additive noise is AWGN, and is the
noise variance. As such, the chosen observation complies with
the observation model (1). The MSE of the channel estimate (4)
for CP-OFDM is a function of the matrix , where

(6)

and where it is assumed that .
In [18], it is shown that the MSE (6) is lower bounded by

(7)

This lower bound is reached when the matrix is a
diagonal matrix. For the case that divides , this is achieved
when the pilot carriers are equidistantly spaced. Hence, in this
special case, the optimal distribution of the pilot carriers is
known. However, for the general case, when does not
divide , the optimal solution is not known. The optimiza-
tion problem at hand is an integer combinatorial optimization
problem, which is NP-hard. This implies that an exhaustive
search over all possible positions for the pilot carriers will
be prohibitively computationally complex. Therefore, in the
following section, a heuristic algorithm will be considered to
find a (close to optimal) solution.

B. ZP-OFDM

In ZP-OFDM, similarly as in CP-OFDM, the transmitted
symbols are modulated on the carriers using an IDFT. How-
ever, in contrast to CP-OFDM, in ZP-OFDM a guard interval
containing zeroes is added after the OFDM symbol (see
Fig. 1(a)). At the receiver, the samples of the guard interval
are added to the first samples of the OFDM symbol (see
Fig. 1(b)) in order to restore the orthogonality between the
carriers, and the resulting samples are converted to the
frequency domain. The observations at the pilot carrier
positions are given by

(8)

where and the additive noise has
autocorrelation matrix [16]:

(9)

Hence, also the ZP-OFDM system complies with the model (1).
The MSE of the channel estimate is determined by the matrix
product . Taking into account that for ,
the non-diagonal elements of are very small as compared
to the diagonal elements (see Fig. 2), we can approximate this
matrix product as

(10)

where and . Hence, using
this approximation, the MSE for ZP-OFDM is equal to that of
CP-OFDM (6). Based on (10), we expect that the effect of the
pilot carrier values on the MSE will be small when is suf-
ficiently small. However, for ‘large’ , the approximation in
(10) will not be valid, such that the specific values of the pilot
symbols will start to play a role.

C. KSP-OFDM

In KSP-OFDM, a guard interval of known samples—also
called the time domain pilots—is added after the OFDM time
domain symbol that was generated with an IDFT (see Fig. 1(a)).
At the receiver, similarly as for ZP-OFDM, the samples from
the guard interval are added to the first samples of the OFDM
symbol to restore the orthogonality between the carriers (see
Fig. 1(b)). The outputs of the DFT corresponding to the fre-
quency domain pilots are given by

(11)
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Fig. 2. The autocorrelation matrix: with ,
, and uniform pilot carrier placement with .

where , with the contribution
from the frequency domain pilots, which is the same as for
CP-OFDM, and the contribution from the time domain
pilots [16]:

(12)
where are the known samples from the guard interval,
and is the modulo- reduction of yielding a result in the
interval . The autocorrelation matrix of the additive noise
equals . So, also the KSP-OFDM system com-
plies with (1).
The MSE of the channel estimate is determined by the matrix

product . Similarly as for ZP-OFDM,
we approximate the autocorrelation matrix, for , by

. Hence, reduces
to . Further, taking into account that

, this product can be decomposed as

(13)

Assuming the time domain pilots are uncorrelated with the fre-
quency domain pilots, i.e. , we approximate
the cross products by . The
product is given by

(14)

where we have assumed in the second line that the pilots in the
time domain are uncorrelated, i.e. .
Taking into account that is given in (6), it follows
that the matrix product can be approxi-
mated by

(15)

where in the second line, is approximated by
. This can be done as and range from 0 to , with

, such that will be small as compared to
. From the approximations made to obtain the last line in

