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a b s t r a c t 

Multi-band orthogonal frequency-division multiplexing (MB-OFDM) is an important transmission tech- 

nique for ultra-wideband (UWB) communication. One of the challenges for practical realization of these 

UWB MB-OFDM systems is the estimation of the channel. In UWB MB-OFDM, the channel can be mod- 

elled as sparse, and channel estimation (CE) based on compressed sensing (CS) can be used. However, 

the existing techniques all require prior knowledge of some channel parameters, which are not known in 

practice, e.g. the dictionary size, corresponding to the effective duration of the channel impulse response 

(CIR), and the sparsity of the CIR. Therefore, in this paper, we propose a CS-based channel parameter 

estimation method to estimate the dictionary size and the sparsity based on a pilot preamble of which 

the duration is shorter than the total duration of the CIR. Using the resulting parameter estimates, we re- 

construct the CIR with the compressive sampling matching pursuit (CoSaMP) method. We show that the 

proposed algorithm is able to accurately estimate the sparsity and the dictionary size, and can effectively 

reconstruct the CIR for channels that are either based on a mathematical model or real, measured chan- 

nels. Moreover, as the algorithm has acceptable complexity, the proposed method is suitable for practical 

use. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Multi-band orthogonal frequency-division multiplexing (MB- 

FDM) is a technique that is considered as one of the most

romising techniques for ultra wideband (UWB) transmission,

hanks to its ability to mitigate the effects of multipath fading and

nterference, and to achieve a high spectral efficiency at a rela-

ively low cost [1,2] . One of the issues that needs to be solved in

ractical UWB MB-OFDM systems comprises the estimation of the

hannel. To meet this challenge, UWB MB-OFDM adopts a frame-

ased transmission [3] , where pilot sequences are included in the

rame preamble for channel estimation (CE). However, as the chan-

el impulse response (CIR) in UWB MB-OFDM is very long, long

ilot preambles must be used to accurately estimate the channel.

s long pilot preambles limit the data throughput, often the pi-

ot preamble is shortened. Because of this shorter preamble, tra-

itional channel estimators, such as least-squares (LS), maximum-
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ikelihood (ML) and minimum mean-squared error (MMSE) estima-

ors [4–7] , fail to accurately estimate the CIR. 

In indoor environments, typically the propagation environment

s complex, and results in many reflections. At the same time, the

esolution of the ultrawideband signal is very high, implying the

ystem can identify many of the multipath components. As a con-

equence, the channel impulse response will typically be very long.

owever, measurements of the UWB indoor channel show that the

ultipath components are strongly clustered, implying the channel

mpulse response, although being widely dispersed in time, only

ontains a limited number of non-zero contributions, i.e. the chan-

el can be modelled as sparse. For example, [8,9] demonstrate that

ndoor channel models considered for the IEEE 802.15.4a standard

10] are sparse. Moreover, this sparsity is shown to be enlarged

hen the signal resolution increases [9] . Also the different channel

odels for the IEEE 802.15.3a standard [11] can be described with

 limited number of non-zero channel taps. Besides the theoreti-

al channel models considered in the literature, we also performed

 measurement campaign in a laboratory environment, and show

n this paper that the resulting channel is sparse. Consequently,

e can use compressive sensing (CS) methods [12,13] to recon-

truct the CIR and achieve channel estimation. Recently, several CE

https://doi.org/10.1016/j.sigpro.2019.107318
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algorithms based on CS for UWB communication have been devel-

oped [8,14–16] . In [8] , the applicability of CS for UWB channel esti-

mation is investigated, and the authors employ standard Matching

Pursuit (MP) algorithms for CS, such as subspace pursuit (SP) [17] ,

orthogonal matching pursuit (OMP) [18] and compressive sampling

matching pursuit (CoSaMP) [19] , to accurately reconstruct the CIR.

In [14] , the authors propose four practical dictionaries to increase

the sparsity of UWB signals, so that the UWB signals can be re-

constructed more efficiently. In [15] , another CS technique, i.e. the

Bayesian CS (BCS) algorithm [20] , is employed to reconstruct UWB

signals and obtain CE. Although the BCS algorithm achieves a bet-

ter performance than the MP algorithms, it requires intensive com-

putations, raising a barrier for practical implementation. In [16] , a

CS dictionary, called eigen-dictionary, is proposed, exploiting the

statistical sparsity of UWB signals where the channel structure ex-

hibits several clusters of significant channel coefficients. Based on

this structure, two novel BCS algorithms are proposed to efficiently

reconstruct UWB CIR. Common to all these CS-based CE algorithms

is that they require prior knowledge of the parameters of the un-

derlying CIR model, which is not available in practice. Without the

knowledge of these parameters, the CIR can not be estimated accu-

rately, deteriorating the performance of UWB MB-OFDM systems. 

In this paper, we extend the CoSaMP algorithm from [19] ,

which combines low complexity and good CE performance, to

autonomously estimate the required channel parameters. The

CoSaMP algorithm requires the knowledge about the dictionary

size, of which the optimal value is strongly correlated to the effec-

tive CIR duration, i.e. the duration of the part of the CIR containing

the dominant channel components, and the sparsity of the chan-

nel, i.e. the number of non-zero channel taps. Optimally, the dictio-

nary size and sparsity must be estimated jointly. Several classical

algorithms exist to achieve this joint estimation, e.g. the simplex

algorithm [21] . However, the computational burden of these algo-

rithms is very high, and therefore limit the applicability of these

joint estimators. Therefore, as main novelty, we propose in this pa-

per an algorithm that has low complexity compared to the above-

mentioned joint estimation algorithm. To this end, we first show

that, although the dictionary size and sparsity are correlated, the

optimal value of the dictionary size becomes essentially indepen-

dent of the sparsity if the sparsity is sufficiently large. Based on

this observation, we propose a two-step approach, where in the

first phase, the optimal dictionary size is estimated, while in the

second phase, the optimal value of the sparsity is obtained. In both

phases, the algorithm adaptively searches for the optimal value of

the parameter, using the pilot sequence included in the preamble.

