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As the positioning accuracy of a visible light positioning (VLP) system is highly susceptible to changes in 

the orientation of the receiver, accurate knowledge of the receiver orientation is required. In practice, the 

orientation of the receiver is estimated with an external orientation estimation device. However, these 

devices generally suffer from drift and misalignment, causing an uncertainty in the measured orientation 

that will degrade the performance of standard positioning algorithms. In this paper, we derive a novel 

positioning algorithm that takes into account the effect of the orientation uncertainty. To this end, we 

need to cope with the non-linear relationship between the received signal strength (RSS) and the ori- 

entation uncertainty, which makes the likelihood function of the RSS, required to derive the maximum 

likelihood (ML) estimator, hard to obtain. To solve this issue, we consider the first and second-order Tay- 

lor series expansion of the RSS. Although the accuracy of the second-order approximation is better than 

the first-order approximation, the first-order approximation results in a closed-form expression for the 

likelihood function, while this is not possible with the second-order approximation. Because of this, we 

derive the ML estimator using the first-order approximation, and employ the multivariate gradient de- 

scent algorithm to obtain the position estimate. Computer simulations show that the proposed algorithm 

outperforms state-of-the-art VLP algorithms subject to orientation uncertainty. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

During the last decade, visible light positioning (VLP) received

n increasing amount of attention. Compared to other indoor posi-

ioning approaches, it has several advantages [1] . Due to their long

ife-time and energy efficiency, visible light LEDs are gradually re-

lacing traditional light sources for illumination. As VLP can coex-

st with lighting systems, this will reduce the installation cost. Fur-

her, VLP systems suffer less from interference as light is blocked

y opaque walls. Finally, due to the directionality of the transmitter

nd the confine field-of-view (FOV) of the receiver, VLP systems are

ble to accurately estimate the receiver’s position. These properties

ake VLP a promising alternative for indoor positioning, and sev-

ral positioning algorithms have been proposed in the literature,

.g. [2–4] . 

Most VLP approaches extract the position from the received sig-

al strength (RSS). However, the RSS not only depends on the posi-

ion of the receiver, but also on its orientation. Most works on VLP
∗ Corresponding author at: Telecommunications and Information Processing De- 

artment of Ghent University, Ghent, Belgium. 
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estrict their attention to the case where the orientation of the re-

eiver is parallel to the transmitter or the ceiling [5–10] , and some

ecent works [11–14] consider the performance of the VLP system

hen the receiver is tilted. In [12] , a method to compensate for the

hange of the RSS, caused by the tilted orientation, is proposed and

he conclusion is that the tilting only results in a slight degradation

f the performance, while [13,14] take advantage of angular diver-

ity provided by the tilted orientation of the receiver to improve

he performance. However, all these works assume the receiver’s

rientation is fixed and known, which is not realistic in practice. In

ractical situations, the orientation of the receiver is not fixed and

erfectly known due to the following reasons. First, the receiver

ill be attached to a carrier or carried by a user, implying the ori-

ntation of the receiver may change during the movement of the

eceiver. Secondly, the external device to measure the orientation

f the receiver will often be a Micro-Electro-Mechanical System

MEMS)-based inertial measurement unit (IMU), because of its low

rice and low power consumption, and the ease of integrating it

n the receiver. However, MEMS-based inertial sensors experience

evere biases and drift problems, leading to uncertainties in the

rientation tracked by IMUs [15] . As a conclusion, the orientation

s not perfectly known but is subject to noise. As this orientation

https://doi.org/10.1016/j.sigpro.2019.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.02.014&domain=pdf
mailto:shengqiang.shen@ugent.be
https://doi.org/10.1016/j.sigpro.2019.02.014
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Fig. 1. System model. 
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1 SO (3) represents the 3D rotation group. 
2 The assumption that the Euler angle error vector is zero-mean Gaussian dis- 

tributed is confirmed in [22–24] , where histograms of Euler angle errors were eval- 

uated. 
uncertainty will affect the positioning performance of state-of-the-

art algorithms, the uncertainty should be taken into account when

designing a positioning algorithm. To the best of our knowledge,

no other works considered the effect of orientation uncertainty on

VLP performance. 

