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Theoretical Performance Evaluation and
Optimization of UW-OFDM

Heidi Steendam, Senior Member, IEEE

Abstract—Unique-word (UW) OFDM is a new OFDM variant
that offers several advantages over cyclic prefix OFDM, such
as better bit-error-rate (BER) performance in frequency selec-
tive channels and much lower out-of-band radiation. However, all
results with respect to the BER performance are based on Monte-
Carlo simulations only, and offer little insight in the behaviour
of the system performance as function of its parameters. In this
paper, we theoretically analyse the performance of the UW-OFDM
system for both a deterministic channel and a fading channel, and
offer a systematic way to generate the UW-OFDM signal to opti-
mize the performance of the system. When the fading channel is
known at the transmitter, we show that we can obtain a diversity
order that is of the same order of magnitude as the theoretically
maximum diversity order, but when the channel is not known at
the transmitter, it will be very hard to achieve maximum diversity
order, although the obtained diversity order is larger than one.

Index Terms—Unique-word OFDM, diversity, bit error rate,
Euclidean distance, performance optimization, fading channel.

I. INTRODUCTION

M ULTICARRIER communication has become an impor-
tant transmission technique for frequency selective

channels, witness the large number of standards adopting
one of the multicarrier communication variants. The most
widely spread of these variants is the cyclic prefix orthogonal
frequency division multiplexing (CP-OFDM) technique [1].
However, the use of the cyclic prefix as a guard interval to
avoid intercarrier and intersymbol interference involves some
drawbacks. Firstly, the extension of the symbol length by
inserting a cyclic prefix introduces an intolerable amount of
out-of-band radiation, which can only be suppressed with
a considerable amount of effort. Secondly, the randomness
of the cyclic prefix – as its content is determined by the
transmitted data – implies that the cyclic prefix cannot be used
efficiently for particular needs such as synchronization and/or

Manuscript received August 28, 2015; revised February 11, 2016; accepted
February 25, 2016. Date of publication March 2, 2016; date of current version
April 13, 2016. The author gratefully acknowledges the financial support from
the Flemish Fund for Scientific Research (FWO). This research has been funded
by the Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office. Part of this work was presented as an invited paper at the
IFIP TC7 2013 Conference on System Modeling and Optimization, Klagenfurt,
Austria, September 9–13, 2013. The author would like to express her gratitude
to the editor and the anonymous reviewers for their suggestions to improve the
quality of the paper. The associate editor coordinating the review of this paper
and approving it for publication was M. Juntti.

The author is with the Digital Communications (DIGCOM) Research
Group, Telecommunications and Information Processing (TELIN), Department
of Ghent University, Gent 9000, Belgium (e-mail: Heidi.Steendam@
telin.ugent.be).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2016.2537328

system parameter estimation. Thirdly, as the cyclic prefix is
thrown away at the receiver in order to detect the transmitted
data symbols, channel diversity will be lost unless additional
diversification of the transmitted signals is incorporated such
as precoding or channel coding.

Recently, a new variant of OFDM has been introduced, i.e.,
unique-word (UW) OFDM [2]. In this technique, the guard
interval is part of the time-domain interval corresponding to the
inverse discrete Fourier transform (DFT) output, i.e., the pres-
ence of the guard interval does not extend the symbol duration,
and contains a known sequence (the unique word) of length Nu ,
implying the last Nu samples of the time-domain sequence at
the output of the inverse DFT are known and do not depend
on the transmitted data. As a result, the content of the UW can
be used for synchronization and parameter estimation. In order
to allow for the insertion of a known sequence within the DFT
interval, redundancy must be added in the frequency domain
by means of a generator matrix. Because of this redundancy,
the authors in [3] have shown that UW-OFDM outperforms
CP-OFDM with respect to the bit error rate (BER) perfor-
mance in frequency selective channels. Moreover, the addition
of the redundancy has no adverse effect on the data through-
put: both UW-OFDM and CP-OFDM have essentially the same
throughput efficiency. Furthermore, in [4], it is shown that the
out-of-band radiation is considerably lower in UW-OFDM than
in CP-OFDM, and by sacrificing a few carriers [5], this out-
of-band radiation can be made essentially zero. Consequently,
UW-OFDM is highly spectrally efficient and is therefore a
viable solution for e.g. cognitive radio applications.

Although the authors in [2], [3], [6], [7] considered the BER
performance evaluation of UW-OFDM, their results were based
on Monte-Carlo simulations only. However, simulations do not
allow a deep understanding of the effect of the system param-
eters on the BER performance, and the optimization of the
system parameters using simulations only is practically infea-
sible. Therefore, in this paper, we theoretically investigate the
BER performance of UW-OFDM in (deterministic and random)
frequency selective channels. Based on this theoretical analy-
sis, we are able to identify the constraints required to achieve
optimal BER performance, and using these constraints, we pro-
pose a systematic construction method to obtain the optimal
UW-OFDM signal structure. Our results explain the simulation
results from [2], [3], [6], [7], and show that for Rayleigh fad-
ing channels, the UW-OFDM system inherently has a higher
diversity order than standard1 CP-OFDM.

1Standard in this context means without additional precoding or channel
coding.
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The paper is organized as follows. In Section II, we describe
a construction method for the UW-OFDM generator matrix that
automatically incorporates the constraints of the UW-OFDM
signal, and still offers a large amount of freedom to optimize
the signal. Further, we inspect the expression for BER perfor-
mance and derive a necessary condition for the generator matrix
to achieve maximum diversity order. Based on the results of
Section II, Section III explores the optimization of the error
rate and derives the constraints for the generator matrix. Taking
into account the conditions derived in Section III, Section IV
proposes a systematic construction method to obtain optimal
performance. Numerical results are given in Section V and
Section VI concludes the paper.

II. UW-OFDM BIT ERROR RATE PERFORMACE

A. System Description

In the following, we use the two-step approach from [3] to
construct the UW-OFDM signal, where first the time-domain
sequence corresponding to the data contribution is generated
and the inverse DFT output contains zeros at the positions of the
unique word, and afterwards the samples from the unique word
are added. This method requires a lower transmitted energy than
the direct construction method, where the unique word samples
are generated directly at the inverse DFT output [3]. Assuming
the unique word length equals Nu samples, the time-domain
signal at the inverse DFT output, corresponding to the data part
must contain Nu zeros at the end. The redundancy that needs to
be added in the frequency domain in order to obtain the block
of zeros in the time domain, limits the number of data symbols
that can be transmitted: the number Nr of redundant symbols
is lower bounded by Nu , i.e. Nr ≥ Nu . As a result, assuming
the DFT size equals N , the maximum number of data symbols
equals N − Nr ≤ N − Nu . Because of the presence of guard
bands, or the introduction of additional redundancy in the fre-
quency domain in order to reduce the out-of-band radiation or
peak-to-average power [2], [5], [8], the number of data symbols
is generally smaller than this maximum N − Nr . Let us assume
Nm ≤ N carriers are used. In that case, the number of data sym-
bols equals Nd = Nm − Nr ≤ N − Nu . The frequency domain
symbols that are modulated on the carriers can be expressed as

z = BGxd (1)

where xd contains the Nd data symbols, the Nm × Nd gen-
erator matrix G introduces the redundancy in the frequency
domain, and the N × Nm mapping matrix B is a reduced ver-
sion of the identity matrix, where the columns corresponding
to the unmodulated carriers2 are deleted, and which maps the
Nm modulated carriers on the inverse DFT inputs. The fre-
quency domain vector z is fed to the inverse DFT, resulting in
the time-domain samples

y = FH
N z =

( ∗
0

)
(2)

2This corresponds e.g. to the presence of guard bands or notch bands. For
example, if g carriers at each side of the frequency band are not modulated as a
guard band, the number of modulated carriers equals Nm = N − 2g.

where FH
N is the inverse DFT matrix with (FN )k,� =

1√
N

e− j2π k�
N . Taking into account that the mapping matrix B is

determined by the spectral band requirements of the system,
the only freedom lies in the selection of the generator matrix G.
Let us define F̃ as the Nu × Nm matrix containing the last Nu

rows of FH
N B. Imposing that the last Nu elements of y must be

zero implies F̃G = 0, i.e., the columns of G belong to the null
space of F̃.