We show that the proposed adaptive CS-based parameter estima-

tion algorithm not only can be applied to channels simulated based

on a mathematical model, but also is able to exactly reconstruct

the CIR measured in realistic scenarios. Although the proposed al-

gorithm is sub-optimal in the sense that the mean-squared error

of the resulting channel estimation is slightly higher than for the

case where the simplex method is used, the resulting complexity

is much smaller than with the simplex method, e.g. for short pilot

preambles, the complexity of the proposed algorithm is 10 times

lower than with the simplex method, and the difference in com-

plexity increases when the length of the preamble increases. Fur-

ther, we compare the performance of the proposed algorithm with

state-of-the-art algorithms, and demonstrate that the proposed al-

gorithm performs well, even if the pilot preamble is considerably

shortened. 

The rest of the paper is organized as follows. In Section 2 , we

introduce the channel model used for MB-OFDM systems and de-

scribe the measurement setup used to obtain the sparse measured

channel. In Section 3 , we briefly explain how CS is applied to the

estimation of sparse channels, and we discuss the influence of the

dictionary size and sparsity on channel reconstruction. The algo-
ithm to estimate the dictionary size and the sparsity is intro-

uced in Section 4 . Further, we evaluate the complexity of the pro-

osed algorithm in this section. In Section 5 , we evaluate the per-

ormance of the proposed algorithm and compare its performance

ith that of state-of-the-art algorithms. Finally, the conclusions are

iven in Section 6 . 

. Sparse channel 

In this section, first we briefly introduce the CM for the IEEE

02.15.3a standard [11] , suitable for UWB MB-OFDM systems that

as used to generate the simulated channels, and then we de-

cribe the measurement setup that was used to obtain sparse mea-

ured channels to test our algorithm in realistic scenarios. 

.1. Channel model 

The channel impulse response considered for the IEEE 802.15.3a

tandard [11] consists of a tapped-delay line model containing L

lusters of K multipath components: 

h (t) = X 

L ∑ 

l=1 

K ∑ 

k =1 

αk,l δ(t − T l − τk,l ) , (1)

here αk,l are the multipath gain coefficients, T l is the delay of the

 th cluster, τ k,l is the delay of the k th multipath component relative

o the l th cluster arrival time T l and the prefactor X corresponds to

he log-normal shadowing. The delays T l and τ k,l follow an expo-

ential distribution with cluster arrival rate � and ray arrival rate

, respectively: 

P (T l | T l−1 ) = � exp [ −�(T l − T l−1 )] (2)

P (τk,l | τk −1 ,l ) = λ exp [ −λ(τk,l − τk −1 ,l )] . (3)

e select τ0 ,l = 0 . The multipath gain coefficient αk,l in (1) can be

ecomposed as follows: 

αk,l = p k,l ζl βk,l , (4)

here p k,l equiprobably takes the values ± 1 to account for signal

nversions due to reflections, ζ l represents the fading associated

ith the l th cluster, and βk,l corresponds to the fading associated

ith the k th ray of the l th cluster. This fading coefficient ζ l βk,l fol-

ows a log-normal distribution: 

20 log 10 (ζl βk,l ) ∼ N(μk,l , σ
2 
1 + σ 2 

2 ) , (5)

here σ 1 is the standard deviation from the cluster log-normal

ading term ζ l and σ 2 is the standard deviation from the ray log-

ormal fading term βk,l . Further, defining the cluster decay factor

and ray decay factor γ , the mean μk,l can be written as: 

μk,l = 

10 ln (�0 − 10 T l / 
 − 10 τk,l /γ ) 

ln (10) 
− (σ 2 

1 + σ 2 
2 ) ln (10) 

20 

, (6)

here �0 is the average energy of the first path of the first cluster.

inally, the log-normal shadowing factor X of the total multipath

ower from (1) has the distribution: 

20 log 10 (X ) ∼ N(0 , σ 2 
x ) , (7)

here σ x is the standard deviation of the log-normal shadowing

f the total multipath power. 

The parameters of the four channel models presented in

11] are listed in Table 1 . These four models consider communica-

ion among UWB devices located within a range of less than 10 m.

pecifically, CM1 and CM2 model the line-of-sight (LOS) and non-

OS (NLOS) channel environments, for ranges smaller than 4 m. For

arger ranges, the NLOS models CM3 and CM4 are used, with em-

hasis on the strong delay dispersion 
 from CM4 [2] . In this pa-

er, we consider discrete-time channel models derived from the
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Table 1 

Parameters of the Four Channel Models (CMs) from [11] . 

Parameters CM1 CM2 CM3 CM4 

� 0.0233 0.4 0.0667 0.0667 

λ 2.5 0.5 2.1 2.1 


 7.1 5.5 14.00 24.00 

γ 4.3 6.7 7.9 12 

σ 1 (dB) 3.3941 3.3941 3.3941 3.3941 

σ 2 (dB) 3.3941 3.3941 3.3941 3.3941 

σ x (dB) 3 3 3 3 

Fig. 1. Sparse channel: (a) an example channel realization of CM1 with tap spacing 

of t = 1 / 6 ns. (b) measured channel between transmitter and R 1 receiver with tap 

spacing of t = 4 / 5 ns. 
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Fig. 2. Measurement environment: (a) Schematic representation, (b) Long side of 

laboratory, (c) Small side of laboratory. 
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bove continuous-time models. Following the IEEE 802.15.3a stan-

ard [11] , the discrete-time CIR h = [ h (0) , h (1) , . . . , h (L taps − 1)]

an be obtained by oversampling the continuous-time CIR h ( t ), fol-

owed by an anti-aliasing filtering, down conversion and decima-

ion. As an example, we show in Fig. 1 (a) the discrete-time domain

IR for a realization of CM1 with tap spacing t = 1 / 6 ns, together

ith a close-up of the 180 first taps. As can be observed, the num-

er of dominant taps, having a non-negligible amplitude, is quite
mall, i.e. most taps have a (close to) zero amplitude. Further, the

ominant taps are confined in the first part of the CIR, i.e. the tail

ontains only close-to-zero taps. Hence, the effective duration of

he CIR, corresponding to this dominant, first part of the CIR, is

uch smaller than the total duration of the CIR. Similar results

re obtained with the other three channel models. Therefore, the

hannel can be considered as sparse in the time domain, indicat-

ng that compressive sensing methods to reconstruct the CIR can

e employed. 