(15), we can conclude that when is small, the effect of both
the values of the time domain pilots as the frequency domain
pilots will be small. The former can be explained as, when
is small, the factor in the last line of (14) will be
close to one, such that the contribution from the
time domain pilots will be small as compared to the contribution

from the frequency domain pilots, and the latter by
the fact that when is small, the matrix will be very
close to a diagonal matrix, similarly as for ZP-OFDM. On the
other hand, when becomes too large, we expect that the
values of both the time domain as the frequency domain pilots
will play a role.
Note that in the above approximations, we have not made

any assumption on the used pilot carrier placement or the pres-
ence of guard bands. As such these generic conclusions will
be valid for any pilot carrier placement and if guard bands are
present. Using these approximations, i.e. on the autocorrelation
matrix and on the pilot statistics, we obtain for KSP-OFDM the
same expression for the MSE as for CP-OFDM and ZP-OFDM.
Hence, at first sight this indicates that if the approximations are
valid (i.e. small), the pilot carrier placement that mini-
mizes the MSE of the channel estimate will be essentially in-
dependent of the used guard interval technique and the MSE
performance for the three guard interval techniques will be very
similar. In the remainder of the paper, we will use the correct
expressions for the MSE to generate the numerical results, but
we will use the approximated expressions to explain the similar-
ities and differences between the results for the different guard
interval techniques.

III. THE OPTIMIZATION PROBLEM

In the previous section, we have derived the exact and ap-
proximated MSE for the three guard interval types. We observe
that the MSE for the CP-OFDM system is independent of the
pilot symbols, whereas for the other two guard interval types,
the MSE (without approximations) is a function of the values
of the pilot symbols. In this paper, we consider the heuristic al-
gorithm presented in [18] that was developed to find the op-
timal pilot carrier positions for CP-OFDM. We extend the al-
gorithm to optimize the MSE (without approximations) for the
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TABLE I
HEURISTIC ALGORITHM

three guard interval types. The modified algorithm also takes
into account the optimization of the pilot symbol values. In this
paper, we restrict our attention to pilot symbols belonging to the
QPSK alphabet. However, the algorithm can easily be extended
to pilot symbols belonging to other alphabets.
The heuristic algorithm that we consider is based on the hill

climbing technique [20], which is a local search algorithm suit-
able for integer combinatorial optimization problems. It starts
from an initial choice for the parameters to be optimized, i.e. the
pilot carrier positions, and looks in the neighborhood if there
is a better solution by incrementally changing the parameters.
The main drawback of this technique is that if there are mul-
tiple local optima, it converges to a local optimum, and not to
the global optimum. Hence, a good initial estimate of the pa-
rameters is necessary to be able to find the global optimum. In
[18], it is shown for CP-OFDM, that a good initial choice for the
pilot carrier positions is the maximum distance distribution [1],
that maximizes the distance between the pilot carrier positions
taking into account guard bands at the edges of the frequency
band. We adapt the maximum distance distribution from [1] to
also take into account guard bands that are present in the spec-
trum to cope with primary users. The heuristic algorithm was
shown in [18] to converge in the majority of the cases to the
global minimum obtained with an exhaustive search. Hence, in
this paper, we will use this maximum distance distribution as
the initial setting for our algorithm.
The algorithm is shown in Table I. The set is the set of pos-

sible carrier positions (excluding guard band carriers). The ini-
tial settings for the pilot carrier positions are determined by the
maximum distance distribution. Then, the pilot symbol values
are optimized for these pilot carrier positions. In lines 9–21 of
the algorithm, we systematically switch the data carrier posi-
tions with the pilot carrier positions. This is achieved with the
two loops in lines 9–10. The outer loop in line 9 examines the
pilot carrier positions one by one. Each of these pilot carrier

positions is switched—one by one—with all data carrier

positions in the inner loop (line 10). For example, first is
switched with data carrier position , and for
the resulting set of pilot carrier positions, the pilot symbol values
are optimized. We check if the resulting MSE is smaller than the
current best MSE. If the new MSE is smaller, the switch in the
positions is kept, and otherwise, the data carrier position and the
pilot carrier position are restored to the previous state. Hence, in
lines 9–21, of these switches are tested. To improve the
convergence of the algorithm, we can iteratively execute lines
9–21 of the algorithm, where the output of the previous run is
taken as the initial setting for the next run. In our simulations, we
have always iterated the algorithm until no further improvement
was achieved, i.e. until , where is the iter-
ation index. Although in theory this could take infinitely long,
the proposed algorithm has a good convergence: in practice, we
found that the algorithm typically converges within a limited
number of iterations.1 Of course, we could use a different stop-
ping criterion as e.g. when ,
i.e. when the difference in the MSE value in successive iter-
ations becomes smaller than a predefined threshold, or after a
fixed number of iterations. In the numerical results, we will dis-
cuss further on the convergence and the stopping criterion.