Proposition II.1. The Nu × Nm matrix F̃, with Nu < Nm ,
has full rank.

The proof of this proposition is given in Appendix A.
Because of the rank-nullity theorem, it follows that Nm − Nu

linearly independent null vectors exist. Assume the Nm × 1
vectors u1, . . . , uNm−Nu form an orthonormal basis for this null
space3. Hence, the columns of G must consist of linear com-
binations of these basis vectors. Denote gk as the k-th column
of G:

gk =
Nm−Nu∑

�=1

wk,�u�, k = 1, . . . , Nd (3)

or in matrix notation

G = UW (4)

where U = (u1 . . . uNm−Nu ) is the Nm × (Nm − Nu) matrix
containing the basis vectors so that F̃U = 0, and W the (Nm −
Nu) × Nd matrix containing the weight coefficients W�,k =
wk,�; this matrix W can be selected freely, provided that Nd ≤
Nm − Nu in order to avoid ambiguity between distinct data
sequences. Throughout this paper, we will use this decompo-
sition of G to simplify the derivations.

The UW-OFDM time-domain signal is transmitted over the
channel. We assume that this channel is modelled as a tapped
delay channel with L + 1 taps, i.e.,

h = [h(0) . . . h(L)]T . (5)

The channel adds white Gaussian noise w of which the
components have variance N0/2 per real dimension [9]. We
assume the guard interval, i.e., the unique word length, exceeds
the channel length: Nu ≥ L , implying we can avoid intersym-
bol interference between successive OFDM symbols. At the
receiver, we apply a DFT to the received time-domain samples,
resulting in

r = FN HFH
N z + FN w. (6)

In this expression, we neglected the presence of the unique
word, which can easily be subtracted from the signal if the
channel is known. The channel matrix H in (6) is a circulant
matrix. Hence, the matrix product H̃ = FN HFH

N is a diagonal
matrix with as diagonal elements the frequency response of the
channel:

H̃ = diag

(
H

(
j2π

k

N

))
(7)

3Such a basis can easily be found using the singular value decomposition
of F̃.
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with H
(

j2π k
N

) = ∑L
�=0 h(�)e j2π k�

N . Therefore, the received
samples at the DFT outputs can be rewritten as

r = H̃z + FN w = v + FN w, (8)

where v = H̃BGxd . We want to design G so that the error rate
performance is optimized.

B. Euclidean Distance

In this paper, we will find that optimizing the error rate per-
formance is equivalent to optimizing the minimum Euclidean
distance. Depending on whether the channel is known or not,
we will show that the minimum Euclidean distance at the
receiver or the transmitter side has to be maximized. Let us
look closer at the Euclidean distance between the code words
at the transmitter and receiver side. At the receiver, the squared
Euclidean distance between two code words v = H̃BGxd and
v′ = H̃BGx′

d is given by

d2(v, v′) = eH GH BH H̃H H̃BGe �= eH ARe, (9)

where e = xd − x′
d is the error vector. The matrix AR depends

on the channel taps h through the diagonal matrix H̃. The
squared minimum Euclidean distance between the code words
at the receiver is defined as

d2
min,R = min

e
d2(v, v′) = min

e
eH ARe. (10)

Similarly, the squared Euclidean distance between the code
words at the transmitter equals

d2(z, z′) = eH GH BH BGe �= eH AT e, (11)

where z is defined in (1), and the squared minimum Euclidean
distance at the transmitter:

d2
min,T = min

e
d2(z, z′) = min

e
eH AT e. (12)

Both AR and AT are positive semi-definite Hermitian Nd ×
Nd matrices. Further, they are related to the transmitted and
received energy:

ET = Es trace(AT )

ER = Es trace(AR). (13)

where Es is the energy per data symbol. In [6], it was shown
that the MSEs of the BLUE and LMMSE data detectors in a
frequency-flat channel are minimized when AT = cINd . Later
in this paper, we will show that, if the channel is known, the
generator matrix G must be selected so that AR = cINd . When
c = 1, these conditions correspond to the normalization of the
transmitted and received energy, respectively.

C. Theoretical Error Performance

In [10], the authors considered the ML detection of the
transmitted data symbols in OFDM-based systems. Assuming

the channel is perfectly known, the pairwise error probability
(PEP) of a data vector xd and the detected vector x′

d �= xd , given
a channel realization h, is given by Pr(x′

d �= xd |h). Taking into
account the Gaussian character of the noise, the PEP is given by

Pr(x′
d �= xd |h) = Q

⎛
⎝
√

d2(v, v′)
2N0

⎞
⎠ (14)

where Q(x) = 1√
2π

∫ +∞
x e−t2/2dt and d2(v, v′) is defined in

(9). The authors in [10] used the Chernoff bound [11] to upper
bound this PEP and derive the average of the upper bound over
the channel characteristics assuming the channel taps are uncor-
related Rayleigh fading distributed with E[hhH ] ∼ IL+1 in
order to derive the diversity order and coding gain. Further they
showed that the maximum achievable diversity order δ = L + 1
can only be reached when the minimum Euclidean distance
dmin,R ≥ (L + 1)

√
Es . A condition to satisfy dmin,R ≥ (L + 1)√

Es is that rank(BG) = Nd , and Nd ≥ L + 1. However, this
maximum diversity order can only be achieved when the trans-
mitter contains sufficient redundancy so that the signals are
sufficiently diversified and the receiver is designed to exploit
this redundancy.

Let us look closer at the condition that the Nm × Nd matrix
BG must have full rank. Consider the decomposition G = UW
(4). The matrix B has full rank Nm , with Nm − Nu ≥ Nd .
Further, also the Nm × (Nm − Nu) matrix U has full rank as
its columns consist of orthonormal basis vectors. In order to
be able to achieve maximum diversity, the (Nm − Nu) × Nd

matrix W, determining the redundancy, needs to have full rank
Nd . Hence, the weight coefficients wk,� must be selected so that
the Nd columns of W are linearly independent. As it is possible
to make W full rank, theoretically the maximum diversity order
can be reached in UW-OFDM, provided the matrix G offers
sufficient diversification. Let us look at the rank of the gener-
ator matrix of two standard constructions of UW-OFDM, i.e.,
systematic and non-systematic UW-OFDM [12].