In this paper, we propose a novel position estimation algorithm

that takes into account the effect of the orientation uncertainty

and that is based on the maximum likelihood (ML) principle. As

the relationship between the RSS and the orientation of the re-

ceiver is highly non-linear, finding the likelihood function of the

RSS, required to derive the ML estimator, is hard. To find a closed-

form approximation for this likelihood function, we model the ori-

entation uncertainty using concepts from the Lie algebra [16] and

approximate the non-linear relationship between the RSS and ori-

entation uncertainty using the Taylor series expansion of the RSS.

The performance of the proposed estimator is compared to that

of state-of-the-art estimators that are subject to orientation un-

certainty, and the results show that the proposed algorithm out-

performs the other algorithms. The paper is organized as follows.

The system model and the orientation uncertainty model are pre-

sented in Section 2 . The effect of the orientation uncertainty on

the channel gain and the RSS are evaluated in Section 3 . In this

section, we also evaluate two approximations based on the Taylor

series expansion of the RSS with as goal to simplify the likelihood

function of the RSS. The novel positioning algorithm is discussed

in Section 4 and in Section 5 , we assess the performance of the

proposed positioning algorithm. 

2. System model 

Let us consider a VLP system with multiple LEDs and a single

receiver. To separate the signals from the different LEDs at the re-

ceiver, we assume a multiplexing protocol is used, e.g. frequency-

division multiplexing (FDM) [17] , time-division multiplexing (TDM)

[18] or color-division multiplexing (CDM) [19] . In the remainder of

this section, we will focus on the effect of the orientation uncer-

tainty on the channel gain for a single LED and the photo diode

(PD). In Section 4 , we will discuss how the information from the

different LEDs is combined to obtain the position estimate. 

Following [20] , the channel gain for the system shown in Fig. 1

can be modeled as 

h = 

( γ + 1 ) A R 

2 πv 2 
cos γ ( φ) cos ( θ ) �

(
θ

θF OV 

)
, (1)

where v is the distance between the LED and the receiver, φ the

radiation angle at the LED, θ the incidence angle at the PD, A the
R 
rea of the PD, θ FOV the field-of-view (FOV) of the PD, γ the Lam-

ertian order of the LED, and �( · ) the rectangular function de-

ned as 

( x ) 
�= 

{
1 , | x | ≤ 1 , 

0 , | x | > 1 . 
(2)

he received signal strength yields 

 = R p P t h + w, (3)

here R p is the responsivity of the PD, P t the power transmitted

y the LED and w is the shot noise, which is assumed to be zero-

ean Gaussian distributed. 

The LED has coordinates r ∈ R 

3 ×1 and normal n ∈ R 

3 ×1 , i.e. the

irection in which the LED is radiating, and the PD has coordi-

ates r R ∈ R 

3 ×1 and normal n R ∈ R 

3 ×1 , i.e. the direction in which

he PD points. The orientation of the PD is expressed in terms of

 rotation R ∈ SO (3) 1 with respect to a reference orientation n R ,0 ,

.e. n R = Rn R, 0 . As the reference orientation, we select the case of

he receiver pointing straight upwards, i.e. where the normal of

he receiver equals n R, 0 = [ 0 0 1 ] 
T . The r otation matrix R is de-

omposed into a deterministic rotation 

˜ R ∈ SO (3) , corresponding

o the known measurement or estimate of the orientation, and a

andom rotation R ε ∈ SO (3), containing the orientation uncertainty,

ith R = R ε · ˜ R . Using the concept of Lie groups, the random rota-

ion can be expressed as 

 ε = exp ( ε×) (4)

here ε = [ εx εy εz ] 
T is a 3 × 1 random infinitesimal rotation vector

nd the operator ( · ) × converts the vector ε into an element of the

ie algebra so (3) of the 3D rotation group SO (3): 

× = 

[ 

0 −εz εy 

εz 0 −εx 

−εy εx 0 

] 

∈ so (3) . (5)

e further define the receiver normal without orientation uncer-

ainty as ˜ n R = 

˜ R n R, 0 . 

