
IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018 3255

A Feature Ranking and Selection Algorithm for
Machine Learning-Based Step Counters

Stef Vandermeeren , Samuel Van de Velde, Herwig Bruneel, and Heidi Steendam, Senior Member, IEEE

Abstract— Although ultra wideband (UWB) positioning is
considered as one of the most promising solutions for indoor
positioning due to its high positioning accuracy, the accuracy
in situations with a large number of users will be reduced
because the time between two UWB position updates can be
very high. To obtain a position estimate in between these updates,
we can combine the UWB positioning with a different technology,
e.g., an inertial measurement unit (IMU) that captures data
from an accelerometer, gyroscope, and magnetometer. Previous
research using the IMU outputs for location-based services
employs the periodic behaviour of the accelerometer signal to
count steps. However, most of these algorithms require extensive
manual tuning of multiple parameters to obtain satisfactory
accuracy. To overcome these practical issues, step counting algo-
rithms using machine learning (ML) principles can be developed.
In this paper, we consider accelerometer-based step counters
using ML. As the performance and complexity of such algorithms
depend on the features used in the training and inference phase,
proper selection of the employed features is important. Therefore,
in this paper, we propose a novel feature selection algorithm,
where we first rank the features based on their Bhattacharyya
coefficients and then systematically construct a subset of these
ranked features. In this paper, we compare three ranking
approaches and apply our algorithm to different ML algorithms
employing an experimental set. Although the performance of
the evaluated combinations slightly varies for different ML
algorithms, their performance is comparable to state-of-the-art
step counters, without the need to tune parameters manually.

Index Terms— Step counter, feature selection, machine learn-
ing, accelerometer.

I. INTRODUCTION

IN THE last decade, much research effort was devoted
to accurate indoor positioning technologies to be used in

various location-based services (LBS) that require a precise
location estimate, e.g. navigation in shopping centres, hospi-
tals or airports, and asset tracking. A promising technology
is ultra wideband (UWB) [1]–[4], which is able to achieve
an accuracy of the order of tens of centimetres. However,
a problem with UWB-based positioning is that only one user

Manuscript received January 12, 2018; accepted February 1, 2018. Date
of publication February 16, 2018; date of current version March 22, 2018.
This work was supported in part by the Flemish Fund for Scientific
Research (FWO), in part by the Interuniversity Attraction Poles Program
initiated by the Belgian Science Policy Office, and in part by the EOS through
the Belgian Research Councils FWO and FNRS under Grant 30452698. The
associate editor coordinating the review of this paper and approving it for pub-
lication was Dr. Arindam Basu. (Corresponding author: Stef Vandermeeren.)

The authors are with the Department of Telecommunications and
Information Processing, Ghent University, 9000 Ghent, Belgium (e-mail: stef.
vandermeeren@ugent.be; samuel@pozyx.io; herwig.bruneel@ugent.be;
heidi.steendam@ugent.be).

Digital Object Identifier 10.1109/JSEN.2018.2807246

Fig. 1. Snippet of the acceleration magnitude (in g).

at a time can range with an anchor, so that if a large number
of users want to know their location, the time interval between
two UWB updates can be large. To obtain an estimate of
the location between these updates, other technologies can
be used. A promising approach is to use the sensors that are
available in mobile devices, such as the inertial measurement
unit (IMU) and combine the measurements of the IMU and
UWB to obtain a hybrid positioning algorithm using sensor
fusion. Depending on the level of cooperation between the
IMU and UWB sensors, the complexity of such a sensor fusion
algorithm can be very high. To obtain an approach with accept-
able complexity, the cooperation between the IMU and UWB
sensors can be kept low: the UWB position measurement is
used as prior information to the IMU positioning algorithm,
and until a new UWB measurement is available, the IMU takes
over to track the user.

The IMU is able to measure the motion and orientation of
a mobile device and can be used e.g. in a pedometer to count
the number of steps taken by a user, or in a People Dead
Reckoning application [5]–[7], which is an indoor localization
technique that combines the number of detected steps with
their length and orientation to track a user. In these applica-
tions, the IMU signal is evaluated to detect the number of steps
taken by a walking user, which is obtained by employing the
temporal variation in the acceleration vector. This temporal
variation is caused by the differences in acceleration when
the heel makes contact with the floor, when the leg makes
a swing, or when the user stands still. The resulting accel-
eration signal for a walking user exhibits a periodic pattern,
as illustrated in Figure 1. This figure shows a snippet1 of the

1In this paper we will use the term snippet for a short fragment, i.e. with
a length of a few seconds, of the measured acceleration.

1558-1748 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5073-0026

3256 IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018

magnitude of the acceleration vector corresponding to four
steps. The repetitive nature of the signal lends itself well to
extract and count steps.