Example 1: Systematic UW-OFDM

Let us consider the case of systematic UW-OFDM. In that
case, we can decompose the matrix G as [12]

G = βP
[

INd

T

]
, (15)

where P is a Nm × Nm permutation matrix determining the
data and redundant carrier positions, and T is the linear trans-
formation determining the relationship between the data and
redundant symbols. The factor β is selected to normalize the
transmitted energy: trace(GH BH BG) = Nd .

Proposition II.2. The code generator matrix G from (15) has
full rank whenever the energy transmitted on the redundant
carriers is finite.

Proof: The matrix P has full rank Nm as PH P = INm .
To determine the rank of G, we consider the Gramian matrix
GH G = |β|2(INd + TH T). When INd + TH T has no eigenval-
ues equal to zero, it has full rank Nd . In [13], it is shown
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that in order to have finite redundant energy, the eigenvalues
of TH T must be strictly positive. Hence, under this last condi-
tion, and taking into account that Nd ≤ Nm − Nu , the matrix G
will automatically have full rank, independent of the positions
of the redundant carriers, so that for this type of UW-OFDM
the condition to allow maximum diversity order is satisfied. �

Example 2: Non-Systematic UW-OFDM

Taking into account the decomposition (4) of the code gen-
erator matrix G, where the matrix W can be selected freely,
it is clear that a non-systematic UW-OFDM system has many
degrees of freedom. In [6], the authors used this degree of
freedom to optimize the matrix G so that the MSE of the
BLUE (best linear unbiased) or LMMSE (linear minimum
mean squared error) data detector in an AWGN channel was
minimized. Through an iterative procedure and simulations,
they obtained the constraint GH BH BG = αINd . The analytical
proof of this constraint is given in Appendix B.

Proposition II.3. The code generator matrix G minimizing
the MSE of the BLUE or LMMSE data detector has full rank.

Proof: Taking into account the condition GH BH BG =
αINd and the results from Appendix B, it follows that G has
full rank, which concludes the proof. �

Based on these observations, it turns out that it is quite simple
to find a matrix G that has full rank, implying the maximum
diversity order in a fading channel can theoretically be achieved
in UW-OFDM provided that the generator matrix has sufficient
redundancy to counteract deep fades. In the remainder of the
paper, we restrict our attention to the case where the generator
matrix is full rank.

III. MINIMIZING THE ERROR RATE

In the previous section, the pairwise error probability, which
is related to the symbol error rate, was derived. When the chan-
nel is known, the error probability (14) is a function of the
Euclidean distance between code words at the receiver, which
indicates that the error probability is determined by the mini-
mum Euclidean distance. Hence, to minimize the error rate, this
minimum Euclidean distance needs to be maximized. When the
channel is known at the transmitter, optimizing this Euclidean
distance turns out to be realizable. However if the channel is not
known at the transmitter, the minimum Euclidean distance at
the receiver cannot be maximized. In that case, we will propose
an alternative solution that offers good performance.

A. Channel Known

Let us look closer at the minimum Euclidean distance dmin,R

(10) at the receiver. We assume that the error vector e ∈ C
Nd×1

is normalized, i.e., eH e = 1. Let us consider the eigenvalue
decomposition of the positive semi-definite Hermitian matrix
AR : AR = VH

R �RVR , where VR is an orthogonal matrix and
the eigenvalues λR,� are positive real-valued. These eigenval-
ues correspond to the different modes of the channel. Taking
into account the expression for the PEP (14) and noting that

e and VRe have the same energy, the average PEP over the
different modes of the channel given the channel h can be
approximated by

P E Pavg = 1

Nd

Nd∑
�=1

Q

⎛
⎝
√

λR,�d2(xd , x′
d)

2N0

⎞
⎠ . (16)

Due to the steep decrease of Q(·) as function of its argu-
ment, the PEP will be dominated by the term with the small-
est argument. Because eH e = 1, d2(xd , x′

d) = 1 indicating the
average PEP is dominated by the smallest of the eigenval-
ues λR,�. To find the smallest of the eigenvalues λR,�, we
revert to the Rayleigh quotient of a Hermitian matrix AR , i.e.
(eH ARe)/(eH e), which is bounded by the minimum and max-
imum eigenvalue of the matrix AR [14]. Using this Rayleigh
quotient, it is clear that the minimum eigenvalue equals the
squared minimum Euclidean distance at the receiver (10).
Therefore, to minimize the average PEP, we must make this
squared minimum Euclidean distance as large as possible.

Proposition III.1. A sufficient condition for the squared min-
imum Euclidean distance (9) to be maximized is that the
generator matrix G is selected so that

AR = GH BH H̃H H̃BG = INd . (17)

Proof: Using the properties of the Rayleigh quotient of
the matrix AR , maximizing the squared minimum Euclidean
distance is equivalent with the maximization of the minimum
eigenvalue of AR . �

In order to maximize the minimum eigenvalue, we apply
Gerschgorin’s theorem [14]. Given a Hermitian matrix AR , this
theorem states that the real-valued eigenvalues lie in the interval
(AR)k,k − rk ≤ λk ≤ (AR)k,k + rk where

rk =
Nd∑

� = 1
� �= k

|(AR)k,�|. (18)

In the following, we assume that (AR)k,k = 1, which corre-
sponds to the normalization of the received energy per data
symbol (13); this implies that all data symbols have the same
error performance [15], [16], resulting in the lowest error
rate performance if we average over the data symbols. Under
this assumption, the sum of the eigenvalues λR,k is constant:
trace(AR) = ∑Nd

k=1 λR,k = 1, and the boundaries on the eigen-
values reduce to 1 − rk ≤ λR,k ≤ 1 + rk . A sufficient condition
to ensure that the smallest of the eigenvalues is as large as pos-
sible is to make the upper bound equal to the lower bound,
i.e., rk = 0, which implies that all eigenvalues are equal to one,
inferring AR is the identity matrix. �

The above proposition states that we have to select the code
generator matrix G so that the matrix AR (17) is the identity
matrix. In that case, the average PEP (16) reduces to

P E Pavg = Q

⎛
⎝
√

d2(xd , x′
d)

2N0

⎞
⎠ . (19)
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This result indicates that we can make the error probability of
each data symbol equal irrespective of the used channel mode.
When the channel is known, corresponding e.g., with the case
of a fixed wired channel or a wireless link with a slowly vary-
ing channel, where the channel is estimated and fed back to
the transmitter, finding a generator matrix satisfying the above
condition is straightforward. In Section IV, we will discuss a
systematic construction method for the code generator matrix
G if the channel is known.