The distribution of the rotation matrix R ε is determined by the

istribution of the rotation vector ε. This rotation vector can be

nterpreted as an orientation error vector, which is a linear trans-

ormation of the Euler angles’ error vector [21] . The Euler angles’

rror originate from small perturbations in the IMU device or the

ovement of the receiver, and can be modeled as statistically inde-

endent zero-mean random variables. Therefore, the rotation vec-

or ε will also be zero-mean Gaussian distributed. 2 

The channel gain depends on the orientation uncertainty

hrough the incidence angle θ only. Let us define the incidence

ector v as the vector between the LED and the PD, i.e. v = r R − r .

ence, the channel gain (1) can be rewritten as 

 = K ( n , v ) cos ( θ ) , (6)

here K ( n , v ) = 

( γ +1 ) A R 
2 πv 2 cos γ ( φ) �( θ/ θF OV ) is a function of n and

 , but independent of the orientation uncertainty ε if the incidence

ngle is within the FOV. Further, using this definition, the incidence

ngle θ between v and the normal n R of the receiver can be ex-

ressed as 

os ( θ ) = − n 

T 
R v 

‖ 

v ‖ 

= −( exp ( ε×) ̃  n R ) 
T 
v̄ , (7)

here v̄ = 

v 
‖ v ‖ . Similarly, the incidence angle ˜ θ between v and 

˜ n R ,

.e. without orientation uncertainty, equals cos 
(

˜ θ
)

= − ˜ n 

T 
R ̄
v . 
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. Approximation of the RSS 

Let us consider a system where the receiver observes the light

oming from N LEDs to determine its position r R . Given the ob-

ervation vector P = [ P 1 , . . . , P N ] 
T of received signal strengths, the

aximum likelihood (ML) estimator selects the vector ˆ r R that max-

mizes the likelihood function p ( P ; r R ). However, the observation

ector P not only depends on the position r R of the receiver, but

lso on the orientation uncertainty ε, which should be consid-

red as nuisance for the positioning problem. Hence, the likeli-

ood function p ( P ; r R ) must be obtained by marginalizing the joint

ikelihood function p(P , ε; r R ) = p(P | ε; r R ) p( ε; r R ) over ε. However,

s the observation vector P depends on ε in a non-linear way,

 closed-form expression for p ( P ; r R ) cannot be found. Although

 ( P ; r R ) could be obtained by Monte-Carlo simulations, the result-

ng procedure would be prohibitively complex for positioning pur-

oses. To solve this issue, we will consider the Taylor series expan-

ion of exp ( ε× ) to find an accurate approximation for the RSS that

implifies the derivation of the ML estimator, i.e. 

xp ( ε×) = I 3 ×3 + ε× + 

1 

2! 
ε2 

× + 

1 

3! 
ε3 

× + · · · . (8)

n the following, we restrict our attention to the case where

he incidence angle θ ≤ θ FOV , i.e. where �( θ/ θF OV ) = 1 , as when

> θ FOV , �( θ/ θF OV ) = 0 . 

.1. First-order approximation 

Discarding in (8) the second and higher order terms, the cosine

f the incidence angle (7) can be approximated by 

os ( θ ) ≈ −( ( I + ε×) ̃  n R ) 
T 
v̄ 

= − ˜ n 

T 
R ̄v − ( ̃  n R × v̄ ) 

T ε, (9) 

here a × b is the cross product of the vectors a and b . As a result,

he channel gain (6) can be approximated by 

 

(1) = −K ( n , v ) 
(

˜ n 

T 
R ̄v + ( ̃  n R × v̄ ) 

T ε
)
. (10) 

s the approximated channel gain (10) is a linear function of ε,

he marginalization of p ( P, ε; r R ) is straightforward, i.e. p ( P ; r R ) is

aussian. 

.2. Second-order approximation 

In this approximation for the channel gain, we also keep the

uadratic terms in (8) . Hence, the cosine of the incidence angle

7) can be approximated by 

os ( θ ) ≈ −
((

I + ε× + 

1 

2 

ε2 
×

)
˜ n R 

)T 

v̄ 

= − ˜ n 

T 
R ̄v − ( ̃  n R × v̄ ) 

T ε − 1 

4 

εT A ε, (11) 

here A = v̄ × ˜ n R × + 

˜ n R × v̄ × is a 3 × 3 matrix that is constructed us-

ng the skew-symmetric matrices ˜ n R × and v̄ ×, defined in a similar

ay as (5) . Denote �ε = L T L as the Cholesky decomposition of the

ovariance matrix �ε, where L is a lower triangular matrix, and

 �V 

T = LAL T as the eigenvalue decomposition of the matrix LAL T ,

here V is the orthonormal matrix whose columns are the eigen-

ectors of LAL T , and � = diag (λi ) is a diagonal matrix whose el-

ments λi are the eigenvalues of LAL T . Consequently, the channel

ain (6) can be rewritten as 

 