.2. Measured channel 

The experiments to measure the sparse channels were carried

ut in a laboratory of Ghent University in Belgium. The labora-

ory, shown in Fig. 2 , roughly has an L-shaped form. The long side

 Fig. 2 (b)) approximately has length 16 m and width 5 m, while the

mall side ( Fig. 2 (c)) approximately has length 8.5 m and width

 m. We selected one transmitter position and 15 receiver positions

see Fig. 2 (a)). Of these positions, 8 positions (i.e. R 1 − R 8 ) were

onsidered as light-of-sight positions, where a free space path ex-

sts between transmitter and receiver, 4 positions (i.e. R 9 − R 12 )

ere regarded as obstructed-LoS (OLoS), where the signals undergo

 reflection and/or a diffraction, and 3 positions (i.e. R 13 − R 15 )

re non-LoS (NLoS) scenarios, as a plasterboard wall is present be-

ween transmitter and receiver. 
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Fig. 3. UWB antenna with an automated positioning system. 
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1 As can be observed in (12) , the measurement matrix � is a Hermitian matrix 

containing the pilots X and components from the Fourier kernel. Hence, the mea- 

surement matrix can in general not be written as a partial Fourier matrix. While 

it is shown in the literature that, with exponentially high probability, the partial 

Fourier matrix satisfies the RIP, assuming the number of measurements is nearly 

linear in the sparsity level, the RIP characteristics of the matrix � will not be 

straightforward to show, as in general, this proof is a strongly NP-hard problem 

[23,24] . Although we are not able to prove that the matrix � is RIP, we will demon- 

strate in the numerical results section that this measurement matrix can be used 

to accurately estimate the CIR. 
At both the transmitter and receiver sides, omnidirectional

UWB antennas of type electrometrics EM-6865 [22] were placed

1.5 m above ground level, as shown in Fig. 3 . To measure the com-

plex gain for each combination of transmit and receive pair, we

used a Rohde & Schwarz ZNB8 vector network analyzer (VNA). The

VNA calibration included the feeder cables to eliminate their ef-

fect on the measurement data. We created at both sides a [4 ×
4] virtual antenna array by using an automated positioning sys-

tems. At each of the receiver positions, channel measurements

were performed, and the channel was obtained by averaging these

measurement data. An example of the resulting discrete-time CIR

for receiver position R 6 is shown in Fig. 1 (b), for a tap spacing

 = 4 / 5 ns. As can be observed, the CIR contains only a few domi-

nant taps, i.e. most taps have a near-zero or zero amplitude, imply-

ing the channel can indeed be considered as sparse. Similar results

were obtained for the other receiver positions. 

3. Compressive sensing based channel reconstruction scheme 

In this section, we discuss the reconstruction of the CIR using

CS methods, and analyze the effect of two parameters, i.e. the dic-

tionary size and sparsity of CIR, on the CE. Let us first revisit the

principle of CS. Let us assume we want to reconstruct a sparse sig-

nal ϕ from an observation ρ

ρ = ϒϕ + n 0 (8)

where n 0 is additive noise and ϒ is called the measurement ma-

trix. To obtain accurate estimates of ϕ, the measurement matrix ϒ
should satisfy the restricted isometry property (RIP), i.e. it should

be nearly orthonormal when operating on the sparse vector ϕ. In

following subsections, we derive the observation model, discuss

the RIP of the measurement matrix and the accuracy of the re-

constructed sparse channel, and evaluate the effect of the system

parameters on the performance. 

3.1. CS-based channel reconstruction 

Following [3] , we consider a frame-based UWB MB-OFDM

transmission system, in which several known OFDM symbols are

placed in a preamble for channel estimation and synchronization,

followed by a payload frame containing the OFDM data symbols.

During the transmission of the payload frame, the IEEE 802.15.3a

standard [11] assumes that the channel remains unchanged. 
To estimate the channel impulse response, we consider a

reamble, where the frequency domain pilots X = [ X (0) , X (1) , · · · ,

(N − 1)] are selected randomly, and the resulting UWB MB-OFDM

ymbol is repeated N p times. We assume a long cyclic prefix is pre-

eding the preamble, to avoid distortion of the preamble due to

ransition effects at the start of the preamble, and no guard inter-

al is added between the pilot OFDM symbols. Hence, the time-

omain samples of each of the N p pilot OFDM symbols can be

ritten as: 

x (k + iN) = x (k ) = 

1 √ 

N 

N−1 ∑ 

n =0 

e j2 π
kn 
N X (n ) (9)

ith k = 0 , . . . , N − 1 and i = 0 , . . . , N p − 1 . After transmitting the

reamble over the channel with impulse response h , we obtain the

eceived sequence: 

y (m ) = 

N p −1 ∑ 

i =0 

N−1 ∑ 

k =0 

x (k ) h (m − k − iN) + w (m ) (10)

here w ( m ) is zero-mean additive white Gaussian noise with vari-

nce N 0 , and h (l) = 0 for l < 0 or l ≥ L taps , with L taps the number of

aps within the total CIR duration. In this paper, we restrict our

bservation to the NN p samples from the pilot preamble to avoid

nterference with the subsequent data symbols. We assume this

reamble is shorter than the total CIR length, i.e. NN p < L taps . How-

ver, in order to allow accurate reconstruction of the channel, the

reamble must be long enough to capture the contributions of the

ajority of the dominant components of the channel. As a result,

he observation vector (10) can be rewritten as 

y = �h + w , (11)

here h = [ h (0) , h (1) , · · · , h (L taps − 1)] T , and the elements of the

N p × L taps measurement matrix �, 1 which are obtained by substi-

uting (9) into (10) , are given as 

�m,m 

′ = 

1 √ 

N 

N−1 ∑ 

n =0 

X � ∗� m −m ′ 
N 

(n ) e j2 π
n (m −m ′ ) 