In the literature, several ad hoc algorithms to count the
number of steps using this repetitive nature of the acceleration
can be found. Most of them operate in the time domain,
by detecting the peaks or zero crossings in the measured
signals, e.g. [5], [8]–[11]. However, due to noise and irregular-
ities in the measured signals — successive steps may lead to
strong differences in the measured acceleration — algorithms
that only count peaks or zero crossings in general will result
in large deviations between the number of detected steps
and the real number of steps. To improve the performance,
additional constraints were added to the algorithms, such as,
only detecting peaks above an amplitude threshold, or setting
temporal thresholds to avoid that noise, resulting in multiple
zero crossings in a short time interval, is translated into
multiple steps. A comparison between several ad hoc step
counters was made in [12]. The authors observed that the
median error rate, i.e. the median of the absolute differences
between the real and detected number of steps, was less
than 3% for all cases, and that the algorithms were more
likely to undercount than overcount. Moreover, all considered
algorithms required extensive tuning of different parameters,
which limits the practical use of the algorithms, as the optimal
parameter settings will be different for every person and
situation. Because of the practical limitations of these ad
hoc algorithms, other algorithms, based on machine learning,
are now being considered and already resulted in a few
commercially available pedometers, e.g. Fitbit and Jawbone.
These step counters all adopt the supervised learning principle,
where the algorithm must learn to fit the input data to an
output, so that the algorithm is able to predict the output when
new data is entered. To this end, the algorithm is provided with
examples of input data together with the desired output during
the training phase. Several supervised learning algorithms
exist, but up to now, only a few have been considered for step
detection and counting. In [13], a step counter was designed
using neural networks taking as input data the magnitude of
the acceleration signal, while in [14], a decision tree based
pedometer was proposed that uses as input several features
from the accelerometer and gyroscope signal. These features
are scalar numbers extracted from the measured data, and the
machine learning algorithm combines the information included
in the features to determine the number of steps. The median
error rates of these algorithms were −0.5% and −6.8%,
respectively, indicating they slightly underestimate the number
of steps. Further in [15], a support vector machine (SVM)
was used to decide whether a measured accelerometer signal
corresponds to one or more steps, or to a situation where
the smartphone measures acceleration that is not caused by
stepping, i.e. they focus on how to detect false steps, but the
algorithm is not used to count the number of steps. Although
some research can be found regarding machine learning step
counters, no comparison between different machine-learning-
based step counters is available.

The complexity of both the training phase and the infer-
ence phase of supervised learning algorithms rises with the

Fig. 2. Coordinate system smartphone.

number of used features. Therefore, a low-complexity algo-
rithm preferably employs as few as possible features. However,
mindlessly reducing the number of features can strongly affect
the performance of the algorithms. Hence, selecting which
features to be used is a crucial step. In the literature, the
features for machine learning based step counters are selected
in an ad hoc way. To the authors’ best knowledge, the optimal
selection of features for step counters has not been considered
yet. To meet these concerns, we propose in this paper a novel
algorithm to select the features. Although our algorithm is
applied to the feature selection problem in step counters,
the algorithm can easily be extended to select features for
other applications.

The rest of the paper is organised as follows. In Section II,
we define a set of features from which our method will
select the best features. Then, we explain how we use
the Bhattacharyya coefficients to rank the features, and in
Section III, we describe the method to select the final feature
set. In Section IV, we evaluate the performance of the resulting
algorithms and the conclusions will be given in Section V.

II. FEATURE RANKING

A. Feature Extraction From the Accelerometer Signal

Common to all supervised learning algorithms is that they
require as input a set of features. In this paper, we restrict
our attention to data in the form of snippets, captured by the
accelerometer contained in a smartphone, and for each snippet
we extract a set of features. The accelerometer outputs three
signals, corresponding to the acceleration in the x, y and z
direction (see Figure 2). We assume that the smartphone is
handheld in texting position so that the z-axis is approximately
aligned with gravity, i.e. the magnitude of the acceleration in
the z-direction is larger than in the x- and y-direction. We con-
sidered this orientation of the smartphone for convenience of
the processing of the experimental data during the acquisition
phase. However, this assumption is not critical for the proper
action of the proposed feature selection algorithm as long
as sufficient snippets corresponding to different smartphone
orientations are included in the training phase. The signals are
sampled at 100H z. We define the start and end points of a step
as the instants at which the acceleration magnitude crosses 1g,
i.e. the gravitational force, with a positive slope as indicated
in Figure 1. Due to measurement noise in accelerometers,
several crossings may occur for each step. To prevent that
noise will cause multiple crossings with 1g during a step,

VANDERMEEREN et al.: FEATURE RANKING AND SELECTION ALGORITHM FOR ML-BASED STEP COUNTERS 3257

TABLE I

PROPERTIES OF THE USED DATA SET

we first smoothen the measured acceleration sequences with a
3rd order low-pass Butterworth filter. The resulting sequence
of samples

ai = (ax,i , ay,i , az,i),

where aα,i is the i th filtered sample of the α component of the
acceleration, α ∈ {x, y, z}, is subdivided in shorter fragments,
i.e. snippets, in order to contain a few steps.

We select the duration of the snippets between one and three
seconds, and the snippets start and end with a 1g magnitude
crossing with positive slope. To train and test our algorithm,
we collected data corresponding to approximately 51 minutes
of walking. This data was converted in 1538 snippets, where
for each snippet, we manually determined the number of steps
contained in the snippet. This approach resulted in snippets
containing zero to five steps. The set of 1538 snippets is
randomly subdivided in two sets, i.e. a training set Strain , that
is used to build a model to predict the number of steps in
a snippet, and a test set Stest , that is used to evaluate the
performance of the trained model. In Table I, the properties
of the collected data set are shown.

The supervised learning algorithm predicts the output,
i.e. how many steps are contained in a snippet, by combining
the information contained in the features. To determine which
features are most suitable for step detection, we calculated
for each snippet in our experimental data set a large number
(i.e. 128) of features, including but not limited to the mini-
mum, maximum, mean, variance, and energy of all acceler-
ation components and the acceleration magnitude. For each
snippet, we arrange the features in a vector xi , where i is the
snippet index, i ∈ [1, |Strain |C] with |Strain |C the cardinality
of the training set Strain . In the following sections, we will
describe an algorithm to select out of this set of 128 features a
subset of features resulting in the best performance. For some
of the supervised learning algorithms, some pre-processing
is required on the features. More specifically, in algorithms
that are sensitive to scaling of features, e.g. SVM, features
that can take values from a larger range will be considered
as more important. To avoid this problem, features are often
normalised, meaning that each feature is scaled so that the
values of each feature approximately have the same range.
In this paper, this is achieved with

x ′i, j =
xi, j − μx, j

σx, j
, (1)

where xi, j is the j th component of the feature vector xi

of snippet i , with j ∈ [1, |xi |C]2 and i ∈ [1, |Strain|C].
Further μx, j and σx, j are the mean and standard deviation
of the j th feature taken over all snippets in the training data
set Strain and x′i is the normalised feature vector for snippet i .
If new measurements are carried out, the features derived
from these snippets will be normalised using the mean and
standard deviation that were determined with the training set.
In the remainder of this paper, we will restrict our attention
to normalised features.