(2) = −K ( n , v ) 

(
1 

4 

( x + b ) 
T �( x + b ) − c 

)
, (12) 

ith x = V 

T (L T ) −1 ε, b = 2 �−1 
V 

T L ( ̃  n R × v̄ ) and c = 

1 
4 b 

T �b − ˜ n 

T 
R ̄

v .

s the components of the Gaussian distributed vector x are un-

orrelated and have variance 1, the approximation (12) consists of
n indefinite quadratic form of standard normal random variables,

ecause � contains both positive and negative eigenvalues. Hence,

he channel gain (12) is distributed according to the weighted in-

ependent non-central chi-square distribution. Unfortunately, this 

istribution does not lead to a closed-form expression for the pos-

erior pdf p ( P ; r R ). Although in the literature some works are avail-

ble that further approximate (12) to obtain a closed-form expres-

ion for the likelihood function [25–29] , these works focus on pos-

tive semi-definite quadratic forms. 

.3. Evaluation of the approximations 

In this section, we evaluate the accuracy of the two approx-

mations discussed above through simulations. To this end, we

onsider the case where the position and the normal of the LED

re given by r = [ 0 , 0 , 3 ] 
T and n = [ 0 , 0 , −1 ] 

T 
, i.e. the LED points

traight downwards. Further, the LED transmits a power P t = 1 W

nd has Lambertian order γ = 10 . For the receiver, we consider a

hoto diode with area A R = 1 cm 

2 and FOV θF OV = 85 ◦. The re-

eiver is placed below the LED, i.e. r R = [ 0 , 0 , 0 ] 
T 
, and two ori-

ntations are considered, i.e. ˜ θ = π/ 180 and 

˜ θ = π/ 6 . The covari-

nce matrix �ε of the orientation uncertainty is assumed to be

ε = σ 2 
ε I 3 ×3 , where σ 2 

ε = 2 . 0 × 10 −2 rad 

2 . 

We first simulated the effect of the orientation uncertainty on

he channel gain h (1) . The results for the two orientations ˜ n R =
 

0 , sin (π/ 180) , cos (π/ 180) ] 
T 

and 

˜ n R = [ 0 , sin (π/ 6) , cos (π/ 6) ] 
T 

are 

hown in Fig. 2 (a) and (b). As can be observed, when the tilt

s small, i.e. for ˜ n R = [ 0 , sin (π/ 180) , cos (π/ 180) ] 
T 
, the histogram

f the channel gain is asymmetrical, while for larger tilts, e.g.

˜ 
 R = [ 0 , sin (π/ 6) , cos (π/ 6) ] 

T 
, the distribution is more symmetri-

al. This can be explained graphically using Fig. 3 . In this figure,

e assume the orientation vector ˜ n R is located in the x − O − y

lane, the vector v̄ (7) coincides with the y -axis, and the ori-

ntation uncertainty exp ( ε× ) rotates the orientation vector ˜ n R 

n the x − O − y plane, i.e. we restrict our attention to the 2D

ase for simplicity. As ε is Gaussian distributed, the normal n R 

as a circular-shaped Gaussian distribution with mean 

˜ n R . Taking

nto account that cos (θ ) = −n 

T 
R ̄

v , the distribution of cos ( θ ) cor-

esponds to the projection of the circular-shaped Gaussian distri-

ution of n R on v̄ . When 

˜ θ is large, this projection will not al-

er the shape of the distribution drastically, so the distribution of

os ( θ ) will still resemble a Gaussian distribution. However, when 

˜ θ
s small, the projection will result in an asymmetrical distribution

or cos ( θ ), making the distribution resemble more like a truncated

hi-squared distribution. In our example, the channel gain h will

ot exceed h m 

= K(n , v ) = 1 . 945 × 10 −5 W. This upper limit equals

he maximum value of the channel gain, corresponding to the case

here cos (θ ) = 1 , i.e. when θ = 0 . In Fig. 2 , we also show the his-

ograms for the first-order h (1) (10) and second-order h (2) (12) ap-

roximation. As can be observed, the distribution of the second-

rder approximation matches the distribution of the channel gain

ell, while the distribution of the first-order approximation may

trongly deviate from the true distribution, especially when the in-

idence angle ˜ θ is small. 