IV. NUMERICAL RESULTS

A. Effect of the Pilot Carrier Symbols

First we evaluate the effect of the pilot symbol values on the
MSE performance for the three guard interval types without op-
timizing the pilot carrier positions. From our simulations, it fol-
lowed that as expected, similar results on the optimization of the
pilot symbols are obtained irrespective of the used pilot carrier
placement or the presence of guard bands. Therefore, in this sec-
tion we present the results for the case where the pilot carriers
are selected according to the maximum distance (MD) distribu-
tion from [1], and all carriers can be used as pilot carriers, i.e. no
guard bands are present. The optimal pilot symbol values are ob-
tained as follows. We randomly generate 1000 QPSK pilot car-
rier symbol sequences, and select the best sequence resulting
in the lowest MSE. For KSP-OFDM, for the best pilot carrier
sequence, we then randomly generate 1000 QPSK guard in-
terval pilot sequences, and select again the sequence resulting
in the lowest MSE. This simulation is repeated 100 times. In
Figs. 3(a) and 3(b), the average of the lowest MSE and its stan-
dard deviation over the 100 experiments is shown. We consid-
ered three cases. In the first case, the pilot carrier symbols are
selected to optimize the MSE of ZP-OFDM, and the resulting
pilot carrier sequence is used to compute the MSE for the three
guard interval types. In the second case, the pilot carrier sym-
bols are optimized for KSP-OFDM, and similarly as in case 1,
the resulting symbols are used for the other guard interval tech-
niques. In the third case, the pilot carrier symbols are not opti-
mized, but randomly selected. In all cases, for KSP-OFDM, the
guard interval pilot symbols are selected as the best out of 1000
randomly generated sequences.

1In only a very limited amount of cases we investigated, the maximum
number of iterations needed to obtain exceeded 10. Most
of the time, less than 5 iterations were needed for the algorithm to converge.
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Fig. 3. The MSE (a) and standard deviation of the MSE (b) for the different
guard interval types (case symbols optimized for ZP, case
symbols optimized for KSP, case 3: no optimization pilot symbols), ,

, , no guard band, maximum distance distribution.

First we observe that, as expected, the MSE of CP-OFDM is
independent of the used pilot carrier symbols. Further we notice
that when the pilot carrier symbols are not optimized (case 3),
the resultingMSE for ZP-OFDM andKSP-OFDM is worse than
for the two other cases. For ZP-OFDM, the difference is how-
ever small, whereas for KSP-OFDM the difference is larger. Es-
pecially for small values of the total number of carriers , the
effect of the optimization of the pilot carrier symbols is visible,
whereas for large , the difference becomes small. This is in
line with the conclusions from Section II: when is small,
the effect of not optimizing the pilot symbols will be negligible.
When becomes larger, the values of the pilot symbol will
play a role. For ZP-OFDM, we only have the frequency do-
main pilots, whereas in KSP-OFDM, we have both time and
frequency domain pilots, so we expect the effect of optimizing
the pilot symbol values in KSP-OFDM is larger.
In the paper, we have shown that the MSE for CP-OFDM

is an approximation for the MSE for both ZP-OFDM and
KSP-OFDM. From the figure, it follows that the true MSE for

ZP-OFDM (KSP-OFDM) is larger (smaller) than its approxi-
mation, but that for increasing the difference reduces. This
latter effect is explained by the fact that for a given , increasing
will lead to a smaller , such that the approximations will

become valid. The former effect could also be expected: for
ZP-OFDM, because of the non-diagonal nature of the autocor-
relation matrix , we expect the true MSE for ZP-OFDM
to be slightly larger than for CP-OFDM, and for KSP-OFDM,
as we have more pilots (i.e. the guard interval pilots) than in
CP-OFDM, there is more information present that can be used
to estimate the channel, resulting in a lower MSE.
Secondly, we look at the effect of the optimization of the pilot