N (12)

ith � x � the floor of x . To reconstruct the channel, we define a

 taps × M taps dictionary �, where M taps < L taps corresponds to an in-

erval containing all dominant channel components. If the dictio-

ary size M taps is too small, not all dominant components will be

ecovered, but if it is selected too large, noisy samples will affect

he ability to properly reconstruct the channel and at the same

ime the complexity of the algorithm will increase. Hence, the op-

imal value of M taps must be determined by the receiver. We as-

ume M taps ≥ NN p and � = [ I 0 ] T , where I is the M taps × M taps iden-

ity matrix. Hence, we restrict our attention to the first M taps taps

f the L taps taps of the CIR, which is a reasonable assumption as

he tail of the CIR in the considered channel models contain only

lose-to-zero taps. To reconstruct the channel, we write the CIR h

s a linear combination of M taps 	 L taps basis vectors from the dic-

ionary �: 

h = �ξ (13)

here ξ = [ ξ1 , ξ2 , · · · , ξM taps 
] T is a M taps × 1 vector. Because the

hannel is sparse, only K s of the M taps components of ξ will have
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on-zero value. Therefore, we can rewrite ξ as 

ξ = B θ (14) 

here θ = [ θ1 , θ2 , . . . , θK s ] 
T is the K s × 1 vector of parameters to be

stimated, while the selection matrix B determines the positions

f the K s non-zero channel taps, i.e. 

B i, j = 

{
1 if i = v ( j) 
0 otherwise 

(15) 

here v = [ v (1) , v (2) , · · · , v (K s )] is the K s × 1 vector with the po-

itions of the K s dominant taps. Substituting (14) into (13) , we ob-

ain: 

h = �B θ (16) 

ote that θ can be estimated using standard channel estimation

echniques such as LS or MMSE, however, the main drawback of

hese approaches is that if the CIR length L taps exceeds the pream-

le length NN p , as in the problem at hand, the accuracy of the

hannel estimation is degraded. To overcome this issue, CS can be

sed. It is shown in [25,26] that the channel estimation accuracy

f CS outperforms that of LS and MMSE methods when L taps > NN p .

oreover, the complexity of the CS method is lower than that of

he MMSE approach. Hence, provided that the measurement ma-

rix � is incoherent with the dictionary � (which is the case in

he problem at hand), the CIR can be estimated with high reli-

bility through solving the following well-known convex l 1 -norm

ptimization problem: 

ˆ ξ = min ‖ ξ‖ 1 s . t . y = ��ξ. (17) 

his convex optimization problem can be solved using linear

rogramming techniques like subspace pursuit (SP), orthogonal

atch pursuit (OMP) and compressive sampling matching pur-

uit (CoSaMP). Let us take a closer look at the performance of

he CS estimation. Assume the CIR has non-zero components at

ositions v . The CS algorithm first has to estimate the positions

ˆ 
 = [ ̂ v (1) , · · · , ̂  v (K s )] of the dominant channel taps, and then it

eeds to estimate the values ˆ h ˆ v of the dominating channel taps. To

his end, we define, for given M taps and K s , the matrix A = �� =
 a 1 , a 2 , · · · , a M taps 

] , and the submatrix A ˆ v = [ a ˆ v (1) , · · · , a ˆ v (K s ) ] of the

atrix A . The LS estimate of the dominant channel taps at posi-

ions ˆ v is given by 

ˆ h ˆ v = �(A 

H 
ˆ v A ˆ v ) 

−1 A 

H 
ˆ v y (18) 

e assume that, at positions different from 

ˆ v , the

econstructed channel taps are set to zero, i.e. ˆ h =
0 , · · · , 0 , ̂  h ˆ v ( ̂ v (1)) , 0 , · · · , 0 , ̂  h ˆ v ( ̂ v (K s )) , 0 , · · · , 0] T . Taking this into

ccount, the MSE of h , i.e. MSE = E[ ‖ ( ̂  h − h ) ‖ 2 2 ] yields 

MSE = h 

H 
ˆ v ( C� − I ) H ( C� − I ) h ˆ v + h 

H 
v \ ̂ v h v \ ̂ v + N 0 trace (C 

H C ) (19) 

here the first and third term originate from the contribution

f the reconstructed channel at the positions ˆ v , and the sec-

nd contribution from the non-zero channel taps that were not

elected in the reconstruction, i.e. at positions v \ ̂  v . In (19) ,

 = �(A 

H 
ˆ v 

A ˆ v ) 
−1 A 

H 
ˆ v 

and h ˆ v = [ h ( ̂ v (1)) , · · · , h ( ̂ v (K s ))] T . Defining e =
( C� − I ) h ˆ v , the first term of (19) can be rewritten as 

e H e = e H v ∩ ̂ v e v ∩ ̂ v + e H ˆ v \ v e ˆ v \ v (20) 

.e., the contribution of the positions that are both included in v

nd 

ˆ v – or the dominant channel taps that were correctly identi-

ed with the CS algorithm – and the contribution from zero chan-

el taps that were incorrectly identified as dominant channel taps

 ̂

 v \ v ). Substituting (20) in (19) , the MSE of h can be decomposed

s 

MSE = e h + e n (21) 
here the first term e h = e H 
v ∩ ̂ v 

e v ∩ ̂ v + h 

H 
v \ ̂ v 

h v \ ̂ v contains a channel-

ependent term, originating from the estimation errors in the

ominant components due to the CS reconstruction error, and the

econd term e n = e H 
ˆ v \ v e ˆ v \ v + N 0 trace (C 

H C ) contains the contribu-

ions from the noise and the estimation errors at time instants

hat do not contain dominant channel components, but that are

aptured by the CS algorithm due to noise. Both terms depend on

he selection of the parameters M taps and K s through the matrix C .

referably, the mismatch related to the compressive sensing must

e made as small as possible. To obtain an accurate reconstruction

f the channel, we need to select out of the M taps channel compo-

ents, the K s taps with the largest energy, i.e. determine the po-

itions of the non-zeros components of B , and estimate the values

f θ for the selected M taps and K s . The best performance of chan-

el estimation is obtained when M taps and K s are matched to the

ffective duration and the dominant taps of the channel. 

