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Simultaneous Position and Orientation Estimation
for Visible Light Systems With Multiple

LEDs and Multiple PDs
Shengqiang Shen, Shiyin Li , and Heidi Steendam , Senior Member, IEEE

Abstract— Visible light communication (VLC) is seen as a
supplement for fifth-generation (5G) wireless communication
in short-range high data rate communication applications [1].
A reliable VLC system relies on an accurate estimate of the
position and orientation of the receiver, which corresponds to
the six-dimensional positioning problem mentioned in [2]. In this
paper, we investigate the simultaneous position and orientation
estimation (SPO) problem using received signal strength (RSS),
for a visible light system containing multiple LEDs and multiple
photodiodes (PDs) (MLMP). Although in general, the position
and orientation of the receiver can be represented by a vector
and a rotation matrix, respectively, the constraints imposed
by the rotation matrix make the numerical optimization in
the estimation process cumbersome, e.g, the commonly used
constrained optimization method is often very complex and non-
robust. Therefore, in this paper, we design two SPO algorithms
using the principle of optimization on manifolds, which alleviates
the constraints from the rotation matrix. In addition, we propose
an initialization algorithm, based on the direct linear transforma-
tion (DLT) principle, to obtain an initial estimate in closed-form
for the iterative algorithms. To evaluate the performance of the
proposed RSS-based SPO algorithms, we derive the Cramer-Rao
bound (CRB). In particular, the orientation error component
of the CRB corresponds to the intrinsic CRB or the CRB on
manifolds, which measures the error in the estimated rotation
matrix in a physically meaningful way. Finally, computer sim-
ulations show an asymptotic tightness between the performance
of the proposed algorithms and the theoretical lower bound,
demonstrating the effectiveness of the proposed solutions.

Index Terms— Visible light system, multiple LEDs and multiple
PDs, simultaneous position and orientation estimation, Cramér-
Rao bound, optimization on manifolds, interior point method.
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I. INTRODUCTION

WHITE LEDs, that are gradually becoming the primary
source of light for indoor illumination, can be modu-

lated at frequencies up to several MHz. Consequently, white
LEDs can be used for wireless communication, making it
possible to achieve high rate communications with low cost,
low power consumption, and long lifetime [3]. In addition,
visible light is environmentally friendly compared to RF solu-
tions. Electromagnetically sensitive environments, including
hospitals and aircrafts, are potential applications. Moreover,
due to the dominance of the directional propagation of line-
of-sight links (LOS), the visible light channel can be modeled
as time invariant [4]. Because of all of these merits, visible
light communication (VLC) is seen as a supplement for
fifth-generation (5G) wireless communication in short-range
high data rate communication applications [1]. However,
the visible light channel is largely sensitive to the distance
and angle with respect to the transmitter. Therefore, a reliable
VLC system requires an accurate estimate of the receiver’s
position and/or orientation.

VLC-based positioning or visible light positioning (VLP)
has been considered in many works [5]. However, research on
the orientation of the receiver is limited. Most works on VLP
restrict their attention to the special case where the orientation
of the receiver is parallel to the transmitter or the ceiling,
and some works [6]–[11] consider the performance of the
VLP system when the receiver is tilted. In [6], a method
to compensate for the RSS changes caused by the tilted
orientation is proposed, and the conclusion is that if the
compensation is applied, the tilting only results in a slight
degradation of the performance, while [8] takes advantage
of angular diversity provided by the tilted orientation of
the receiver to improve the performance. In [9], the authors
analyze the VLP performance for a tilted receiver. However,
these papers assume the orientation is known in advance,
which is a strong assumption in reality. The effects of unknown
orientation were investigated in some papers. In [10], a study
of an unknown tilt orientation of the receiver shows that tilting
has a significant degradation on the performance. The effect of
unknown transmitter and receiver orientations on the channel
gain is investigated in [11]. The results show that the effect of
an unknown orientation increases with the distance between
the transmitter and receiver.
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All aforementioned works show that the orientation is
important to the visible light system, however, they only
investigate the impact of the orientation of the receiver on posi-
tioning and do not take into account the orientation estimation.
In a reliable visible light system, a simultaneous position and
orientation estimation (SPO) algorithm is needed, however,
only limited work on SPO is available now. Recently, several
SPO algorithms for VLC with a single PD using received sig-
nal strength (RSS) have been proposed in [12], [13]. In these
papers, a receiver consisting of a single PD is considered,
and the orientation of the PD is represented by its normal
vector. Although this representation is simple, it has several
limitations. Firstly, the normal vector representation is blind
to the change in yaw angle, i.e. the representation can not
reflect the heading direction. Although this flaw has little
impact on the receiver with a single PD in terms of channel
gain, the representation fails whenever the heading estimation
is required. Secondly, for receivers equipped with multiple
PDs or a PD array, the receiver moves and rotates in a rigid
manner, and changes in yaw angle of the receiver will affect
all PDs that are not at the rotation center. Therefore, instead
of representing the orientation using the normal vector, which
actually describes the rotation with two degrees of freedom,
we consider a more general representation of the orientation,
having 3 degrees of freedom, i.e., we use the rotation matrix.
The PD array is becoming an increasingly popular topic in
both VLC and VLP [14]–[19], because it is able to increase
the receiver’s FOV and diversity, thereby improving the perfor-
mance of a visible light system. As the design of efficient SPO
algorithms is important for visible light systems with multiple
LEDs and multiple PDs (MLMP),1 we develop in this paper
different algorithms to jointly estimate the position and the
orientation of the PD array. Further, in this paper, we derive the
Cramér-Rao bound (CRB) of the MLMP-based VLP system
for unknown but deterministic position and orientation of
the receiver. In the literature, several papers are available to
incorporate the orientation in the theoretical lower bound.
However, either these works consider the case of a known
orientation [17], [20]–[22], or they consider the effect of SPO
errors for a receiver with a single PD [13], [23], [24]. To the
best of our knowledge, the theoretical lower bound that can be
used to analytically assess the performance of SPO algorithms
for VLP systems with MLMP, was not considered yet.