B. Bhattacharyya Coefficient

In a supervised-learning-based step counter, the algorithm
must decide to which class a snippet belongs, i.e. how many
steps are contained in the snippet. Because different snippets
correspond to different numbers of steps in different situations,
the features can be modelled as random variables. To decide
which of the 128 features calculated in Section II-A are
suitable for step counting, we need to compare the conditional
distributions3 of the feature, assuming the snippet contains
a given number of steps, i.e. the distribution of the feature
conditioned on the class. If the conditional distributions of a
feature for the different classes show noticeable differences,
the feature can contribute to the decision process, while a fea-
ture whose conditional distribution is essentially independent
of the class, is not suitable.

A measure for the similarity between distributions is the
Bhattacharyya coefficient [16]:

dBhat, j(n, n′) =
√
√
√
√
√1− 1

√

H j,n H j,n′

1

N

N
∑

i=1

√

H j,n(i)H j,n′(i),

(2)

where n and n′ correspond to the classes (or the number of
steps in a snippet) of which the conditional distributions need
to be compared, j corresponds to the index of the feature for
which the conditional distributions are compared, H j,n(i) is
the value of the histogram of class n in the i th bin, H̄ j,n =
1
N

∑N
i=1 H j,n(i) is the average of the conditional distribution

of the feature within class n, and N is the number of bins
in the histograms for both classes n and n′. From (2), it is
clear that if the two histograms do not overlap, the coefficient
dBhat, j(n, n′) between classes n and n′ will be equal to
one, while if the histograms completely overlap, dBhat, j(n, n′)
will be zero. Hence, we expect that the best features will
be features with high Bhattacharyya coefficients between the
classes. For each of the 128 features, we determined the
conditional distribution of the feature within each class, and
computed the Bhattacharyya coefficient (2). An example is
illustrated in Table II for two features, i.e. one feature with low
similarities, thus a good feature, and one with high similarities,
thus a bad feature. Further for the two features of Table II,
the histograms for the classes of three and four steps are

2In this paper |xi |C = 128.
3These conditional distributions are determined based on the full experi-

mental data set containing all 1538 snippets.

3258 IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018

TABLE II

BHATTACHARYYA COEFFICIENT dBhat, j (n, n′), n, n′ ∈ [0, 5] FOR
TWO FEATURES (a) A GOOD FEATURE AND (b) A BAD FEATURE

Fig. 3. Two normalized histograms for snippets with three and four steps:
(a) shows an example of a feature that could be used to distinguish three and
four steps, (b) gives an example of a feature that is not useful.

shown in Figure 3. As can be observed, the histograms of
feature (b) highly overlap, resulting in dBhat,b(3, 4) = 0.12,
while for feature (a), where the distributions are clearly
distinct, dBhat,a(3, 4) = 0.64. For all other combinations of
classes, dBhat(n, n′) for feature (b) is much lower than for
feature (a). Hence, feature (b) will be less suited to discrim-
inate the number of steps, and thus for our step counting
algorithms.

C. Ranking the Features

In our investigations, we considered a large number of
features, from which we want to select the best ones. However,
because of this large set, optimally selecting the features in
a brute force way, by evaluating all possible combinations,
is NP hard. Therefore, we have to resort to suboptimal
selection algorithms. The approach we will use is to first rank
the features based on their Bhattacharyya coefficients and then
use the ranked features as input for a systematic selection
algorithm. In this section, we focus on the ranking of the
features. A first hurdle to take is that for each feature, mul-
tiple Bhattacharyya coefficients are available, i.e in a system
with M + 1 classes, we have M(M+1)

2 distinct Bhattacharyya
coefficients to consider. Hence, ranking the features with
respect to these coefficients is not straightforward. To meet
this problem, we first reduce the number of Bhattacharyya
coefficients per feature, by assuming that if we are able to
discriminate between the classes with n and n + 1 steps,
n ∈ [0, M − 1], we can also discriminate between classes
with higher step difference. The validity of this assumption is
illustrated in the example of Table II: the smallest values of the
Bhattacharyya coefficient, corresponding to low discrimination
ability between the classes, generally occur when there is
only one step difference. Therefore, in the remainder of
this paper, we restrict our attention to the evaluation of the
Bhattacharyya coefficients between classes with n and n + 1
steps, i.e. dBhat, j(n, n+ 1), n ∈ [0, M − 1]. A second issue is
the large number of features to be tested. In order to reduce
the complexity of feature selection, we first note that features
with high Bhattacharyya coefficients are more likely to give
good results in our step counting algorithms. Therefore, before
we start selecting features, we rank the features using one of
the following three ranking approaches, and limit the number
of features to be further processed.
• Approach 1: In this first approach, for each value of n,

we first rank the features in descending order of their
Bhattacharyya coefficients dBhat, j (n, n + 1).

pn = argsort
j∈1:|xi |C

(dBhat, j(n, n + 1)), (3)

where |xi |C is the number of features and argsort (u j)
is the function that returns the indices of the vector u
that would sort the array, i.e. the vector pn contains the
indices of the features with the Bhattacharyya coefficients
dBhat, j(n, n + 1) sorted in descending order:

dBhat,pn(l)(n, n + 1) ≥ dBhat,pn(l+1)(n, n + 1), (4)

for l ∈ [1, |xi |C − 1]. Hence, we obtain M vectors pn,
n ∈ [0, M − 1]. In the next step, we limit the number of
elements in pn to K , i.e. p[K]n = pn(1 : K): for each n,
only the K features with the highest Bhattacharyya coeffi-
cients, i.e. the highest ranked features, are kept for further
processing. We arrange the vectors p[K]n in a M × K
matrix:

P =

⎡

⎢
⎣

p[K]0
...

p[K]M−1

⎤

⎥
⎦ (5)

VANDERMEEREN et al.: FEATURE RANKING AND SELECTION ALGORITHM FOR ML-BASED STEP COUNTERS 3259

and convert this matrix P into a vector v by reading out
the matrix column-wise, i.e. v = P(:), or

v = [

p0(1) · · · pM−1(1),

p0,2 · · · pM−1(2) · · · p0(K) · · · pM−1(K)
]

. (6)

If a feature occurs in more than one vector p[K]n , because
it is suitable to distinguish between more than two classes,
its index occurs more than once in the vector v. We only
keep the first occurrence, and remove the duplicates from
v to obtain the final ranked feature set �r,1. This set �r,1
contains maximally K ′ = M · K different features.

• Approach 2: Similarly as in Approach 1, we sort for each
n the features in descending order of their Bhattacharyya
coefficients dBhat, j(n, n+1) to obtain the vectors pn (3).
Then, we define for each n a score vector sn that contains
for each feature j its position in the ranked list pn :

sn, j = l|[pn(l) = j], (7)

i.e. the feature j with the highest dBhat, j(n, n + 1)
gets the score ′1′, while for the feature with the lowest
dBhat, j(n, n+1), the score is ′|xi |C ′. In the next step, we
average for each feature the score over the different n:

s j = 1

M

M−1
∑

n=0

sn, j (8)

and sort the scores in ascending order to obtain the
vector p′ of feature indices

p′ = argsort
j=1:|xi |C

(s j). (9)

Finally, we limit the number of features to be further
processed to K ′ and obtain the final ranked feature
set �r,2 of the K ′ highest ranked features as

�r,2 = p′(1 : K ′). (10)

• Approach 3: In this last approach, we first com-
pute for each feature the average Bhattacharyya coeffi-
cient d Bhat, j over the different n:

d Bhat, j = 1

M

M−1
∑

n=0

dBhat, j(n, n + 1). (11)

Then, we sort the features in descending order of average
Bhattacharyya coefficient:

p′′ = argsort
j=1:|xi |C

(d Bhat, j) (12)

and finally, we limit the number of features to be further
processed by K ′, resulting in the final ranked feature
set �r,3 with the highest ranked features:

�r,3 = p′′(1 : K ′). (13)

The three approaches all have advantages and drawbacks. For
example, a feature that is reasonably good in distinguishing
multiple classes, but is not ranked in the top ten in one of the
vectors pn , will not be considered in Approach 1, while it may
be included in the other two approaches because its average
score is good. On the other hand, Approach 1 will contain

a feature that is extremely good in discriminating between
one set of classes, but is weak in distinguishing between
other classes, while the two other approaches might neglect
this feature as its average score is bad. In Section IV, we
will compare the obtained performance for the three ranking
approaches.

III. FEATURE SELECTION

A. The Algorithm

In the previous section, we introduced three approaches
to rank the features, each resulting in a ranked set �r,i ,
i = {1, 2, 3}, of at most K ′ features. In this section,
we describe an algorithm that starts from one of the ranked
sets �r,i to select a subset � f,i ⊂ �r,i of features that results
in optimal performance with a limited number of features.
As this selection algorithm can be used irrespective of the
used ranking approach, we drop the index i in this section to
simplify notations.

In this feature selection algorithm, we will sequentially
update the final set � f of features. To evaluate the perfor-
mance of the selected subset � f , we randomly select 80%
of the experimental data set (Table I), i.e. |Strain |C = 1230
snippets, to train the supervised algorithm, while the other
|Stest |C = 308 snippets are used to evaluate the performance
of the selected feature set � f . To minimize the influence of
the selected training set, we repeat the construction of � f

100 times using different randomly selected training sets. The
overall performance, i.e. the snippet accuracy Ps, f , which
equals the number of snippets with the correct number of
estimated steps divided by the total number of snippets, is
found by averaging the performance over the 100 runs. By def-
inition Ps, f ≤ 1 or expressed in percentage Ps, f ≤ 100%. The
closer Ps, f gets to 100%, the higher the accuracy of the step
counting algorithm.

The algorithm to update the final feature set � f consists
of three phases, i.e. the initialisation phase, the addition phase
and the deletion phase.

1) Initialisation phase: First, the algorithm computes the
features and their Bhattacharyya coefficients to be able
to rank them with one of the approaches of Section II-C,
resulting in the ranked set �r . Then, it creates the final
feature set � f , which in this initial stage contains the
first ranked feature only, i.e. the feature with the best
score of the ranked set �r , and it removes this feature
from �r . Employing the set � f , we train the supervised
learning algorithm with Strain , and evaluate the accuracy
of the trained model with Stest .

2) Addition phase: In the next phase, new features from
the ranked feature set �r are tested sequentially, and
added to � f if they improve the snippet accuracy
significantly, i.e. if Ps,temp > Ps, f + threshold , where
Ps,temp is the snippet accuracy obtained after training
the model with the temporary feature set

�temp = � f ∪ {xnew},
and xnew the new feature that is evaluated. We distin-
guish two cases for xnew: 1) The temporary feature xnew

3260 IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018

did result in Ps,temp > Ps, f +threshold . The temporary
feature is retained in the set � f , i.e.