In Fig. 2 , we illustrated that the distribution of the channel gain

or the first-order approximation lacks accuracy especially when

he incidence angle is small. In Fig. 4 , we show the corresponding

ikelihood function. We assume the shot noise is zero-mean Gaus-

ian distributed with variance σ 2 
w 

= 1 × 10 −13 A 

2 . Although the dis-

ribution of the channel gain not always can be modelled as Gaus-

ian, the likelihood function resembles Gaussian, even when the

ncidence angle is small. The likelihood function for the first-order

pproximation is also shown in Fig. 4 . Because of the lack of ac-

uracy of the first-order channel gain approximation, the deviation

etween the approximated likelihood function and the true likeli-

ood function is larger for Case (a) corresponding to a small in-
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Fig. 2. Histogram of the channel gain for (a) ˜ θ = π/ 180 and (b) ˜ θ = π/ 6 . 

Fig. 3. Graphical explanation of the shape of the distribution of cos ( θ ) for (a) ˜ θ = 

π/ 6 (b) ˜ θ = π/ 4 (c) ˜ θ = π/ 3 . 

Fig. 4. Histogram of the received signal strength for (a) ˜ θ = π/ 180 (b) ˜ θ = π/ 6 . 
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idence angle than for Case (b). To estimate the position of the

eceiver, the ML estimator searches for the maximum of the like-

ihood function. Although the likelihood function deviates from its

pproximation, it can be observed that the position of the max-

ma of the two likelihood functions are close to each other. Hence,

e expect that the first-order approximation will still result in an

ppropriate position estimate. 

. Improved RSS-based positioning 

In the previous section, we evaluated two approximations for

he channel gain in terms of accuracy and possibility to obtain a

losed-form expression for the likelihood function. Taking into ac-

ount that the first-order approximation results in a closed-form

xpression for the likelihood function, while this is not possible

ith the second-order approximation, we restrict our attention to

he first-order approximation and derive a novel RSS-based po-

itioning algorithm to cope with the orientation uncertainty. As

tated in the previous section, we will consider the ML estimator

f the position given the observation of the RSS values of N LEDs.

e assume that all LEDs are of the same type and transmit the

ame power P t . Employing the first-order approximation, the vec-

or of observations yields 

 = μ + S ε + w , (13)

here the i th component [ μ] i of the vector μ is the contribu-

ion of LED i defined as −K̆ i ̃  n 

T 
R ̄

v i , with K̆ i = R p P t K ( n i , v i ) . Further,

 ∈ R 

N×3 is the matrix having as i -th row [ S ] i = −K̆ i ( ̃  n R × v̄ ) 
T 
, i.e.

he contribution from LED i (see (10) ). Taking into account that
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Fig. 5. Simulation setup, the receiver follows an elliptical path (red dotted curve) 

and has orientation indicated by the green lines. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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3 From the literature [32–35] where the variance of the Euler angles error vector 

is evaluated, the interval of σ 2 
ε can be deduced using the relation between ε and 

the Euler angles error vector. 
oth ε and w are zero-mean Gaussian distributed, the likelihood

unction p ( P ; r R ) is Gaussian distributed with average μ and co-

ariance matrix �P : 

p(P ; r R ) = det (2 π�P ) 
− 1 

2 exp 

(
−1 

2 

‖ 

P − μ‖ 

2 
�P 

)
, (14)

here det (·) denotes the determinant of a matrix, ‖ · ‖ 2 
�

is the

quared Mahalanobis’ distance with respect to covariance matrix

, i.e. ‖ x ‖ 2 
�

= x T �−1 x and �P = �S + σ 2 
w 

I N with �S = S�εS T . 