.2. Effect of the dictionary size and sparsity 

To solve the l 1 -norm optimization problem discussed in the

revious section, we will employ the CoSaMP algorithm [19] , as

t combines good estimation accuracy with low complexity. How-

ver, similarly as for the LS and MMMSE approaches, this algorithm

equires the knowledge of the size M taps of the dictionary, which

ust be matched to the effective duration of the channel, as well

s the sparsity K s , to be able to reconstruct the channel. In this

ection, we first theoretically analyze the effect of the dictionary

ize M taps and sparsity K s , as an improper choice of M taps or K s can

trongly affect the channel estimation performance and thus will

nfluence the bit error rate (BER) performance. Then, some simula-

ions are conducted to verify our analysis. 

First, we consider the effect of the dictionary size M taps on the

erformance. On the one hand, if the dictionary size is too small,

he search window will not be able to ’catch’ all significant channel

aps, causing a degradation of the channel estimation performance.

n the other hand, if we select the dictionary size too large, not

nly the complexity of the algorithm will increase, but also the es-

imation process will include samples having near-zero amplitude,

mplying noise will start to play a larger role. As a result, increas-

ng the dictionary size will have a detrimental effect on both the

erformance and the complexity. 

Similarly, if the sparsity K s is too small, not enough significant

ignal components will be uncovered in the channel reconstruc-

ion process. As part of the channel taps with non-negligible en-

rgy will not be included in this way, the BER performance will be

egraded. However, if the sparsity is too large, the algorithm will

tart to include signal components with close-to-zero amplitude,

ndicating that the channel estimation error will increase due to

he relatively large effect of the noise on these close-to-zero chan-

el components. Moreover, increasing the sparsity will augment

he computational complexity of the algorithm. 

The dependency of the MSE on M taps and K s is illustrated in

ig. 4 , in which a pilot preamble with N = 128 and N p = 1 is

ransmitted to reconstruct the CIR for a signal-to-noise ratio (SNR)

 b / N o of 30dB. The results are averaged over 500 random CM1-

ased channel realizations with M taps,opt = 180 effective taps and

 s,opt = 30 dominant taps. As explained, the MSE will first re-

uce when M taps is increased, and slightly increases again when

 taps > M taps,opt . Decomposing the MSE into the channel-dependent

erm (first term of (21) , Term1 in Fig. 4 ) and the noise-dependent

erm (second term of (21) , Term 2 in Fig. 4 ), we observe in Fig. 4 (a)

hat both the channel-dependent term and noise-dependent term

row when M taps reduces, for M taps < M taps,opt . When M taps re-

uces, dominant taps will start to fall outside the interval [0, M taps ],
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Fig. 4. MSE and its constituent terms as function of (a) M taps for different K s and 

(b) K s for different M taps . 
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implying those taps cannot be reconstructed by the algorithm,

so the mismatch between the true and reconstructed channel

increases, i.e. the channel-dependent term grows. At the same

time, as not enough dominant taps will be present in the interval

[0, M taps ], the algorithm will start to reconstruct noise-dominated

taps, implying the noise-dependent term also increases. This latter

effect is larger when K s is larger, as the algorithm tries to recon-

struct more close-to-zero taps. When M taps > M taps,opt , the increase

of the MSE as function of M taps is mainly due to the increase of the

noise-dependent term, as the channel-dependent term is quasi-

independent of M taps , because the dominant taps are mainly con-

tained in the first part of the interval, i.e. in [0, M taps,opt ]. 

Further, we stated that when K s is too small, some dominant

channel taps will not be reconstructed, while when K s is too large,

noise will start to play a larger role. This is observed in Fig. 4 (b).

When K s < K s,opt , the MSE is dominated by the channel-dependent

term, while this term becomes independent of K s when K s > K s,opt ,

i.e. all dominant taps will be reconstructed. On the other hand,

the noise-dependent term grows with K s , as more noise-dominated

taps will be taken into account. 
. Parameter estimation 

The dictionary size M taps and the sparsity K s both affect the pre-

ision of channel estimation. Hence, knowledge about the param-

ters M taps and K s is indispensable. However, in realistic scenarios,

rior information about these two parameters is often not avail-

ble, so we will estimate these parameters based on the preamble.

n this section, we first discuss the simplex method to jointly es-

imate M taps and K s . As the complexity of the simplex method is

ery high, we then propose a simpler, sub-optimal method to esti-

ate M taps and K s . We show that the performance degradation of

ur method compared to the simplex method is small. Finally, we

ompare the complexity of the proposed method with that of the

implex method and the MMSE estimator. 

.1. Joint estimation 

To jointly optimize M taps and K s , we need to solve the following

ptimization problem: 

< M taps,opt , K s,opt > = argmin M taps ,K s 
‖ ��ˆ ξ − y ‖ 2 

s . t . y = ��ξ. 
(22)

hich can be solved with the well-known simplex algorithm. This

ethod can accurately estimate M taps and K s , as will be illustrated

n Section 5 . Although it is stated in [27] that the simplex algo-

ithm in general needs polynomial time, in the worst case, the

implex algorithm applied to the problem at hand has complex-

ty O{ M taps,opt 
2 K s,opt log 2 ( M taps,opt )log 2 ( K s,opt )}. As this complexity is

till very high, the simplex algorithm is unsuitable for practical im-

lementation in UWB MB-OFDM systems. 

.2. Adaptive CE method 

As jointly optimizing K s and M taps is a challenging task, we first

ake a look at the effect of both parameters on the BER perfor-

ance, to be able to reduce the computational burden of the opti-

ization. In Fig. 5 , we show the BER of the pilot sequence as func-

ion of the dictionary size M taps and sparsity K s , with N = 128 and

 p = 1 . Comparing Figs. 4 (a) and 5 (a), we observe that the min-

mum of the BER coincides with the minimum of the MSE, i.e.

t M taps,opt = 180 , if K s is sufficiently large. This optimal value of

 taps for the BER does neither depend on the sparsity K s nor on

he SNR E b / N o . On the other hand, from Fig. 5 (b), where the BER

s shown as function of the sparsity K s , we find that when M taps 

s smaller than the optimum M taps,opt = 180 found in Fig. 5 (a), i.e.

or M taps = 140 , the BER is largely independent of the value of K s ,

hile when M taps ≥ M taps,opt , the BER shows a clear minimum at an

ntermediate value of K s , i.e. at K s,opt = 30 . As the optimal value

f M taps is not prior known at the receiver, this implies that we

eed to first estimate the dictionary size, to avoid that no opti-

um value for the sparsity can be found. Similar results were ob-

ained for the other channel models. Hence, in the following, we

ropose an estimation algorithm for M taps and K s , where in the

rst phase, the optimal value of M taps is determined, and in the

econd phase, the optimal value of K s . In both phases, we employ

 dynamic search algorithm. 