Ps, f ← Ps,temp (14)

� f ← �temp (15)

�r ← �r \ {xnew}. (16)

Next, we restart testing the feature with the highest rank
in �r that was not added to � f in a previous stage.
This look-back phase is introduced because a feature
that was not selected in a previous phase, as e.g. it
is highly correlated with one feature or a combination
of features that is already present in � f and therefore
did not have noticeable influence on the performance,
might have added value in combination with a feature
that has a lower ranking. In our tests, on average 14.8%
of the features that were added to the final set, were
not added the first time they were considered in the
addition phase. 2) The previously tested feature was not
included in � f : the algorithm proceeds with the next
feature in �r with a lower rank than the previously
tested feature, i.e. the look-forward phase. Every time
the algorithm adds a feature xnew to � f , it removes the
feature from �r .

3) Deletion phase: During the addition phase, all features
in �r were tested and added to � f if they resulted in
an improved Ps, f . In the deletion phase, we test if the
removal of a feature in � f degrades Ps, f , to check if
we can reduce the number of features in the final set
without affecting the performance. To this end, we start
by setting

�temp = � f \ {xdel},
where xdel is the first feature that was added to the final
set, and determine the snippet accuracy Ps,temp using
�temp to train the machine learning algorithm.
Again we can distinguish two cases. 1) Ps,temp < Ps, f ,
which means that the removal of xdel degraded the
performance. Hence, we must keep this feature, i.e. � f

does not change and we set xdel equal to the next
feature in � f (look-forward phase). 2) Ps,temp ≥ Ps, f ,
implying xdel can safely be removed without affecting
the performance. In this case:

Ps, f ← Ps,temp (17)

� f ← �temp (18)

�r ← �r ∪ {xnew} (19)

i.e. we remove xdel from � f , add xdel to �r , and set xdel

equal to the feature of � f that was added the longest
ago (look-back phase). In our tests, on average 21.0%
of the features that were selected in the addition phase,
were removed in the deletion phase. The reason why
this feature can be deleted is because a combination of
other features that were added to � f in the addition
phase contain similar information so that this feature is
obsolete. In contrast to the addition phase, we do not
use a threshold in the deletion phase. This procedure is

Fig. 4. a) Snippet accuracy (in %) and b) training time (in seconds) as
function of the threshold in the addition phase.

continued until the last feature in � f is evaluated and
not removed from � f .

If none of the features from � f was removed, we stop the
selection algorithm. In the other case, we go back to the
addition phase followed by a deletion phase. This approach
yields optimal performance in the sense that adding another
feature from �r or removing a feature from � f will not
improve the accuracy. We noticed that in most cases, features
were removed from the final set � f in the first deletion phase
only and that on average only 2.1% of the features were added
in the second addition phase or later. This means that typically
the addition and deletion phase need to be executed only twice.
After the final feature set is determined using our feature
selection algorithm, this feature set � f will be used to train a
model from the entire experimental data set Strain ∪ Stest with
the machine learning algorithm that was used to find these
features. This model can then be used to estimate the number
of steps in snippets derived from new data in the inference
phase.

In the addition phase we introduced a threshold. As the
performance of the set � f is determined using the test
sets Stest extracted from our experimental data set, allowing
the addition of features with limited impact on the performance
might result in a final feature set that is overtrained on our
experimental data set. Although such an overtrained feature
set performs well for the considered data set, it probably
will result in a degraded performance when new data needs
to be evaluated in the inference phase. Besides preventing
overtraining, with this threshold, we can also reduce the
training time. In Figure 4, we show the snippet accuracy and
training time as a function of this threshold. These results were
obtained by averaging the snippet accuracy and training time
of our feature selection algorithm over four different machine
learning algorithms (i.e. Decision Tree, Linear SVM, RBF
SVM and the Quadratic Discriminant Analysis algorithm) for
several values of this threshold. As can be observed, for a

VANDERMEEREN et al.: FEATURE RANKING AND SELECTION ALGORITHM FOR ML-BASED STEP COUNTERS 3261

TABLE III

FEATURES IN � f,1 ∪� f,2 ∪� f,3, WHERE � f,i IS THE FINAL FEATURE SET FOR RANKING APPROACH i ,
WHEN THE FEATURE SELECTION ALGORITHM IS USED ON THE RBF SVM ALGORITHM

threshold of 0.2%, the training time is halved, while the snip-
pet accuracy only slightly decreases with approximately 0.5%.
Larger thresholds only yield limited gain in training time at
the cost of larger performance degradation. As a trade-off
between accuracy and training time, we set in this paper the
threshold to 0.2%.

B. Discussion

To illustrate the feature selection algorithm from
Section III-A, we apply it to our step counting problem.
In this example, we select K = 10, K ′ = 50, M = 5 and
unless stated otherwise, we use a radial basis function support
vector machine (RBF SVM) with classification as learning
method. Table III gives an overview of the features that were
selected for the final feature set, for one or more of the ranking
approaches of section II-C. Features 1− 6 are extracted from
the time-domain signal, while features 7 − 16 are obtained
from the frequency domain signal. Notice that almost all
features in this table are derived from the z-component
az of the acceleration, or the magnitude |a|. This can be
explained by the fact that the smartphone was approximately
horizontally handheld during the measurements, so that the
up-and-down movement due to a step is mainly present in
the z-component. The signal magnitude area (SMA) of the
FFT of the acceleration magnitude is defined as:

SM A f =
∑F

j=1 |a f,x(j)| + |a f,y(j)| + |a f,z(j)|
F

,

where a f,α(j), α ∈ {x, y, z}, is the j th sample of the
Fourier transform of the α component of the acceleration, and
F is the number of samples in the Fourier transform of the
acceleration components. Feature 3, i.e. th|a|, corresponds to
the number of samples in the snippet where the amplitude |a|
is above a threshold. To determine the optimal range of this
threshold, we apply our feature selection algorithm to the

TABLE IV

SUPERVISED LEARNING ALGORITHMS

Fig. 5. Snippet accuracy averaged over different machine learning algorithms,
for the three ranking approaches and the average snippet accuracy over the
three ranking approaches as function of the threshold of th|a|.