The ML estimate of r R is defined as 

ˆ 
 R = arg max 

r R 
L (P ; r R ) , (15)

here the log-likelihood function L (P ; r R ) is given by 

 (P ; r R ) = const −1 

2 

ln det (�P ) − 1 

2 

‖ 

P − μ‖ 

2 
�P 

. (16)

s the covariance matrix �P depends on r R through the matrix

 , a closed-form expression for the ML estimate (15) is generally

ot available. Hence, we consider the multivariate gradient descent

lgorithm to solve the optimization problem: 

 

t+1 
R = r t R − η{∇L (P ; r t R ) } (17)

here η is the step size, and the gradient ∇L (P ; r R ) is defined as

L (P ; r R ) = 

[
∂ L (P ; r R ) 

∂r x 

∂ L (P ; r R ) 

∂r y 

∂ L (P ; r R ) 

∂r z 

]T 

, (18)

ith (19), (20) , and 

∂L (P ; r R ) 

∂r l 
= −1 

2 

tr 

(
�−1 

P 

{
∂�P 

∂r l 

})

−1 

2 

tr 

(
−�−1 

P 

{
∂�P 

∂r l 

}
�−1 

P ( P − μ) ( P − μ) 
T 

−2 �−1 
P ( P − μ) 

{
∂ μ

∂r l 

}T 
) 

, (19) 

∂�P 

∂r l 

]
i, j 

= [ �S ] i, j 

[ (
γ n i 

n 

T 
i 
v i 

+ 

γ n j 

n 

T 
j 
v j 

)
−

( 

( γ + 3 ) v i 

‖ v i ‖ 2 
+ 

( γ + 3 ) v j ∥∥v j 
∥∥2 

) ] 

l 

+ 

K̆ i 

‖ v i ‖ 
K̆ j ∥∥v j 

∥∥[
˜ n R ×

(
�ε

((
v i + v j 

)
× ˜ n R 

))]
l 
, (20) 
∂ μ

∂r l 

]
i 

= 

[
[ μ] i 

(
γ n i 

n 

T 
i 
v i 

− ( γ + 3 ) v i 

‖ 

v i ‖ 

2 

)
− K̆ i ̃  n R 

‖ 

v i ‖ 

]
l 

, (21) 

nd tr (·) denotes the trace of a matrix. 

. Numerical results 

In this section, we evaluate the performance of the proposed

stimator through computer simulations. In our simulations, we

onsider an 8 m × 6 m × 3 m area with four visible light access

oints (VAPs) mounted in the upper corners of the area, as shown

n Fig. 5 [30] . Each VAP is equipped with four LEDs and is tilted

owards the center of the area, with the angle between the nor-

al of the VAP and the ceiling equal to θVAP = π/ 6 . As shown in

ig. 5 , the four LEDs of the VAP are placed symmetrically around

he center of the VAP, and are tilted away from the center of the

AP, i.e. the angle between the normal of the VAP and the nor-

al of a LED is θL = π/ 9 . Hence, the normal vector of the k th VAP,

 ∈ {1, 2, 3, 4} equals n k = [ 
√ 

2 
2 cos ( kπ/ 2 ) , 

√ 

2 
2 sin ( kπ/ 2 ) , − 1 

2 ] 
T , and

he normal of the m 

th LED of the k th VAP, m ∈ {1, 2, 3, 4} is given by

 k,m 

= R ( θL , z m 

) n k , where R ( θ L , z m 

) denotes the Rodrigues’ rota-

ion formula [31] that computes the rotation matrix in SO (3) from

 m 

= [ cos (mπ/ 2) , sin (mπ/ 2) , 0 ] 
T 

and θ L . All LEDs have a trans-

it power of 1 W and a Lambertian order γ = 10 . The receiver

as a FOV of θF OV = 85 ◦ and an area of A R = 1 cm 

2 . We assume

he receiver is subject to an orientation uncertainty with covari-

nce matrix �ε = σ 2 
ε I 3 ×3 . This variance is taken within the interval

2 
ε ∈ 

[
0 . 1 × 10 −2 

, 2 . 0 × 10 −2 
]

rad 

2 . 3 Finally, the shot noise variance

s set to σ 2 
w 

= 1 × 10 −13 A 

2 [30] . 