carrier symbols. When we compare the MSE results for case
2 and 3, we observe in Fig. 3(a) that for KSP-OFDM, there
is virtually no difference between the two cases, whereas for
ZP-OFDM, case 1 gives slightly better performance. Taking
into account the standard deviation of the MSE in Fig. 3(b), we
can conclude that case 1, where the pilot carrier symbols are op-
timized for ZP-OFDM, is virtually optimal for both ZP-OFDM
and KSP-OFDM. This implies that the optimal values for the
pilot carrier symbols are mainly determined by the non-diagonal
nature of the autocorrelation matrix. As a conclusion, we do not
have to take into account the values of the guard interval pilots
for KSP-OFDM when optimizing the values of the pilot car-
rier symbols. This will reduce the computational complexity of
the optimization. Hence, in the following sections, we will use
the ZP-OFDMMSE metric to optimize the pilot carrier symbol
values for both ZP-OFDM and KSP-OFDM.

B. Optimization of the Pilot Carrier Positions

In the previous section, we did not consider the presence of
guard bands where the pilot carriers cannot be placed. In Fig. 4,
we consider three types of guard band distributions that are used
in the following simulations. In case (a), there are only guard
bands of length at the edges of the OFDM frequency band to
separate the OFDM signal from transmissions in adjacent fre-
quency bands; hence there are forbidden carrier positions
and carriers that can be used for data and pilot car-
riers. In case (b), besides the guard bands of case (a), we also
consider the DC carrier as not allowed for data or pilot trans-
mission. Hence, there are forbidden carriers. In case (c),
besides the guard bands of case (a), we also consider a guard
band of length , starting at position , so carriers are
not allowed for pilots or data. This last case e.g. corresponds
to a cognitive radio system where in the band a primary user
is transmitting, and to avoid interference with the primary user,
the secondary OFDM system is not allowed to transmit in this
frequency band.
First of all, we will examine the effect of the number

of iterations of the heuristic algorithm. We use the guard
band distribution from Fig. 4(a). In Fig. 5, the MSE at
the th iteration is compared with the minimum MSE, i.e.

, that can be obtained with the heuristic algorithm:2

(in %), where the zero-th

2In this simulation, for all considered cases, the algorithm has converged in
less than five iterations, i.e., increasing the number of iterations will not result
in a change in the pilot carrier positions. Hence, in this simulation, can
be considered as the reference lower bound of the MSE.



1818 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 7, APRIL 1, 2014

Fig. 4. Different guard band distributions.

Fig. 5. The effect of the number of iterations of the heuristic algorithm ,
, , .

iteration corresponds to the maximum distance distribution
for the pilot carriers, with optimized pilot symbol values. It
can be observed that when the guard band length increases,
generally more iterations are needed to converge. Further,
KSP-OFDM typically needs more iterations than the other two
OFDM systems; this is caused by the interaction between the
time domain and frequency domain pilots (see (13)). However,
for all considered cases in this simulation, and also for all other
simulations we did, 2–3 iterations were sufficient to obtain a
MSE that is only 1–2% higher than the minimum value for the
MSE that could be obtained with the heuristic algorithm. Other
simulations, not shown in this paper due to space limitations,
for other stopping criteria (e.g. until the difference between
successively obtained MSE values is below a threshold, or until
convergence is reached) or other system parameters have been
carried out; the results for all considered cases were similar.
The computational complexity of the algorithm is an issue
if we want to use it in a practical cognitive radio scenario,
where the available carriers are constantly changing. Hence,
it is of primordial importance that in that case, the best pilot
carrier placement can be computed in a very fast way, so the

Fig. 6. Effect of the number of pilot carriers, , , ,
for maximum distance distribution, for

heuristic algorithm with 2 iterations.

computational complexity of the algorithm must be as low as
possible. As a further increase in the number of iterations will
only lead to a marginal performance improvement and a linear
increase in computational complexity, we suggest to limit the
number of iterations to 2–3. In the remainder of the paper, all
results are obtained with 2 iterations of the heuristic algorithm.
The effect of the number of pilot carriers is shown in