machine learning algorithms from Table IV, and for each
ranking approach, we average the resulting snippet accuracy
over the different machine learning algorithms. In Figure 5,
we show the resulting average snippet accuracy for the three
ranking approaches as function of the threshold of th|a|.
Further, we show the snippet accuracy averaged over the three
ranking approaches. Although the snippet accuracy slightly

3262 IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018

TABLE V

FINAL FEATURE SET � f,i FOR THE THREE APPROACHES
WHEN THE FEATURE SELECTION ALGORITHM IS

USED ON THE RBF SVM ALGORITHM

TABLE VI

APPROACH 1: FEATURES FROM � f,1 FOR THE RBF-SVM
ALGORITHM THAT BELONG TO THE TEN BEST FEATURES

TO DISTINGUISH BETWEEN n AND n + 1 STEPS

(BHATTACHARYYA COEFFICIENT IS

MENTIONED BETWEEN BRACKETS)

differs for the three ranking approaches, it is clear that the
optimal range of the threshold is between 1.02g and 1.07g.
This is in line with the results from [12], where an optimal
threshold of 1.07g was found. In Figure 5, we observe that
a threshold of 1.05g results in the highest snippet accuracy.
Hence, in the remainder of the paper, we use this value for
the threshold in th|a|.

The list of features, given in Table III, contains the union
� f,1 ∪ � f,2 ∪ � f,3 of the final feature sets � f,i , where
� f,i is obtained by using as input for the feature selection
algorithm the ranked feature set �r,i obtained with ranking
approach i , for the RBF SVM classification algorithm. Let us
now compare the different � f,i . The selected features for each
ranking approach are listed in Table V. As can be observed,
the number of features in the three final sets � f,i , i = {1, 2, 3},
is similar. The table reveals there is only a limited overlap
between the three sets: only two features, i.e. features 3 and 8,
appear in all three sets, while three appear in two sets, but the
majority of the features are selected for only one of the final
sets. Although 12 out of the 16 features listed in Table III
occur in the three ranked sets �r,i , i = {1, 2, 3}, our selection
algorithm picks different features. This can be explained by
noting that in the list of features from Table III, some features
are closely related, e.g. features 14 and 15. It can be observed
that feature 14 was selected for Approach 1, while Approach 2
preferred feature 15. Hence, the selection algorithm is able to
recognize similar features and picks one feature out of the
subset of similar features, while the others are not selected
unless they introduce a performance gain. Which feature is
selected, depends on its ranking and thus on the used ranking
approach. Therefore, although the overlap between the final
feature sets � f,i seems limited, we expect that the effect on
the performance will be small as several of the features are
more or less interchangeable.

To obtain a high accuracy, the features that are selected for
the final feature set must be able to discriminate between the
different classes. Hence, we take a closer look at the features
selected for Approach 1, and look which feature is helpful
in the decision process between two classes. Table VI gives

TABLE VII

CONFUSION MATRIX FOR APPROACH 1 USING RBF SVM

TABLE VIII

CONFUSION MATRIX FOR APPROACH 2 USING RBF SVM

an overview of the features from the final set that belong to

the top ten features for different n, i.e. that belong to p[K]n ,
together with their Bhattacharyya coefficients. As can be
observed, features 3 and 4 are not only able to discriminate
between two and three steps, but also between three and four,
and four and five steps, while these features are less helpful
to distinguish between no steps and one step, and one step
and two steps. The table suggests that it will be easier to
discriminate between no steps and one step, and one step
and two steps, as the features in these rows have very high
Bhattacharyya coefficients, while the coefficients are much
lower for the other three rows. However, a high Bhattacharyya
coefficient does not always guarantee a high accuracy. This
is illustrated in Tables VII and VIII, where the confusion
matrices are shown. These confusion matrices show how the
errors are distributed over the classes, for Approaches 1 and 2
using RBF SVM with classification, respectively. For example,
for Approach 1, our algorithm predicted for 99.9% of the
snippets with zero steps that the snippet had zero steps, while
for 0.1% of the snippets with zero steps, the algorithm pre-
dicted one step. Although we expected that it would be easier
to distinguish between zero and one, and one and two steps
because of the high Bhattacharyya coefficients of the features,
we notice from the confusion matrices of both approaches that
the snippets with one step are most often assigned the wrong
number of steps, i.e. the accuracy for class 1 is 79.6% for
Approach 1 and only 77.9% for Approach 2. Yet we find
that the overall snippet accuracy Ps, f for both approaches
is high: Ps, f = 97.2% and Ps, f = 97.7% for Approach 1
and 2 respectively. A reason for this behaviour is that in our
data set only 1.30% of the snippets contained one step (this
only happens at the beginning or end of a walk), so that the
supervised learning algorithm had too few snippets to train on.
We expect that when more snippets with one step are used

VANDERMEEREN et al.: FEATURE RANKING AND SELECTION ALGORITHM FOR ML-BASED STEP COUNTERS 3263

TABLE IX

ACCURACY COMPARISON OF DIFFERENT MACHINE LEARNING ALGORITHMS

in the training phase, this accuracy will improve. However,
although the accuracy for one step is quite low, the overall
snippet accuracy Ps, f for both approaches is still high because
so few snippets with one step are present.

IV. RESULTS

In this section, we compare the performance of machine-
learning-based step counters employing the proposed system-
atic feature selection algorithm from Section III-A. We apply
the selection algorithm to the nine supervised-learning algo-
rithms listed in Table IV. All but one of these algorithms are
classification techniques, i.e. the output of the algorithm is
an integer value (the number of steps), and one algorithm is
a regression technique. Regression algorithms output a real
number, which we round to the nearest integer to obtain
the prediction of the number of steps. For each of the con-
sidered machine learning algorithms, we rank the features
using the three approaches from Section II-C, and determine
the final feature sets � f using the selection algorithm from
Section III-A. First, we define the performance metrics that
are used to compare the different step counting algorithms.
Next, we investigate which combination of ranking approach
and machine learning algorithm results in the step counter with
the highest snippet accuracy. Finally, we also compare our best
algorithm with state-of-the-art step counters.