To evaluate the performance of the proposed estimator (RSS-

), we consider an elliptical path for the receiver that is located

n a plane parallel to the ceiling. The ellipse has a semi-major

xis of 2 m and a semi-minor axis of 1.5 m, and the coordinates

f the center of the ellipse are [ 4 . 0 , 3 . 0 , 1 . 5 ] 
T m. The path of the

eceiver starts at the coordinates [ 4 . 0 , 4 . 5 , 1 . 5 ] 
T m (the blue dot)

nd follows the ellipse clockwise. We consider two cases. In Case

, ˜ n R points straight upwards, i.e. the noise-free rotation equals
˜ 
 = I 3 ×3 . In Case 2, ˜ n R is tilted towards the center of the area over

n angle of 2 π /9 with respect to the tangent of the path at the

urrent position (the normals of receiver in this case are shown

y the green lines at each position). We compute the root mean

quared error (RMSE) of the position estimate along this path for

he proposed estimator and two other estimators, i.e. the weighted

OA method and the RSS-based method (RSS- ̧S ) both presented in

30] . The weighted AOA method estimates the position from the

OA between the receiver and each VAP, weighted with the cor-

esponding RSS. In this method, the AOA with respect to a VAP is

pproximated by the orientation of the LED that gives the largest

SS within this VAP. Hence, this method gives only a rough esti-

ate for the AOA. On the other hand, in the RSS- ̧S method, the

osition is extracted from the RSS information using the ML esti-

ation, similarly as in the proposed estimation (RSS-P). However,

n contrast to the proposed method, the RSS- ̧S estimation does

ot take into account the orientation uncertainty. Both the RSS- ̧S

ethod and the proposed method are iterative methods that need

roper initialization to converge. To initialize these iterative meth-

ds, the rough estimates attained with the weighted AOA estima-

ion are used. The RMSE of the three methods are shown in Fig. 6 ,

long with the root of the Cramér-Rao bound (rCRB) from [30] ,

hich assumes no orientation uncertainty is present (rCRB-nOU).

s can be observed, the weighted AOA method (AOA) performs
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Fig. 6. Performance of estimators for (a) Case 1 (b) Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. RMSE versus σ 2 
ε for (a) Case 1 (b) Case 2. 
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worst, and its RMSE strongly fluctuates along the considered path,

while the RMSE of the RSS-based methods fluctuate less. Compar-

ing the RMSE performance of the RSS-based methods for the two

cases, we observe that the RMSE is on the average lower in Case 1

than in Case 2, and we notice that the RMSE behaves differently for

the two cases, In Case 1 ( Fig. 6 a), where the receiver points straight

upwards, the highest RMSE is found when the receiver is near the

semi-minor axis ( θr = kπ, k = 0 , 1 , 2 ), and the lowest RMSE when

it is near the semi-major axis ( θr = π/ 2 + kπ, k = 0 , 1 ). This can be

explained as follows. When near the semi-minor axis, the receiver

is closer to the center of the area. Because the receiver points

straight upwards, the incidence angle for the nearest VAPs will

be larger than for the case where the receiver is near the semi-

major axis. Hence, for the nearest VAPs, the RSS will be lower. As

the positioning performance is mainly determined by the strongest

RSS contributions, this implies the RMSE performance will degrade

when this strongest RSS contribution reduces. On the other hand,

in Case 2 ( Fig. 6 b), when the receiver is tilted towards the center

of the area, the highest RMSE is found when the receiver is near

the semi-major axis ( θr = π/ 2 + kπ, k = 0 , 1 ). In this case, as the

receiver is tilted towards the center of the area, it is tilted away

from the nearest VAPs. Hence, incidence angle for the light coming

from the nearest VAPs strongly increases, resulting in lower RSS

values. Near the semi-minor axis, the relative increase in the inci-
ence angle for the nearest VAPs will be smaller as the receiver is

urther away from the nearest VAPs, implying the effect of the tilt

n the RSS values is smaller. Hence, while in Case 1, the reduction

f the RSS for the nearest VAPs, and thus the performance reduc-

ion, is mainly due to the distance of the receiver to the nearest

APs, in Case 2, the reduction of the RSS for the nearest VAPs is

ue to the tilt, and the largest reduction of the RSS occurs for dif-

erent receiver position than in Case 1. As in Case 2 the receiver

s tilted away from the nearest VAPs, it will receive less light from

he nearest VAPs, implying the RMSE performance for Case 2 will

e on the average worse than that for Case 1. In both cases, the

est performance is obtained with the proposed method and the

esulting RMSE is close to the rCRB-nOU, indicating the proposed

stimator performs close to optimal. 