B. Channel Unknown

When no channel state information is available at the trans-
mitter side, selecting the code generator matrix that results
in AR = INd is not obvious. Therefore, we consider a dif-

ferent approach. Define the matrix Be as Beh �= H̃BG(xd −
x′

d) = H̃BGe, i.e., (Be)k,� = e j2π k�
N (BGe)k , so that d2(v, v′) =

hH BH
e Beh. The matrix BH

e Be is a positive semi-definite
Hermitian Toeplitz matrix with elements

(BH
e Be)�,�′ =

N−1∑
k=0

e j2π
k(�−�′)

N |(BGe)k |2 �= a�−�′ , (20)

and depends on the error vector e. Assuming the matrix BH
e Be

has full rank, the error probability is determined by the coding
gain, which is shown in [10] to be equal to

γ = min
e �=0

αL

[
det(BH

e Be)
] 1

L+1
, (21)

where αL = E[hH h] is the energy of the channel impulse
response and det(X) is the determinant of the matrix X. Hence,
to compute the coding gain, the determinant of the matrix BH

e Be

has to be minimized over the error vector e. To optimize the
error rate performance, we will use the degrees of freedom
available in the selection of the generator matrix G through the
decomposition (4). In order to find the minimum (over the error
vector e) of det(BH

e Be), we rewrite the elements am (20):

am = eH GH BH XmBGe (22)

where Xm = diag(e j2π km
N ), k = 0, . . . , N − 1. Although [17]

offers a recursive analytical expression for the computation of
the determinant of Toeplitz matrices, the resulting analytical
expression turns out to be too complex to optimize the result
over the error vector e. Therefore, we consider the following
upper and lower bounds on the determinant of a positive definite
Hermitian m × m matrix D:

det(D) ≤
(

trace(D)

m

)m

(23)

and

(λmin)
m ≤ det(D) ≤ (λmax)

m (24)

where λmin and λmax are the minimum and maximum eigen-
value of the matrix D. The first inequality (23) is a direct

consequence of the arithmetic mean – geometric mean (AM-
GM) inequality [18], and corresponds to Hadamard’s inequality
[19]. Equality occurs when all eigenvalues of D are equal. The
inequalities in (24) result from the fact that the determinant is
the product of the eigenvalues, which are all positive real values
as the matrix D is Hermitian positive definite. Again, equality
occurs when all eigenvalues are equal.

We will now apply the inequalities (23) and (24) to find the
optimal generator matrix G that minimizes the error rate. Let us
take a closer look at the inequality (23) for the matrix BH

e Be:

det(BH
e Be) ≤

(
trace(BH

e Be)

L + 1

)L+1

= aL+1
0 . (25)

Bearing in mind that a0 = eH AT e = eH GH Ge, it follows
that the upper bound still is a function of the error vector.
Further, taking into account the squared Euclidean distance at
the transmitter (11), d2(z, z′) = a0, it follows that the upper
bound in (25) is a function of this squared Euclidean distance.
Minimizing the upper bound (25) over the error vector e, in
order to obtain an upper bound on the coding gain γ (21), and
assuming eH e = 1, the smallest value of a0, and thus of the
upper bound, equals the smallest eigenvalue of GH G. Now we
select the code generator matrix G to maximize the minimum
upper bound. This corresponds to maximizing the minimum
eigenvalue of GH G, and results in the maximization of the min-
imum Euclidean distance at the transmitter. Taking into account
the proof of Proposition III.1, this implies that all eigenvalues
should be equal, or equivalently, GH G ∼ INd .

The above condition GH G ∼ INd still leaves us several
degrees of freedom to select the code generator matrix.
Therefore, we consider the inequalities (24). The determinant
of BH

e Be is lower bounded by the (L + 1)th power of its small-
est eigenvalue λe,min. Let us consider the worst case error vector
e resulting in the smallest minimum eigenvalue λe,min. We have
to select G so that λe,min is maximized, taking into account that∑L

�=0 λe,� = trace(BH
e Be) = (L + 1)a0. Hence, the eigenval-

ues are in the range 0 < λe,� < (L + 1)a0. If the eigenvalues
can take all values within this interval, we can easily prove
through Lagrange optimization that a sufficient condition to
maximize the minimum eigenvalue corresponds to the case
where all eigenvalues are the same, i.e., λe,� = a0,∀� (see
the proof of Proposition III.1). This results in the condition
BH

e Be = a0IL+1, implying the inequalities in (24) and (25)
become equalities. However, we have to check if this condi-
tion is realizable in practice: is it possible to find a matrix G
so that λe,� = a0,∀�, i.e., so that the matrix BH

e Be is diagonal
for the worst case e and thus also for all other error vectors e?
Unfortunately, according to the following Proposition, this is
not possible in general.

Proposition III.2. The matrix BH
e Be can be made diagonal

for all possible e if Nd ≤ N/2 but not when Nd > N/2, when
G is assumed to have full rank.

Proof: See appendix C �
In practice, to obtain a high data throughput, the number

of data symbols transmitted per UW-OFDM block should be
as large as possible, implying Nd > N/2. For these high data
throughputs, the matrix BH

e Be cannot be made diagonal for all
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error vectors e. If we cannot make the matrix BH
e Be diagonal,

the next best thing would be to select the matrix G so that the
eigenvalues λe,� of BH

e Be are as close as possible to each other,
i.e., the difference λe,max − λe,min must be as small as possible.
In other words, the resulting matrix BH

e Be must be diagonally
dominant, which requires [14]:

|a0| ≥
L∑

m=1

|am |. (26)

In that case, the bounds in (24) are still tight. To evaluate the
eigenvalues λe,�, we take a closer look at the elements am of
BH

e Be. Taking into account the decomposition G = UW, the
elements am can be rewritten as

am = eH WH UH BH XmBUWe

= e′H UH BH XmBUe′, (27)

where e′ = We. The matrices UH BH XmBU, m = 0, . . . , L are
defined by the system parameters and are therefore fixed. Only
the matrix W can be selected freely. Earlier in this section, we
derived the condition GH G = cINd , which implies WH W =
cINd . In the following, we assume c = 1, which corresponds
to the normalization of the transmitted energy ET (13). When
W is a square matrix, i.e., when Nd = Nm − Nu , this condition
states that W is orthogonal. Hence, the error vectors e and e′
have the same statistical properties. As a consequence, we can
(without loss of generality) use the second line in (27) to eval-
uate the matrix BH

e Be and its eigenvalues, and eliminate the
effect of the matrix W. Through simulations, we investigated
the magnitude of the elements am for randomly selected error
vectors e′, where e′H e′ = 1. In Fig. 1, we show an example of
these simulations and the average over e′ of the resulting |am |
for 100 randomly selected e′. In general, it turns out that |a0|
will be much larger than the other elements |am |, m = 1, . . . , L ,
but the requirement (26) will not be fulfilled. Hence, the matrix
BH

e Be is not strictly diagonally dominant in the mathematical
sense. However, let us look at the eigenvalues of the matrix
BH

e Be. To obtain Fig. 2, we generated 100 random error vectors
e′ with e′H e′ = 1, constructed the matrix BH

e Be, computed the
eigenvalues and sorted them in ascending order. As expected,
due to the random error vectors, there is some variation on the
values of the eigenvalues, although the variance with respect
to the average (over e′) of the eigenvalues is reasonably small.
The main issue in this example is the presence of an eigenvalue
that is much smaller than the other eigenvalues, which are more
or less of the same magnitude. We observed in our simulations
that in general, one or a few eigenvalues will be at least one
order of magnitude smaller than the other eigenvalues. Hence,
irrespective of the selected matrix W, the matrix BH

e Be is rather
ill-conditioned. This implies that, although G is full rank, max-
imum diversity can only be achieved when the signal-to-noise
ratio is extremely high, provided that G offers sufficient diversi-
fication. At practical, intermediate values of the signal-to-noise
ratio, the diversity order will be reduced according to the num-
ber of small eigenvalues. Further, as e and e′ have the same
statistical properties, this analysis implies that for square matri-
ces W, the selected matrix W has almost no impact on the error
performance.