.2.1. Algorithm 1: M taps optimization 

First, we will describe the algorithm to estimate M taps . In this

lgorithm, we need an initial value for K s . First, we note that, when

 s > K s,opt , the optimal value M taps,opt becomes (quasi-) independent

f K s . Further, we notice from Fig. 5 that selecting K s > K s,opt will

ave a smaller effect on the BER than selecting K s < K s,opt . There-

ore, we select K s,initial > K s,opt . As no prior knowledge is available,

e set K s,initial to the maximum possible value that can be esti-

ated with the preamble, i.e. K s,initial = NN p . To find M taps,opt , we
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Fig. 5. BER performance as function of (a) M taps for different K s and (b) K s for dif- 

ferent M taps . 
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Algorithm 1 M taps estimation algorithm. 

1: Initialization: Set K s,initial = NN p , searching block [ M min , M max ] , 

M min = NN p , M max = 5 NN p , pilot sequence X , received pilot 

sequence y , the number N b of test values, M step = + ∞ and 

M step,min = 1 . 

2: while M step > M step,min do % outer loop 

3: M step ⇐ � (M max − M min ) /N b � ; 
4: for m = 0 : N b do % inner loop 

5: M taps ⇐ M min + m ∗ M step ; 

6: Obtain 

ˆ h with CoSaMP using M taps , K s,initial , X and y ; 

7: Calculate BER m 

with 

ˆ h ; 

8: end for 

9: m opt ⇐ arg min 

m 

BER m 

10: if m opt = 0 or m opt = N b then 

11: M taps,opt ⇐ M min + m opt ∗ M step ; 

12: M max ⇐ M taps,opt + NN p ; 

13: M min ⇐ M taps,opt − NN p ; 

14: else 

15: M taps,opt ⇐ M min + m opt ∗ M step ; 

16: M max ⇐ M taps,opt + M step ; 

17: M min ⇐ M taps,opt − M step ; 

18: end if 

19: end while 

20: Output M taps,opt . 
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efine an initial search interval [ M min , M max ] . For the lower limit,

e set M min = NN p . To motivate this lower limit, we note that in

ractice, if the length of the pilot preamble is shorter than the

ffective CIR length, the channel can not be estimated accurately.

ence, we assume that in the design phase, the length of the pilot

reamble is selected in a proper way, i.e. that it is able to catch

ll dominating channel components. Therefore, it is clear that the

ength NN p of the pilot preamble is an appropriate lower limit for

 taps . For the upper limit, we select M max = 5 NN p , as it is shown

n [28] that if the length NN p of the pilot sequence is smaller

han 20% of the CIR length, the CIR cannot be reconstructed ac-

urately. Note that if the optimal value M taps,opt falls outside this

nitial search interval, the algorithm can adapt the search range

utomatically (see lines 10–13, Algorithm 1 ) . However, for both

imulated channels and measured channels, we did not encounter

ny case where the optimal M taps,opt was located outside this ini-

ial search interval, meaning the search interval was selected prop-

rly. Within the initial search interval, we select N b equidistant val-

es for M taps , i.e. with step size M step = � ∗ � (M max − M min ) /N b . For
ach of the N b selected values M taps , we reconstruct the CIR with

he CoSaMP algorithm, and use the reconstructed channel to re-

over the data of the pilot sequence and to compare the result-

ng bits with the known pilot symbols to obtain the BER, which

erves as the optimization criterion in our algorithm. From these

 b test values, we select the value M taps,opt that minimizes the BER.

e tighten the search interval around the found value of M taps,opt ,

.e. [ M taps,opt − M step , M taps,opt + M step ] , reduce the step size with a

actor N b /2 (see line 3 of Algorithm 1 ), and continue the search

rocedure until the step size becomes smaller than or equal to

he threshold M step,min , which we chose M step,min = 1 in our sim-

lations. 

.2.2. Algorithm 2: K s estimation 

The dynamic window search algorithm to find K s,opt , which

s shown in Algorithm 2 , is similar to the algorithm to find

 taps,opt . The initial search interval for K s is set to [ K min , K max ] =
1 , NN p ] , i.e. the minimum and maximum K s that can be esti-

lgorithm 2 K s estimation algorithm. 

1: Initialization: Set M taps,opt , searching block [ K min K max ] , K min =
1 , K max = NN p , pilot sequence X , received pilot sequence y , the

number N b of test values, K step = + ∞ and K step,min = 1 . 

2: while K step > K step,min do % outer loop 

3: K step ⇐ � (K max − K min ) /N b � ; 
4: for k = 0 : N b do % inner loop 

5: K s ⇐ K min + k ∗ K step 

6: Obtain 

ˆ h with CoSaMP using M taps,opt , K s , X and y ; 

7: Calculate BER k with 

ˆ h ; 

8: end for 

9: k opt ⇐ arg min 

k 
BER k 

10: K s,opt ⇐ K min + k opt ∗ K step ; 

11: K max ⇐ K s,opt + K step ; 

12: K min ⇐ K s,opt − K step ; 

13: end while 

14: Output K s,opt , CIR 

ˆ h estimated with M taps,opt and K s,opt . 
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Fig. 6. Complexity comparisons of MMSE, the simplex algorithm and the proposed 

algorithm. 

Table 2 

Parameters of the MB-OFDM system. 

Bandwidth (MHz) 528 

RF carrier frequency (MHz) 5544 

Frequency bandwidth (MHz) 5280–5808 

Number of subcarriers N 128 256 512 1024 

Subcarrier spacing �f (MHz) 4.1251 2.0625 1.0313 0.5157 

Sampling rate (MHz) 528 
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6  
mated with a preamble length NN p . Similarly as in Algorithm 1 ,

we select N b equidistant test values for K s , with step size K step =
� ∗ � (K max − K min ) /N b , and reconstruct the CIR with the selected

value of K s and M taps,opt from Algorithm 1 , and compute the result-

ing BER of the pilot sequence. We gradually refine our search inter-

val until the step size K step is smaller than or equal to the threshold

K step,min = 1 . The outputs of this algorithm are K s,opt and the recon-

structed CIR. 