In Fig. 7 , we show the average RMSE over the entire path as

unction of the variance σ 2 
ε . As can be observed in the figure, al-

hough the weighted AOA method performs worse for small σ 2 
ε ,

t is largely insensitive to the orientation uncertainty, while both

SS-based methods have a degrading performance for increasing
2 
ε compared with the CRB in the absence of orientation uncer-

ainty. The degradation of the proposed method is smaller than

hat of the RSS- ̧S method, which could be expected as the RSS-

¸  method does not take into account the orientation uncertainty.

urther, it can be observed that, when σ 2 
ε is large, the RMSE of
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Fig. 8. RMSE versus ‖ ̃ θ‖ for σ 2 
ε = 2 . 0 × 10 −2 . 
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Fig. 9. RMSE versus N = 4 + M 

2 VAPs for (a) Case 1 (b) Case 2. 
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d  
he RSS- ̧S estimator becomes worse than that of the weighted AOA

ethod in Case 1, while for Case 2, the RSS- ̧S estimator is even not

ble to return a proper estimate of position. 

Until now, we limited our investigations to the evaluation of

he performance of the estimators for two tilt angles ˜ θ of the re-

eiver along the elliptical path only, i.e. ˜ θ = 0 and 

˜ θ = 2 π/ 9 . Now,

e will investigate the effect of the tilt angle ˜ θ on the perfor-

ance. Fig. 8 gives the average RMSE over the entire path as func-

ion of the tilt angle ˜ θ for σ 2 
ε = 2 . 0 × 10 −2 rad 

2 . As expected, the

est performance is obtained with the proposed method, and its

MSE is close to the rCRB-nOU. It can also be observed that the

SS- ̧S method in general performs better than the weighted AOA

ethod, but near the tilt angle ‖ ̃  θ‖ = π/ 9 , the iterative procedure

sed in the RSS- ̧S method fails to converge. 

In this part, we evaluate the effect of the number of LEDs

n the performance of the estimators. We consider the simula-

ion setup shown in Fig. 5 , but with M 

2 extra VAPs mounted on

he ceiling, i.e. the total number of VAPs now equals N = 4 + M 

2 .

hese extra VAPs are evenly distributed over the area, i.e. defin-

ng the length of the area X = 8 m and the width Y = 6 m, the

osition of the VAPs are [ i X 
M+1 , j 

Y 
M+1 ] 

T , with i, j ∈ { 1 , . . . , M} and

oint straight down, i.e. θVAP = π/ 2 . Fig. 9 illustrates the average

MSE over the entire path as a function of the number of VAPs for
2 
ε = 2 . 0 × 10 −2 rad 

2 . It can be observed that this result is consis-

ent with our previous results, i.e. the proposed method achieves

he best performance and its RMSE is close to the rCRB-nOU. Fur-

her, as expected, Fig. 9 shows that when N increases all estimators

rend to have a better performance. 

. Conclusion 

In this paper, we design a novel RSS-based positioning method

or VLP in the presence of orientation uncertainty. This orientation

ncertainty, which is modeled using the concept of Lie algebra, is

ncluded in the expression of the received signal strength. To be

ble to apply maximum likelihood estimation of receiver’s posi-

ion, we need a closed-form expression for the likelihood function

f the RSS. Because the relationship between the RSS and the ori-

ntation uncertainty is non-linear, finding an exact closed-form ex-

ression is not possible. Therefore, we consider two Taylor expan-

ion based approximations to find a closed-form expression for the

ikelihood function. We show that although the second-order ap-

roximation closely matches the true distribution, it will not lead

o a closed-form expression for the likelihood function, while the

rst-order approximation results in a simple closed-form expres-

ion at the expense of some accuracy loss. The resulting likelihood
unction is optimized using an iterative procedure based on gradi-

nt descent algorithm in order to find the position estimate. We

ompare the performance of the proposed estimator with state-

f-the-art estimators and show that in the presence of orientation

ncertainty, the proposed estimator outperforms the state-of-the-

rt estimators. In this paper, we restricted our attention to the ef-

ect of orientation uncertainty on RSS-based VLP. However, also in

ime-of-arrival (TOA)-based VLP [36] and time-difference-of-arrival

TDOA)-based VLP [37] , the attenuation factor of the optical chan-

el depends on the cosine of the incidence angle (7) . Hence, their

erformance will also be affected by the orientation uncertainty.

e expected that the first-order approximation will also be suit-

ble for these systems to simplify the model and to derive algo-

ithms to counteract the effects of the orientation uncertainty. 
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