Fig. 1. Magnitude of the elements am , m = 0, . . . , L , N = 128, Nm = 114,
Nu = L = 13, Nd = 101.

Fig. 2. Eigenvalues of BH
e Be , N = 128, Nm = 114, Nu = L = 13, Nd = 101.

In the above analysis we assumed that W is a square matrix.
In that case, both e′ and e can take all values in the space
C

Nm−Nu . When Nd < Nm − Nu , i.e., when W is no longer
square, this is no longer the case as e′ now belongs to a Nd -
dimensional subspace of C

Nm−Nu . Taking into account the
condition WH W = cINd , it follows that W forms a tight frame
[20], [21]. To optimize the error rate, we could use the redun-
dancy of the tight frame to make BH

e Be diagonally dominant.
However, the amount of redundancy in the tight frame is limited
in practice: it is defined by Nm − Nu − Nd . Taking into account
that, on the average, all non-diagonal elements in BH

e Be have
essentially the same magnitude (see Fig. 1), it is impossible
to design W to reduce the magnitude of all non-diagonal ele-
ments for all possible error vectors e. Hence, also when W is
not square, its effect on the system performance is expected to
be marginal.

IV. OPTIMIZING THE EUCLIDEAN DISTANCE

In the previous section, we showed that to optimize the
error rate performance, the minimum Euclidean distance at the
receiver needs to be maximized. However, unless the channel
is known at the transmitter, selecting the code generator matrix
resulting in the lowest error rate is a complex problem. As an
alternative, we showed that, when the channel is not known, a
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viable solution is to maximize the minimum Euclidean distance
at the transmitter.

A. Euclidean Distance at Transmitter

The last hurdle to take is to find the matrix G so that
GH BH BG = INd . To simplify this search, we use the decom-
position (4): G = UW. By enforcing the restriction AT = INd ,
we find the following restriction on W: WH UH BH BUW =
INd , as the matrices U and B are determined by the sys-
tem parameters, and thus known. To find W, we notice that
BH B = INm and UH U = INm−Nu . Hence, the condition on W
reduces to WH W = INd . When Nd = Nm − Nu , i.e., when W
is a square matrix, this implies that W must be an orthogo-
nal matrix, whereas when Nd < Nm − Nu , W must be a tight
frame [20], [21]. In both cases, many possible solutions for the
matrix W exist. This flexibility can be used to optimize other
performance measures.

B. Euclidean Distance at Receiver

To optimize the error rate performance, the minimum
Euclidean distance dmin,R at the receiver must be maximized.
In that case, we proved that the code generator matrix G has to
be selected so that AR = GH BH H̃H̃BG = INd . Because of the
dependency of the matrix AR on the channel taps h, finding G is
not straightforward, unless the channel is known. Therefore, we
only consider the case where the channel matrix H̃ is known at
the transmitter. To obtain the matrix G that results in AR = INd ,
we again decompose the matrix G into G = UW. To find W, we
use the eigenvalue decomposition of the (Nm − Nu) × (Nm −
Nu) matrix UH BH H̃H H̃BU = VH

H BU �H BU VH BU , where the
eigenvalues are real-valued and non-negative, and the matrix
VH BU is a unitary matrix. Assuming the rank of BH H̃H H̃B is
at least Nd (i.e., the channel does not contain too many spec-
tral nulls), and taking into account that the Nm × (Nm − Nu)

matrix U has orthogonal columns, we can find at least Nd

non-zero eigenvalues. We select out of the non-zero eigenval-
ues a subset of Nd eigenvalues, i.e., λH BU,n�

, � = 1, . . . , Nd

with n� ∈ {1, . . . , N − Nu}, and define vH BU,n�
as the n�-th

row of VN BU . We construct the (Nm − Nu) × Nd matrix W as
follows:

W = Z�, (28)

where the (Nm − Nu) × Nd matrix Z =
(vH

H BU,n1
, . . . , vH

H BU,nNd
), and � is a Nd × Nd diagonal

matrix: � = diag(λ
−1/2
H BU,n�

). With this construction for W,

the product GH BH H̃H H̃BG = INd . When the number of
non-zero eigenvalues exceeds the number Nd of data symbols,
many combinations to select the eigenvalues exist. Similarly
as for the case of the optimization of the minimum Euclidean
distance at the transmitter, the degree of freedom can be used
to optimize other performance measures, e.g., in [22], this
freedom is used to minimize the transmitted energy.

V. NUMERICAL RESULTS

A. Deterministic Channel

In this section, we consider the case where the channel is
deterministic and known at the transmitter side. This could
correspond to the case of transmission over a cable, where
the channel transfer function is measured and made available
to the transmitter. Hence, the code generator matrix G can
be constructed to maximize the minimum Euclidean distance
at the transmitter (Case 1) or the receiver side (Case 2) (see
section IV). In this construction, we still have some degree of
freedom, as we can select in Case 1 any matrix W that forms a
tight frame and in Case 2 out of the set of non-zero eigenvalues
of the matrix UH BH H̃H H̃BU, a subset of Nd eigenvalues. In
the following, we select in Case 2 W so that the transmit energy
is minimized [22]. Note that Case 1 and Case 2 correspond to
the normalization of the transmitted energy ET = Nd Es and
received energy ER = Nd Es , respectively (see (13)). We eval-
uate the bit error rate (BER) performance of the UW-OFDM
system for two channel models:

channel a : h(�) = ν

channel b : h(�) = νe−�

where ν is a constant of normalization so that hH h = 1. In
[23], [24] it is shown that the BER performance of UW-OFDM
depends on the used data detector, because of the redundancy
available in the frequency domain. In this paper, we consider
the sphere decoder [25] for our Monte-Carlo simulations, as it
yields essentially optimal data detection. The simulated BER
is shown in Fig. 3, assuming QPSK transmission, N = 16,
Nu = Nr = L = 2 and g = 1 carrier at each side of the fre-
quency band is not modulated as a guard band. Hence, the
number of modulated carriers equals Nm = N − 2g = 14, and
the number of data symbols transmitted per UW-OFDM block
equals Nd = Nm − Nr = 12. Further, bearing in mind that the
PEP is approximated by (16), we also plot the error probability:

B E Rth = 1

Nd

Nd∑
i=1

Q

(√
η(h)λi

Es

2N0

)
, (29)

where λi are the eigenvalues of the matrix GH BH H̃H H̃BG,
and η(h) is a factor to take into account the transceiver side
where the energy is normalized: η(h) = 1 for Case 1, and
η(h) = ER

ET
for Case 24. When the received energy is normal-

ized (this corresponds to the maximization of the minimum
Euclidean distance at the receiver), all eigenvalues are equal,

so that the BER reduces to Q
(√

η(h) Es
2N0

)
. Fig. 3 shows that

the approximated theoretical BER (29) well matches the sim-
ulated BER, which indicates that the BER performance of a
UW-OFDM system in the presence of a known channel can

4Note that the ratio η(h) in Case 2 is not equal to one, even though the chan-
nel is normalized, i.e., hH h = 1. This can be explained as follows. Because
g > 0, not all carriers are modulated, so that part of the energy of the chan-
nel cannot be used as it is connected to the unmodulated carriers. As a result,
the received energy will always be smaller than the transmitted energy, as was
shown in eqs. (11) and (12) in [22]. The reduction of the energy depends on the
channel realization h, so that also the ratio η(h) depends on the channel.