4.3. Complexity analysis 

To show that the proposed algorithm is suitable for practical

implementation, we evaluate the computational complexity of

the algorithm. This computational complexity, which is expressed

in terms of the number of complex multiplications (NCM), is

compared to the complexity of the MMSE estimator. The main

share of the computations in the proposed algorithm stems from

the CoSaMP algorithm that is used to reconstruct the CIR for

each combination of M taps and K s . From [19] , the number of

complex multiplications required in the CoSaMP algorithm equals

O{ M taps log 2 (M taps ) log 2 (K s ) } . Hence, this complexity depends

on the considered M taps and K s . In the M taps optimization al-

gorithm, given in Algorithm 1 , K s is fixed to K s,initial , but M taps 

changes during the course of the optimization. As in this op-

timization process, the dictionary size M taps will converge to

M taps,opt , we approximate the complexity of the CoSaMP algo-

rithm by O{ M taps,opt log 2 (M taps,opt ) log 2 (K s,initial ) } . Within each

inner loop, N b + 1 values of M taps are tested, and the inner loop

is executed O{ log N b (4 NN p ) } times, leading to the complexity

O{ (N b +1) M taps,opt log 2 (M taps,opt ) log 2 (K s,initial ) log N b (4 NN p ) } .
Similarly, in the K s -optimization algorithm, where M taps 

is fixed to M taps,opt , the complexity is approximated by

O{ M taps,opt log 2 (M taps,opt ) log 2 (K s,opt ) } , as during the opti-

mization process, K s grows closer to K s,opt . Further, per in-

ner loop, N b + 1 values of K s are tested and the inner loop

is executed O{ log N b (NN p ) } times, resulting in a complex-

ity O{ (N b + 1) M taps,opt log 2 (M taps,opt ) log 2 (K s,opt ) log N b (NN p ) } .
The total complexity of the algorithm therefore equals

O{ (N b + 1) M taps,opt log 2 (M taps,opt ) · [ log 2 (K s,initial ) log N b (4 NN p ) +
log 2 (K s,opt ) log N b (NN p )] } . 

To compare the complexity of the proposed algorithm with

the complexity of the MMSE estimator and the simplex algo-

rithm, which are O{ (NN p ) 3 } and O{ M taps,opt 
2 K s,opt log 2 (M taps,opt )

log 2 ( K s,opt )} respectively, we consider the case where M taps,opt =
5 N N p , K s,opt = N N p and N b = 5 . As in most situations, M taps,opt and

K s,opt will be smaller than these values, the true complexity will be

smaller than the complexity shown in Fig. 6 . As can be observed

in the figure, compared with MMSE estimator and the proposed

method, the high complexity of simplex method makes it imprac-

ticable in channel estimation. Comparing the MMSE estimator and

our method, we find that when NN p > 112, the proposed method

has lower complexity than the MMSE method. Moreover, taking

into account that the worst case values of M taps and K s were taken

to compute the computational complexity of our method, in prac-

tical situations, the complexity reduction compared to the MMSE

approach will be much larger than shown in the figure. 

5. Numerical results 

In this section, we verify the performance of the proposed

adaptive CE method. The channel models (CMs) used in our simu-

lations are based on the UWB communication environments and

propagation scenarios considered in the IEEE 803.15.3a standard

[11] (see Table 1 for the parameters of these CMs). For each of

the four considered CMs, 500 random channel realizations are gen-

erated, each having the same channel length L taps , with L taps =
00 , 730 , 1300 , 2150 for CM 1–4, corresponding to K s = 30 , 45 , 92

nd 163 dominant non-zero taps, that are distributed over the

rst M taps = 180 , 202 , 341 and 698 taps of the channel, respec-

ively. In the simulations, we set the bandwidth to 528 MHz, in

he frequency band 5280–5808 MHz, which corresponds to band

 5 in [29] . Further, we take the number of subcarriers equal to

28, 256, 512 and 1024, which corresponds to a carrier spacing of

.1251 MHz, 2.0625 MHz, 1.0313 MHz and 0.5157 MHz, respectively.

he sampling rate used in our simulations equals the bandwidth.

n overview of the parameters is given in Table 2 . 

We first assess the probability of miss detection of M taps and

 s , i.e. P miss , M taps 
= P (M taps,opt � = M taps,real ) and P miss,K s = P (K s,opt � =

 s,real ) . To this end, we consider the case of CM1, and transmit a pi-

ot preamble of length NN p = 128 , in which N = 128 and N p = 1 . In

ig. 7 , the probability of miss detection of M taps and K s is shown for

he proposed algorithm, and compared with those for the simplex

lgorithm which is implemented using the function of fminsearch
n Matlab. The figure demonstrates that when E b / N o increases, the

robability of miss detection of both M taps and K s reduces, and

rops below 5% when E b / N o is sufficiently large. Hence, both algo-

ithms can determine the parameters K s and M taps with high accu-

acy. Although the proposed algorithm has a slightly higher prob-

bility of miss detection, the much lower complexity of the pro-

osed algorithm makers it more suitable for practical use. We also

valuated the probability of miss detection for the other channel

odels CM 2–4, and the results are similar to that of CM1. 

Next, we evaluate the performance of the proposed channel es-

imator and compare the results with the performance of OMP, SP

nd CoSaMP. For each of the considered algorithms, we estimate

he CIR for 500 channel realizations of CM1, and compute the nor-

alized mean-squared error (NMSE) E[ ‖ ( ̂  h − h ) ‖ 2 
2 

/ ‖ (h ) ‖ 2 
2 
] . For

he OMP, SP and CoSaMP algorithms, we assume no prior knowl-

dge of M taps and K s is available, and we set M taps = 256 and K s =
0 for these algorithms. As can be observed in Fig. 8 , the proposed
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Fig. 7. Probabilities of miss detection for M taps and K s . 