Fig. 6. For an increasing number of pilot carriers, generally
the gain in using the heuristic algorithm to find the pilot posi-
tions compared to the maximum distance distribution increases.
For the case with , one can observe a sharp increase
in the gain for . This can be explained as follows.
The maximum distance distribution spreads the pilot carriers
as uniformly as possible over the available frequency band. If
we would be allowed to place the pilot carriers over the whole
frequency band, the maximum possible distance between two
pilot carriers equals , and the distance between two ad-
jacent carriers will be or . In [1] and [18], it is
shown that for this placement results in aMSE that is very
close to the global minimum (7). However, we are not allowed
to place pilots in the guard bands. As long as ,
the guard band will not strongly interfere with the pilot carrier
placement: themaximum distance distribution simply places the
pilot carriers around the guard band, and if necessary it slightly
shifts a few pilot carriers. Simulations show that the global min-
imum is a broad minimum, which implies that slightly shifting
some pilot carriers will result in a MSE that is still close to the
global minimum.Hence, themaximum distance distribution can
be considered as quasi-optimal if . However, when

, a situation that is illustrated in Fig. 7, the distance
between the pilot carriers decreases, and the distance between
the edge pilot carriers (i.e., ),3 will be quite large compared
to the other pilot carrier spacings. As such, the resulting MSE
will be further away from the global minimum (7), and simu-
lations show that in this case, slightly shifting the pilot carrier
positions will result in a large change in the MSE. Typically, the

3Note that the MSE is insensitive to a cyclic shift of the pilot carriers, im-
plying that we can cyclically shift the pilot carriers and the guard band over the
spectrum without having an effect on the MSE.
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Fig. 7. Optimal pilot positions for , , , , .

maximum distance distribution will not be the optimal one, and
the gain in optimizing the pilot carrier positions will be large.
Next, we compare the results from the heuristic algorithm

with the results for the maximum distance distribution, for dif-
ferent values for . We consider the guard band distribution (a).
From our simulations (not shown in the paper), we observed
that for , the performance improvement obtained with
the heuristic algorithm is rather small. This indicates that when
there is no guard band, the maximum distance distribution is
quasi-optimal. However, when the guard band length increases,
typically the gain, when using the heuristic algorithm instead
of the maximum distance distribution, increases. This indicates
that the maximum distance distribution is not the best choice for
the pilot carrier positions when a non-negligible part of the spec-
trum is not available for transmission, as e.g. in cognitive radio
systems. As an example, we show in Fig. 8 the gain when using
the heuristic algorithm instead of the maximum distance distri-
bution for . It can be observed that when increases,
the gain in using the heuristic algorithm decreases, except for
KSP case 2. This can be explained as in case 2, , and
as explained for Fig. 6, a slight shift of the pilot carriers in that
case can have a large influence on the MSE. From our simula-
tions, we have observed that this effect will mainly play a signif-
icant role for KSP-OFDM, but for CP-OFDM and ZP-OFDM,
it will only have a moderate effect when increases. When we
would plot the value of the MSE (instead of the relative gain)
as function of a similar result as in Fig. 3(a) is obtained: the
MSE values for CP, ZP and KSP-OFDM come closer to each
other when increases, because the effect of the pilot symbols
is reduced, as explained in the previous section for the max-
imum distance distribution. The simulation results also revealed
that for large and , the pilot carrier positions de-
livered by the heuristic algorithm for CP-OFDM (ZP-OFDM,
KSP-OFDM) also yielded essentially the lowest MSE for the
other two cases. This indicates that the approximations made
in Section II are valid, resulting in the same expressions for
the MSE for the three guard interval techniques. However, for
small values of , the difference between the optimal pilot car-
rier placement for the different guard interval techniques can

Fig. 8. Optimizing the pilot carrier positions and pilot symbol values, ,
, , for maximum distance distribution,

for heuristic algorithm with 2 iterations, case 1: , case
2: .

be quite large. This is illustrated in Fig. 7. Moreover, for large
, as the performance gain decreases, using the maximum dis-

tance distribution will be a good compromise between perfor-
mance and complexity: it has a MSE that is typically only less
that 10% higher than for the optimal placement, and can be ob-
tained at no computational cost.