1746 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 2016

Fig. 3. Bit error probability, QPSK symbols, N = 16, Nu = Nr = L = 2,
g = 1.

easily be evaluated using (29). Further, we observe in Fig. 3
that the BER of Case 2 outperforms that of Case 1, for large
signal-to-noise ratios Es/N0. This was expected, as in Case 2,
the minimum Euclidean distance at the receiver side is maxi-
mized, which corresponds to the minimization of the error rate.
The difference between the curves is smaller in channel ’b’ than
for channel ’a’. This can be explained by evaluating the fre-
quency response of the channel: in channel ’b’, the frequency
response is reasonably flat, whereas in channel ’a’, the channel
is more frequency selective. Hence, the matrix H̃H H̃ in channel
’b’ will be ’closer’ to the identity matrix, so that the eigenvalue
spread of GH BH H̃H H̃BG will be smaller than for channel ’a’.

B. Rayleigh Fading Channel

In the case of a fading channel, the BER (29) must be
averaged over the channel statistics. The BER depends on the
channel through the factor η(h) and the eigenvalues λi of the
matrix GH BH H̃H H̃BG. Hence, to obtain the average BER in
a Rayleigh fading channel, the distribution of the eigenvalues
and/or η(h) must be known.

Let us first consider the case of a slow fading chan-
nel where the channel characteristics are estimated and fed
back to the transmitter. We select the generator matrix
G to maximize the minimum Euclidean distance at the
receiver. Hence, the BER for QPSK transmission for a

single channel realization equals B E R|h = Q
(√

η(h) Es
2N0

)
,

where η(h) = Nd(trace(UH BH H̃H H̃BU)−1)−1. We simulated
the BER through Monte-Carlo simulation, where we randomly
generated the channels h, with the real and imaginary part of
each tap of the (L + 1)-tap channel i.i.d. Gaussian distributed
so that E[hhH ] = 1

L+1 IL+1. Further, we randomly selected
data symbols and detect them using the sphere decoder. At
the same time, we computed the BER in a semi-analytical
way, where we consider 2.108 random channel realizations
and compute the corresponding η(h), with which we average
B E R|h. The results are shown in Fig. 4. As can be observed,
the semi-analytical results well correspond to the Monte-Carlo

Fig. 4. Bit error probability, Rayleigh fading, channel known at transmitter,
QPSK symbols, N = 16, Nu = L = 4, g = 2, ER = Nd Es .

simulations, indicating the theoretical expression (29) can be
used to find the BER in a fading channel5.

Although the semi-analytical BER requires less simulation
time than the Monte-Carlo simulations, it is still more com-
plex than a simple theoretical expression for the BER. However,
this latter approach requires the knowledge of the distribution
of η(h). As η(h) = Nd(trace(UH BH H̃H H̃BU)−1)−1, finding
the distribution of η(h) in an analytical way is not straight-
forward. However, in the literature, e.g. [26]–[29], it is shown
that the distribution of the fading can be approximated by a
(generalized) gamma distribution. Taking into account that the
transmission of the UW-OFDM signal over a fading channel
can be compared to the transmission of signals over correlated
fading channels, we expect that the (generalized) gamma dis-
tribution approximation will also be valid for η(h). In order
to find the distribution of η(h), we simulate 250000 random
channel realizations, compute the corresponding η(h) and use
EasyFit to fit the values of η(h) to four distributions, i.e. the
gamma distribution with two (GA(2P)) and three (GA(3P))
parameters, i.e.,

fG A(x) = (x − γ )k−1

θk(k)
e− x−γ

θ , x ≥ γ,

where γ = 0 for the 2-parameter gamma distribution, and the
generalized gamma distribution with three (GG(3P)) and four
(GG(4P)) parameters, i.e.,

fGG(x) = μ(x − γ )μk−1

θμk(k)
e−(

x−γ
θ

)μ, x ≥ γ,

where γ = 0 for the 3-parameter generalized gamma distribu-
tion. EasyFit estimates the parameters k, θ , γ and μ of the
distributions in an iterative way, based on the maximum likeli-
hood principle. In our simulations, we compared the goodness

5Note that this result is not obvious, as (29) is not necessarily accurate for
small values of η(h), because of the union-bound approximation used in the
derivation of (29) and the fact that sequences at a larger Euclidean distance are
neglected.
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TABLE I
THE DIVERSITY ORDER ACCORDING TO THE FITTED

(GENERALIZED) GAMMA DISTRIBUTION

of fit (i.e., the Kolmogorov-Smirnov, Anderson-Darling and
Chi-Squared statistics) to determine which distribution best
fits the simulated values of η(h). In all considered cases, the
generalized gamma distribution with four parameters resulted
in the best fit, whereas the gamma distribution in most cases
had the worst fit. Based on the parameters of the fitted (gen-
eralized) gamma distribution, we can obtain an analytical
expression for the BER by averaging (29) over the resulting
(generalized) gamma distribution. The accuracy of the analyt-
ical expression can only be guaranteed if the distribution well
fits in the tails, especially for small values of η(h) as the diver-
sity order is determined by the behaviour of the distribution
for small values of η(h). Therefore, we compare the parame-
ters k (for the gamma distribution) and μk (for the generalized
gamma distribution) with the diversity order extracted from the
BER curves obtained with the semi-analytical (SA) results. The
results are shown in Table I. From this table, we observe that the
diversity order obtained with the gamma distribution is not suf-
ficiently accurate to obtain an accurate analytical expression for
the BER. This is explained as the gamma distribution is known
to be less accurate in the tails of the distribution. On the other
hand, the generalized gamma distribution with four parameters
in many cases well fits the diversity order obtained through sim-
ulations. However, for some cases (i.e., for the parameter sets
N/L/Nr/g 32/6/6/3, 32/6/8/3, 32/8/8/4), the diversity order is
far from the real diversity order. We looked if there is a rela-
tionship between the accuracy of the diversity order and the
goodness of fit of the distribution, but found no correlation.
Hence, we are not able to predict if the fitted diversity order
is accurate. We numerically computed the analytical expression
for the BER based on the fitted (generalized) gamma distribu-
tion, and added the results in Fig. 4. As can be observed, the
GA(2P) and GG(3P) distributions result in a BER that is far
from the real BER. This is because the diversity orders of the fit-
ted distributions (see Table I) are considerably smaller than the
real diversity order. The GA(3P) and GG(4P) distributions bet-
ter follow the real BER, especially in the lower Eb/N0 region,
but deviate as soon as γ

Eb
N0

> 1. Hence, none of the considered
distributions is able to accurately predict the real BER for large
Eb/N0.

Note that the diversity order in Fig. 4 in general is smaller
than the maximum diversity order L + 1 predicted by the the-
ory. This can be explained as follows. In order to satisfy the
restrictions in the time-domain signal, the minimum amount
of redundancy that needs to be added in the UW-OFDM
system equals Nr = Nu . Hence, when Nr = Nu , there is not
much flexibility in selecting the generator matrix G. Therefore,

TABLE II
THE AVERAGE E[η(h)] ACCORDING TO THE FITTED

(GENERALIZED) GAMMA DISTRIBUTION

although the generator matrix offers some signal diversity,
the diversification offered by the system is insufficient to
obtain maximum diversity order. When Nr − Nu increases, the
degrees of freedom in selecting the generator matrix increases,
so that the diversity order rises, as the weakest modes, corre-
sponding to the smallest eigenvalues λH BU (see section IV-B),
can be circumvented.