In this paper, we characterise the performance of our
algorithm with two metrics. The first one is the snippet
accuracy Ps, f , as employed in the feature selection algorithm
in Section III-A; this is the ratio of the number of snippets
for which the predicted number of steps was correct, and the
total number of snippets. The second performance metric is
the step error, which is defined as the ratio of the difference
between the estimated and the correct total number of steps
summed over all snippets, and the correct total number of
steps in all snippets. Although the two metrics are correlated,
i.e. a high snippet accuracy will probably result in a low
step error, situations may occur where a small step error
corresponds to a lower snippet accuracy. This will happen
when in one snippet, the number of steps is overestimated,
while in another snippet it is underestimated. Although the
snippet accuracy in such a case can be rather low, the step
error will be small because the errors cancel out. In Table IX,
the snippet accuracy and step error are shown for the different

supervised learning algorithms combined with the feature
selection algorithm from Section III-A using the three ranking
approaches from Section II-C, as well as for a benchmark.
As the benchmark, we consider for each supervised learning
algorithm the case where all 128 features were used to classify
the snippets. A negative step error in this table indicates
the number of steps was undercounted, while a positive
step error indicates it was overcounted. From Table IX, it
follows that Approach 1 in combination with the RBF SVM
regression algorithm results in the highest snippet accuracy,
i.e. Ps, f = 97.7%, and that Approach 3 combined with the
linear SVM algorithm resulted in the lowest performance,
i.e. Ps, f = 91.6%. If we compare the three approaches with
the benchmark, we can see that for the majority of the cases,
our algorithm resulted in a better performance. Moreover, we
notice that all combinations of machine learning algorithms
and ranking approaches result in a low step error, implying
that all considered combinations are suitable for applications
where only the total number of steps is important. To find
the best ranking approach, we average the snippet accuracy
over the different machine learning algorithms. We obtain that
Approach 2 has the best average performance, followed by
Approach 1 and then Approach 3.

Finally in Table X we compare the RBF SVM regression
algorithm trained with the features selected using the 2nd

ranking approach, with current state-of-the-art algorithms,
i.e. the peak detection (PD) algorithm from [8], and the finite
state machine (FSM) algorithm from [9]. To simplify the
comparison between the three algorithms, we gathered a new
validation set with in total 1000 steps. We trained the RBF
SVM regression algorithm with the complete first data set
of 1538 snippets (Table I), and evaluated the performance
using the new validation set. For the other two algorithms,
in a first stage, we used the parameter values mentioned in
the respective papers. This approach resulted in 873 steps
detected with the PD algorithm, 916 steps detected with the
FSM algorithm, and 986 steps with our machine learning
method (ML). The step errors are mentioned in the first row
of Table X. We clearly see that our algorithm outperforms
the other methods. The lower performance for the PD and
FSM method can be attributed to the used parameter setup:
we used the parameters from [8], [9], which were tuned to
their test persons. To improve the performance of the PD and

3264 IEEE SENSORS JOURNAL, VOL. 18, NO. 8, APRIL 15, 2018

TABLE X

COMPARISON MACHINE LEARNING ALGORITHM
WITH AD HOC ALGORITHMS

FSM method, we tune the parameters using the validation set.
Compared to the parameter settings of [8] and [9], our tuning
noticeably improves the performance, as can be observed in
the last row of Table X. We can conclude that the performance
of the algorithm considered in this paper is similar to that of
state-of-the-art algorithms, although the benefit of the method
proposed in this paper is the absence of parameters to be tuned
manually.

V. CONCLUSIONS

In this paper, we proposed a method to systematically
build a feature set for a machine-learning-based step counter.
We used the Bhattacharyya coefficient to identify the features
that could potentially be useful for step counting, and proposed
three ranking approaches for the features as well as a selection
method, which uses these rankings, to determine the features
to be used by the step counter. To illustrate the potential of the
proposed algorithm, we compared different machine learning
algorithms using the selected features in terms of accuracy.
The accuracies obtained with the different combinations of
machine learning algorithm and ranking approach are promis-
ing: compared to state-of-the-art algorithms that were tuned
to our evaluation set, our algorithm achieved similar perfor-
mance. We also showed that the performance of these state-of-
the-art algorithms severely degrades when not properly tuned,
while the machine learning algorithms considered in this paper
can easily cope with changing situations, e.g. different persons,
different carrying positions and different activities, by adding
additional data to the training set.

REFERENCES

[1] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 37, no. 6, pp. 1067–1080, Nov. 2007.

[2] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning
systems for wireless personal networks,” IEEE Commun. Surveys Tuts.,
vol. 11, no. 1, pp. 13–32, 1st Quart., 2009.

[3] M. Kok, J. D. Hol, and T. B. Schön, “Indoor positioning using ultraw-
ideband and inertial measurements,” IEEE Trans. Veh. Technol., vol. 64,
no. 4, pp. 1293–1303, Apr. 2015.

[4] G. Du, P. Zhang, and D. Li, “Human–manipulator interface based on
multisensory process via Kalman filters,” IEEE Trans. Ind. Electron.,
vol. 61, no. 10, pp. 5411–5418, Oct. 2014.

[5] T. Do-Xuan, V. Tran-Quang, T. Bui-Xuan, and V. Vu-Thanh,
“Smartphone-based pedestrian dead reckoning and orientation as an
indoor positioning system,” in Proc. Int. Conf. Adv. Technol. Com-
mun. (ATC), Oct. 2014, pp. 303–308.