Fig. 8. NMSE of the proposed method and other CS reconstruction methods. 
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Fig. 9. BER performance of the proposed method compared to other selected meth- 

ods for CM1. 
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1  
lgorithm outperforms the other algorithms. This can be attributed

o the optimized dictionary size and sparsity in our method, re-

ulting in a more accurate reconstruction of the CIR, especially at

igher E b / N o . 

To evaluate the BER performance of the proposed estimator,

e transmit for each channel realization a pilot preamble of NN p 

ilot symbols, followed by 50 0 0 OFDM symbols, each containing

024 data symbols, where the data is modulated using quadrature

hase-shift keying (QPSK). The BER of CM i is obtained by averag-

ng the BER of the transmitted data over 500 channel realizations

f CM i . The BER performance of the proposed algorithm is com-

ared with the performance of other CS methods, i.e. SP, OMP and

oSaMP, traditional CE methods, i.e. LS and MMSE, and the case

here the channel is known. For the SP, OMP and CoSaMP meth-

ds, the same values for M taps and K s are used as mentioned for

ig. 8 . For CM1, the results are shown in Fig. 9 , assuming N = 128

nd N p = 1 . Taking into account that the length of this pilot pream-

le is shorter than the effective CIR length, which was 180 in our

imulation, the channel estimators are not able to extract all dom-

nant CIR components. This results in a degradation of the BER

ompared to the case where the channel is perfectly known at
he receiver. Comparing the BER results, we observe that the pro-

osed method outperforms all other CEs, although the gap with

he BER of the known channel is still relatively large. By increas-

ng the pilot preamble length, by e.g. selecting N p = 4 and N p = 8 ,

his gap will become smaller (see Fig. 10 ), as more CIR compo-

ents will be found. For N p = 8 , several of the estimators, includ-

ng the proposed one, exhibit a performance close to the ideal case

ith known channel. However, the required pilot preamble is quite

ong, which will limit the data throughput and thus its practical

pplicability. Therefore, this pilot preamble will be shortened, im-

lying the proposed method will be an excellent solution to esti-

ate the channel in a practical implementation. Furthermore, we

how the BER performance for the other channel models. In Fig. 11 ,

he BER performance of the proposed method and other selected

ethods is shown, assuming N p = 1 , 2 and 4 pilot symbols of

ength N = 128 are used for CM2, CM3 and CM4, respectively. Our

roposed method found for the considered cases that the optimal

ictionary size was M taps,opt = 202 , 341 and 698, and the optimal

parsity equalled K s,opt = 45 , 92 and 163, for CM2, CM3 and CM4,

espectively. We observed in our simulations that these numbers

or M taps,opt and K s,opt are in accordance with the average effective

uration and the number of dominant taps of the CIRs. With these

arameter settings, we are able to recover about 85% of the power

ontained in the CIR. Fig. 11 confirms the results from Fig. 9 , i.e.

he proposed estimator outperforms the other CE methods when

he length of the pilot preamble is shortened for practical reasons,

o that not all dominant channel components can be retrieved.

imilarly as for CM1, when the length of the pilot preamble would

e increased, the difference between the performance of the con-

idered CEs and that of the case with known channel will become

maller. 

Finally, we applied the proposed method for the channels, mea-

ured with the setup from Section 2.2 . In this paper, we just show

he results for channels between transmitter and receiver positions

 6 , R 12 and R 14 , corresponding to a LoS, OLoS and NLoS scenario,

nd denoted by Channel 6, Channel 12 and Channel 14, respec-

ively. The results for the other channels are similar to the re-

ults of these three channels. From the measured data, we deter-

ined the effective durations of Channel 6, 12 and 14, i.e. they are

68, 241 and 369 respectively, and the values of sparsity are 37,

1 and 91. We select N p = 1,1 and 2 pilot symbols of length N =
28 to reconstruct Channel 6, 12 and 14, respectively. Further, to
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Fig. 10. BER performance of the proposed method compared to other selected 

methods for different lengths of the pilot preamble: (a) NN p = 512 (b) NN p = 1024 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. BER performance of the proposed method compared to other selected 

methods for CM2, CM3 and CM4. 

Fig. 12. BER performance for real, measured channels of channel 6, channel 12 and 

channel 14. 
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evaluate the BER performance of our method, we transmitted 50 0 0

OFDM symbols modulated by QPSK. The average BERs of the three

channels are shown in Fig. 12 . Compared with OMP and CoSaMP,

the proposed method achieves a lower BER. Although the pilot se-

quence has the same length for Channel 6 and 12, the effective du-

ration and sparsity of Channel 6 are smaller than those of Channel

12, so the BER performance of Channel 6 is much better. Moreover,

thanks to the longer pilot sequence, the average BER of Channel

14 is lower than that of Channel 12, even though Channel 14 has

a longer effective duration and more dominant taps. Note that we

can improve the BER for Channel 12 by using the same pilot se-

quence length as for Channel 14. In that case, the BER of Channel

12 turned out to be better than for Channel 14 (results not shown

in the figure). Similar to the results of the simulated channels, the

performance difference between the CS-based CE methods and the

known channel will be reduced when the length of pilot preamble

increases. 
. Conclusion 

In this paper, we propose an adaptive CS-based parameter es-

imation algorithm for UWB MB-OFDM systems. Our method ex-

ends the CoSaMP method by also estimating the dictionary size

 taps and sparsity K s , needed to accurately estimate the channel.

lthough state-of-the-art estimators are able to achieve close-to-

ptimal performance when the pilot preamble length is sufficiently

ong to extract all CIR components, such pilot preamble lengths

re often not suitable for practical implementation as they limit

he data throughput. Therefore, in practice the pilot preamble is

ften shortened. However, this results in a degradation of the sys-

em performance. We show in this paper that in such a situation,

ur method outperforms state-of-the-art channel estimators con-

iderably, as the estimated M taps,opt and K s,opt better match the ef-

ective duration and the sparsity of the CIR. Moreover, as the pro-

osed method has low complexity, it is suitable for practical im-

lementation. In this paper, we not only restricted our attention

o theoretical channel models, we also evaluated our algorithm

or measured channels obtained with the measurement setup de-

cribed in this paper. The results for these measured channels are
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imilar to the results of the theoretical channel models, meaning

hat our method can be employed in practical scenarios. 
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