Although the main goal of Fig. 4 is to evaluate the accuracy
of the theoretical expressions for the BER, we can also draw
some conclusions about the amount of redundancy that should
be added in practice. In Fig. 4, we assumed the received energy
per data symbol is constant and given by Es , i.e. the signal-to-
noise ratio Eb/N0 corresponds to the received energy per bit.
To convert the signal-to-noise ratio in Fig. 4 to the ratio of the
transmitted energy per bit/symbol to the noise level, the value of
Es(Eb) in Fig. 4 must be divided by η(h). This factor will result
in a shift of the BER curves, and a good indication for the result-
ing shift is the average (over all channel realizations) of η(h).
The average E[η(h)] is given in Table II for the three cases
shown in Fig. 4, based on the fitted parameters for the (gener-
alized) gamma distribution. We observe that E[η(h)] increases
when Nr increases. This can be explained as by increasing Nr ,
we have the flexibility to avoid the weakest modes of the chan-
nel, which correspond to the smallest eigenvalues of the matrix
UH BH H̃H H̃BU. This will improve the energy efficiency of the
system: by using the strongest modes only, less energy will be
lost in the transmission of the data symbols. Simulations have
shown that for Rayleigh fading channels, a channel will typ-
ically have only a few weak modes (i.e. eigenvalues that are
at least an order of magnitude smaller than the average of the
eigenvalues of UH BH H̃H H̃BU), whereas the other eigenval-
ues have comparable magnitude. Therefore, when Nr further
increases, the additional gain in energy efficiency will become
smaller. However, by increasing Nr , although the energy effi-
ciency improves, the bandwidth efficiency reduces, as less data
symbols are transmitted per OFDM block. In practice, to reduce
the loss in overall data rate, the DFT size N is increased, so that
the guard interval length Nu becomes much smaller than N . In
that case, a small increase of the redundancy Nr

6 will only
result in a negligible reduction of the bandwidth efficiency,
whereas the energy efficiency noticeably improves.

Until now, we assumed that the channel is known at the
transmitter. However, when the channel is not known at the
transmitter, the generator matrix cannot be selected to optimize
the Euclidean distance at the receiver. Earlier in this paper,
we have shown that as an alternative, the generator matrix
can be selected to optimize the minimum Euclidean distance
at the transmitter. In that case, η(h) = 1, and the BER given

6where Nr − Nu is smaller than or equal to the number of eigenvalues of
UH BH H̃H H̃BU that are at least an order of magnitude smaller than the average
of the eigenvalues.
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the channel equals B E R|h = 1
Nd

∑Nd
i=1 Q

(√
λi

Es
2N0

)
, where λi

are the eigenvalues of the matrix GH BH H̃H H̃BG. Hence, we
need to find the distribution of the eigenvalues λi . Taking into
account that the matrix H̃ contains the Fourier transform of
the Rayleigh faded channel taps, and the fact that the rela-
tionship between the elements of a matrix and the eigenvalues
of the matrix is non-linear, deriving closed-form expressions
for the distribution of the eigenvalues is not straightforward.
Although solutions are available through random matrix the-
ory [30] – stating that for a n × p matrix X of which the
(real and imaginary parts of the) rows of X are randomly
drawn from a p-variate Gaussian distribution, the eigenvalues
of XH X are distributed according to the Wishart distribution,
which is a generalization of the gamma distribution – this result
cannot be applied directly to the problem at hand. Because
of the redundancy in the frequency domain, the rows of the
matrix H̃BG are not independent. However, we expect that the
distribution of the eigenvalues can be approximated by a (gen-
eralized) gamma distribution. Similarly as the case where the
channel is known at the transmitter, we carried out Monte-Carlo
simulations, and our results showed that the distribution of the
(unordered) eigenvalues approximates a (generalized) gamma
distribution. However, similarly as for the distribution of η(h),
the (generalized) gamma distribution is not sufficiently accu-
rate to provide a fully analytical solution based on the fitted
distribution parameters.

When the channel is not known at the transmitter, the gener-
ator matrix G cannot be optimized to the channel. However, in
this paper, we have shown that, using the decomposition G =
UW, the generator matrix offers several degrees of freedom as
the matrix W can freely be selected provided it forms a tight
frame. In the following, we evaluate the BER performance for
two realizations of the tight frame, i.e., in Case 1, we consider
W to be the generalized harmonic tight frame with (W)k,� =

1√
Nm−Nu

e− j2π k�
Nm−Nu , and in Case 2, the matrix W is a trun-

cated identity matrix, i.e. (W)k,� = δk,�. Fig. 5 shows the BER
obtained in a semi-analytical way, where 2.108 channels are
randomly generated, and the corresponding eigenvalues λi are

computed in order to average B E R|h = 1
Nd

∑Nd
i=1 Q

(√
λi

Es
2N0

)
over λi . Comparing the two possible realizations of the matrix
W, it can be observed in the figure that the truncated iden-
tity matrix (Case 2) offers a slightly better BER performance,
although the difference is small, and for the case where Nr = L ,
the curves for the two cases overlap. This confirms the conclu-
sion from Section III-B stating that the error rate performance
is (essentially) independent of the selected matrix W for given
system parameters. Hence, the truncated identity matrix, which
is simple to implement, is a proper choice unless the matrix
W is selected to optimize other performance measures. Further,
similarly as for the case where the Rayleigh fading channel is
known at the transmitter, the diversity order increases when the
amount of redundancy is increased by increasing Nr , although
the effect is modest. The obtained diversity order is smaller than
for the case where the channel is known at the transmitter, and
also smaller than the theoretical maximum achievable diversity
order, although the diversity order is larger than one. This can
be explained as the matrix G cannot be optimized to avoid the

Fig. 5. Bit error probability, Rayleigh fading, channel unknown at transmitter,
QPSK symbols, N = 16, Nu = L = 4, g = 2.

weakest modes of the channel and offer a higher amount of
diversification, as the transmitter does not know where these
weakest modes are. As a conclusion, when the channel is not
known at the transmitter, it will be very hard if not impossible to
obtain maximum diversity order if we maximize the minimum
Euclidean distance at the transmitter.

VI. CONCLUSIONS

In this paper, we theoretically analyse the error rate per-
formance of a UW-OFDM system. Based on this analysis,
we derive the constraints to optimize the generator matrix of
the UW-OFDM system, and propose a systematic construction
method to satisfy these constraints. We show that the UW-
OFDM system offers a diversity order larger than one when
used in a frequency selective fading channel. Hence, in con-
trast with standard CP-OFDM, where no additional precoding
or channel coding is used, the diversity order of standard UW-
OFDM, where no channel coding is used, is considerably larger,
although in practice the maximum diversity order is not reached
when Nr = Nu , which is the minimum amount of redundancy
required. We also showed that we can increase the diversity
order of UW-OFDM by adding a larger amount of redundancy,
corresponding to increasing Nr − Nu . In the case where the
channel is known at the transmitter, and the generator matrix
is optimized to maximize the minimum Euclidean distance at
the receiver, the resulting diversity order will approximate the
maximum diversity order with growing Nr . However, in case
the channel is not known at the transmitter, we showed that the
error rate performance is essentially independent of the gener-
ator matrix and the increase of the diversity order as function
of Nr is moderate, so that the maximum diversity order is very
hard to obtain in this case.