[6] H. Zhang, W. Yuan, Q. Shen, T. Li, and H. Chang, “A handheld inertial
pedestrian navigation system with accurate step modes and device poses
recognition,” IEEE Sensors J., vol. 15, no. 3, pp. 1421–1429, Mar. 2015.

[7] P. Kasebzadeh, C. Fritsche, G. Hendeby, F. Gunnarsson, and
F. Gustafsson, “Improved pedestrian dead reckoning positioning with
gait parameter learning,” in Proc. 19th Int. Conf. Inf. Fusion (FUSION),
Jul. 2016, pp. 379–385.

[8] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and
accurate indoor localization method using phone inertial sensors,” in
Proc. ACM Conf. Ubiquitous Comput., 2012, pp. 421–430.

[9] M. Alzantot and M. Youssef, “UPTIME: Ubiquitous pedestrian track-
ing using mobile phones,” in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), Apr. 2012, pp. 3204–3209.

[10] H.-H. Lee, S. Choi, and M.-J. Lee, “Step detection robust against the
dynamics of smartphones,” Sensors, vol. 15, no. 10, pp. 27230–27250,
2015.

[11] E. M. Diaz and A. L. M. Gonzalez, “Step detector and step length
estimator for an inertial pocket navigation system,” in Proc. Int. Conf.
Indoor Positioning Indoor Navigat. (IPIN), Oct. 2014, pp. 105–110.

[12] A. Brajdic and R. Harle, “Walk detection and step counting on
unconstrained smartphones,” in Proc. ACM Int. Joint Conf. Pervasive
Ubiquitous Comput., 2013, pp. 225–234.

[13] J. Kupke, T. Willemsen, F. Keller, and H. Sternberg, “Development
of a step counter based on artificial neural networks,” J. Location
Based Services, vol. 10, no. 3, pp. 161–177, 2016. [Online]. Available:
http://dx.doi.org/10.1080/17489725.2016.1196832

[14] J. Lin, L. L. H. Chan, and H. Yan, “A decision tree based pedometer
and its implementation on the android platform,” in Proc. Comput. Sci.
Inf. Technol., 2015, pp. 73–83.

[15] Y. Zhen-Jie, Z. Zhi-Peng, and X. Li-Qun, “An effective algorithm to
detect abnormal step counting based on one-class SVM,” in Proc. IEEE
17th Int. Conf. Comput. Sci. Eng. (CSE), Dec. 2014, pp. 964–969.

[16] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bull. Calcutta
Math. Soc., vol. 35, no. 1, pp. 99–109, 1943, Art. no. 14.

Stef Vandermeeren was born in Jette, Belgium,
in 1992. He received the B.E. degree and the
M.Sc. degree in electrical engineering from Ghent
University, Ghent, in 2013 and 2015, respectively,
where he is currently pursuing the Ph.D. degree with
the Department of Telecommunications and Digital
Information Processing. His research interests are in
the general area of sensor fusion, indoor localization,
and machine learning.

Samuel Van de Velde was born in Ghent, Belgium,
in 1987. He received the B.E. degree from Vrije
Universiteit Brussel, Brussels, Belgium, in 2008,
and the M.Sc. degree in electrical engineering
from Ghent University, Ghent, in 2010, where
he is currently pursuing the Ph.D. degree with
the Department of Telecommunications and Digital
Information Processing. His research interests are in
the general area of signal processing, optimization,
algorithm design, and cooperative localization.

Herwig Bruneel was born in Zottegem, Belgium,
in 1954. He received the master’s degree in electrical
engineering, the master’s degree in computer sci-
ence, and the Ph.D. degree in computer science from
Ghent University, Belgium, in 1978, 1979, and 1984,
respectively. He is a Full Professor with the Faculty
of Engineering and Architecture and the Head of the
Department of Telecommunications and Information
Processing, Ghent University, where he also leads
the SMACS Research Group.

He has co-authored the book Discrete-Time Mod-
els for Communication Systems Including ATM (Boston: Kluwer Academic
Publishers, 1993) with B. G. Kim. His main personal research interests include
stochastic modeling and analysis of communication systems and discrete-time
queueing theory.

Since 2009, he has been holding a career-long Methusalem Grant from the
Flemish Government at Ghent University, specifically on stochastic modeling
and analysis of communication systems.

VANDERMEEREN et al.: FEATURE RANKING AND SELECTION ALGORITHM FOR ML-BASED STEP COUNTERS 3265

Heidi Steendam (M’01–SM’06) received the M.Sc.
degree in electrical engineering and the Ph.D. degree
in applied sciences from Ghent University, Ghent,
Belgium, in 1995 and 2000, respectively. In 2015,
she joined Monash University as a Visiting Pro-
fessor. Since 1995, she has been with the Digi-
tal Communications Research Group, Department
of Telecommunications and Information Process-
ing, Faculty of Engineering, Ghent University,
Belgium, first in the framework of various research
projects and since 2002 as a Professor of Digital
Communications.

She is the author of more than 150 scientific papers in international journals
and conference proceedings, for which she received several best paper awards.

Her main research interests are in statistical communication theory, carrier
and symbol synchronization, bandwidth-efficient modulation and coding,
cognitive radio and cooperative networks, positioning, and visible light
communication.

Since 2002, she has been an Executive Committee Member of the
IEEE Communications and Vehicular Technology Society Joint Chapter,
Benelux Section, the Vice Chair since 2012, and the Chair since 2017.
She was active in various international conferences as the Technical Pro-
gram Committee Chair/Member and the Session Chair. In 2004 and 2011,
she was the Conference Chair of the IEEE Symposium on Communi-
cations and Vehicular Technology in the Benelux. From 2012 to 2017,
she was an Associate Editor of the IEEE TRANSACTIONS ON COMMU-
NICATIONS and the EURASIP Journal on Wireless Communications and
Networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