C. Effect of the Guard Band Distribution

In this section, we evaluate the influence of the distribution
of the guard bands on the MSE performance. In Fig. 9, the
MSE performance (normalized on the lower bound (7) on the
CP-OFDMperformance obtained with the heuristic algorithm is
shown for five cases, i.e. case (a) and (b) from Fig. 4, and three
situations for case (c) in Fig. 4 with different and . From
the figure, it is clear that the MSE is essentially independent of
the considered cases: with the heuristic algorithm, the presence
or position of guard bands has almost no influence on the MSE
performance. This is in contrast with the maximum distance dis-
tribution, where the MSE noticeably increases for guard band
distribution (c) when increases: the gain of using the heuristic
algorithm instead the maximum distance distribution is typi-
cally doubled for case (c) compared to cases (a) and (b). Note
also that is essentially independent of and
close to 1 for all cases. This indicates that , which is
proportional to , and was only shown for CP-OFDM to be
a lower bound on the MSE, is a good approximation of the MSE
for the three guard interval types.

V. CONCLUSIONS

In this paper, we have investigated the effect of the pilot
carrier positions on the performance of channel estimation in
OFDM based systems. We have considered three guard interval
types, cyclic prefix, zero padding and known symbol padding.
Traditionally, the maximum distance distribution from [1] is
used to select the positions of the pilot carriers. However, when
parts of the bandwidth are not available for placing the pilot
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Fig. 9. Effect of the distribution of the guard bands, pilot positions selected
according to the heuristic algorithm, , , with as
markers for the different guard band distributions: (a) from Fig. 4;

(b); (c) with and ; (c) with
and ; and (c) with and .

carriers, as e.g. in cognitive radio, the maximum distance dis-
tribution turns out to be not optimal, and even can give rise to
high MSE.
In this paper, we have evaluated the analytical expressions

for the MSE for the different guard interval techniques, and we
have shown that, taking into account some approximations, the
MSE performance is (approximately) the same irrespective of
the used guard interval. These approximations turn out to be
valid for large values of the DFT size and relatively short
guard intervals . In that case, the MSE for CP-OFDM
is then a small underestimation of the MSE of ZP-OFDM, and
a small overestimation for the MSE for KSP-OFDM.
Another observation is that, if is sufficiently large (and for

KSP-OFDM if the lengths of the guard bands are smaller than
), the maximum distance distribution is almost optimal. In

that case, it is not necessary to apply the heuristic algorithm used
in this paper: the relative gain that can be obtained is rather small
at the cost of an increased computational complexity. However,
when is small and the guard band lengths increase above

, it is better to use the heuristic algorithm to find the best
pilot carrier positions, as it clearly outperforms the maximum
distance distribution. Although in this paper, we have focussed
on theML estimator, we can easily apply the heuristic algorithm
to other estimators; we only have to replace in the heuristic al-
gorithm the MSE with the appropriate expression.
The goal of this paper was to find some answers on the sense

or nonsense of trying to optimize the pilot carrier positions in
cognitive radio based multicarrier systems. In the introduction,
we posed the following questions, which we now can answer.
Further, Table II summarizes the rules of thumb, taking into
account both computational complexity and performance.
1) Does the optimal pilot carrier placement depend on the
guard interval type?
When is sufficiently small and sufficiently large,
the difference between the three guard interval types
is small: the pilot carrier placement that is optimal for
CP-OFDM will also be quasi optimal for the other guard

TABLE II
WHEN TO USE THE HEURISTIC ALGORITHM AND WHEN TO

OPTIMIZE THE PILOT SYMBOLS?

interval techniques. However, for smaller , this will not
be the case.

2) Does the performance of the channel estimation (strongly)
depend of the used guard interval type?
If the DFT size is small , the difference in
MSE for the different guard interval techniques can be
quite large. However, when increases, this difference
becomes smaller and smaller.

3) What is the effect of the presence of guard bands on the
optimal pilot carrier placement?
As long as is sufficiently large, the maximum distance
distribution will give satisfactory results. However, for
smaller values of , when , the pilot carrier
positions should be optimized, otherwise the MSE perfor-
mance will degrade rapidly.

4) Is the heuristic algorithm that computes the optimal pilot
carrier positions fast enough to be used in a dynamic cog-
nitive radio scenario?
In [18], it is shown that the computational complexity of
the algorithm is approximately per iter-
ation. Hence, for small , where the use of the heuristic
algorithm is advised, also , and will be small,
such that the computational complexity of the heuristic al-
gorithm is quite low.
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