APPENDIX A
PROOF OF THE FULL RANK OF THE MATRIX F̃

In the proof, we will use the following proposition:
Proposition A.1. Assume d − 1 consecutive elements of a

size-N time-domain vector c are zero. Denote C the discrete
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Fourier transform of the vector c. Then the vector C contains at
least d non-zero components.

This proposition and its proof are similar to the theorem on
the minimum weight of a BCH code, given in [31](on p. 187).
The only difference is the kernel of the Fourier transform used:
for the BCH code, the kernel of the Fourier transform is a primi-
tive element of the Galois field, whereas in this paper, the kernel
is the N -th root of unity, i.e. e j2π/N .

Now we show that the matrix F̃ has full rank.

Proof: Let us define Sm as the set of indices of Nm

modulated carriers. Hence, the components of the matrix F̃
yield

(F̃)k,m = 1√
N

e j2π
(k+N−Nu )m

N , (30)

with k = 0, . . . , Nu − 1 and m ∈ Sm . Further, the Gramian
matrix F̃F̃H equals

(F̃F̃H )k,k′ = 1

N

∑
m∈Sm

e j2π
(k−k′)m

N . (31)

Taking into account that the ranks of a matrix and its Gramian
are equal, it is sufficient to show that the Gramian matrix F̃F̃H

has full rank. Let us look closer at the matrix F̃F̃H . It is a pos-
itive semi-definite Hermitian Toeplitz matrix, as xH F̃F̃H x =
||xF̃||2 ≥ 0. Hence, the eigenvalues of the matrix F̃F̃H are
real-valued and non-negative. �

Let us assume the matrix F̃F̃H is not full rank. In that
case, at least one of the eigenvalues of F̃F̃H equals zero. This
implies a vector x �= 0, corresponding to the eigenvector of the
zero eigenvalue, exists for which xH F̃F̃H x = 0. Let us rewrite
xH F̃F̃H x:

xH F̃F̃H x =
∑

m∈Sm

∣∣∣∣∣∣
1√
N

Nu−1∑
k=0

xke− j2π
(k+N−Nu )m

N

∣∣∣∣∣∣
2

=
∑

m∈Sm

∣∣∣∣∣ 1√
N

N−1∑
k=0

x ′
ke− j2π km

N

∣∣∣∣∣
2

=
∑

m∈Sm

|X ′
m |2 (32)

where X′ = {X ′
0 . . . X ′

N−1} is the discrete Fourier transform of
x′ = {x ′

0 . . . x ′
N−1} with

x ′
k =

{
0 k = 0, . . . , N − Nu − 1

xk−N+Nu k = N − Nu, . . . , N − 1
. (33)

Hence, if xH F̃F̃H x = 0, the Nm components of X′ at posi-
tions m ∈ Sm must be zero. However, the vector x′ has N − Nu

consecutive components equal to zero, i.e., the first N − Nu

elements of the vector. Taking into account Proposition A.1,
as d − 1 = N − Nu successive components of x′ are zero,
its Fourier transform X′ must have at least d = N − Nu + 1
non-zero components, implying the maximum number of zero
components in X′ equals Nu − 1. Assuming the number of
transmitted data symbols is larger than zero, i.e., Nd > 0, and

taking into account that Nd = Nm − Nr ≤ N − Nu , it follows
that Nu < Nm . Hence, not all Nm components X ′

m with m ∈ Sm

can be zero, implying no eigenvalue of F̃F̃H equal to zero
exists, so the matrix F̃ is full rank.

APPENDIX B
PROOF OF THE RESTRICTION GH BH BG = αINd

In this appendix, we show that the minimization of the MSE
of the BLUE or LMMSE data detector in an AWGN channel
results in the requirement GH BH BG = αINd .

Proof: In [6], it is shown that the cost functions to be opti-
mized for the BLUE and LMMSE data detector in an AWGN
channel are given by

JBLU E = C1trace(GH G)trace(GH G)−1 (34)

JL M M SE = C2trace

(
C3(GH G)

trace(GH G)
+ INd

)−1

(35)

where C1, C2 and C3 are constants irrelevant for the opti-
mization. Assuming that the transmitted energy ET (13) per
UW-OFDM block equals αNd Es and taking into account that
BH B = INm , it follows that trace(GH G) = αNd . Hence, the
optimization problem reduces to

min
G

{JBLU E , JL M M SE }
s.t.trace(GH G) = αNd . (36)

Further, the squared Euclidean distance at the transmitter
(11) equals d2(z, z′) = eH GH BH BGe = eH GH Ge, implying
GH G is a positive-definite Hermitian matrix. Let us consider
the eigenvalue decomposition of GH G = V�VH ; the eigen-
values λk are positive real-valued and the eigenvector matrix V
is a unitary matrix. Applying this eigenvalue decomposition to
the cost functions JBLU E and JL M M SE , we obtain

JBLU E = C1αNd trace(V�VH )−1

= C1αNd trace[(VH V)−1�−1]

= C1αNd

Nd∑
k=1

1

λk
(37)

and similarly

JL M M SE = C2

Nd∑
k=1

1
C3

αNd
λk + 1

, (38)

which have to be optimized subject to
∑Nd

k=1 λk = αNd . Using
the Lagrange formalism, it straightforwardly follows that both
cost functions are minimized when all eigenvalues are equal,
i.e., λk = α, implying that GH G = GH BH BG = αINd . �

APPENDIX C
PROOF OF PROPOSITION III.2

Proof: Let us assume a matrix G exists so that for all
possible e, and thus also for the worst case e resulting in



1750 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 2016

the smallest minimum eigenvalue, we are able to make BH
e Be

diagonal. This implies

am =
N−1∑
k=0

e j2π km
N |(BGe)k |2 = 0, for m > 0. (39)

From the definition of am , it follows that it is the Fourier trans-
form of |(BGe)k |2. The requirement that am = a0δm can only
be fulfilled when |(BGe)k |2 is a constant, i.e. |(BGe)k |2 =
a0,∀e, or equivalently BGe = √

a0e jθe 1N , where θe is a rota-
tion angle and 1N is the vector of ones of length N . The solution
of BGe = √

a0e jθe 1N is given by

e = e0 +
N−Nd∑
�=1

wBG,�uBG,� (40)

with e0 = √
a0e jθe(BG)†1N , where (BG)† is the Penrose-

Moore pseudo-inverse of BG, the vectors uBG,� form an
(orthogonal) basis for the null space of the matrix BG, and
wBG,� are weighting coefficients. We assumed that BG has
full rank, i.e., its rank is Nd . Therefore, BG has N − Nd null
vectors. If we want the solution (40) to represent all possi-
ble realizations of e ∈ C

Nd×1 (with eH e = 1), this implies that
the null space must span the space C

Nd×1. When Nd ≤ N/2,
it follows that Nd ≤ N − Nd , so that it is possible to make
the matrix BH

e Be diagonal for all error vectors e ∈ C
Nd×1.

However, when Nd > N/2, it follows N − Nd < N/2 < Nd ,
which implies there are not enough null vectors to span the
whole space C

Nd×1. �
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