The main contributions of this paper are as follows:
1) In this paper, we first give the MLMP system model

using a rotation matrix to represent the orientation. Because
of the constraints imposed by the rotation matrix, classical
optimization algorithms operating in Euclidean space are com-
plex. Therefore, we resort to the properties of the rotation
matrices, which are elements of the SO(3) matrix Lie group.
This SO(3) group is also called the rotation manifold [25], and
uses 3 degrees of freedom to describe an orientation. To jointly
estimate the rotation matrix and the position in an efficient
way, we therefore propose two iterative algorithms using the

1The multiple LEDs can be compared to the multiple transmitter antennas
in a massive MIMO system, and the multiple PDs are the optical counterpart
of a receiver antenna array.

principle of optimization on manifolds: one based on
the Gauss-Newton method (GNM) and the other based on
the interior point method (IPM). The latter algorithm further
considers the position boundary condition and achieves a
better performance in terms of convergence at the cost of
computational complexity.

2) In order to provide initial values for the proposed iterative
optimization algorithms, we also derive a closed-form approx-
imative solution to the SPO problem using the direct linear
transformation (DLT) algorithm combined with the structural
features of the angular diversity PD array receiver.

3) To analytically investigate the RSS-based SPO, we derive
the associated Cramér-Rao bound (CRB). This CRB simul-
taneously bounds errors in both the position vector and the
rotation matrix. In particular, in order to measure the error
in the estimated rotation matrix, the intrinsic CRB on SO(3)
is utilized. The performance of the proposed SPO algorithms
is assessed using Monte Carlo simulations, and the tightness
of the results with the theoretical lower bound is evaluated.
Based on the CRB, we also investigate the optimal design of
the receiver PD diversity.

The rest of the paper is organized as follows. The model
of the MLMP visible light system is described in Section II.
The RSS-based SPO algorithms using the optimization on
manifolds principle are derived in Section III, together
with the expression of the theoretical bound. Subsequently,
the closed-form solution using the DLT is discussed in
Section IV. Section V gives the numerical results and compares
the performance of the proposed methods with the theoretical
bound. The optimal design of the PD receiver diversity is
evaluated in this section as well. Finally, some concluding
remarks are given in Section VI.

II. SYSTEM DESCRIPTION

A. System Model

In this paper, we consider a system containing NL LEDs and
a VLP receiver containing NP bare PDs, as shown in Fig. 1.
Since all PDs are placed rigidly on the receiver, i.e. all PDs
translate and rotate along with the receiver but preserve their
relative distances and relative orientations, the coordinates and
orientations of the PDs are first defined in the frame of the
receiver and then transformed into the frame of the system.
In the frame of the receiver, as shown in Fig. 1b, by setting the
origin Or to the centroid of the receiver, the coordinates of the
jth PD are specified by a relative distance vector dj,0 ∈ R

3×1

to the origin, while the normal of the jth PD is specified by
a rotation matrix RP,j ∈ SO(3) with respect to a reference
orientation n0, i.e. nP,j,0 = RP,jn0, where RP,j is assumed
to be known and fixed. As the reference orientation, we select
the normal of the receiver plane, i.e. n0 = [0 0 1]T, as shown
in Fig. 1b. In the frame of the system, the position and the
orientation of the receiver (the centroid of the receiver) are
denoted by r ∈ R

3×1 and R ∈ SO(3), respectively, where
the receiver’s normal n, i.e. the normal of the receiver plane,
is expressed by n = Rn0, as shown in Fig.1a. The coordinates
of the jth PD, denoted by rP,j , are given by rP,j = r +
dj , where dj = Rdj,0, and the normal of the jth PD is
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Fig. 1. System model.

specified by nP,j = RnP,j,0. For the transmitter part, it is
assumed that the ith LED of the system has coordinates rL,i ∈
R

3×1 and normal nL,i ∈ R
3×1, i.e. the direction in which

the LED is radiating. We assume that all LEDs’ coordinates,
normals, and properties (such as brightness, radiation pattern
and modulation settings) are known by the receiver.

B. Channel Gain and Received Power

It is assumed that each PD is able to distinguish between
the signals transmitted by the different LEDs. Assuming the
vector νi = r−rL,i is the vector between the ith LED and the
receiver centroid, the incidence vector between the ith LED
and the jth PD of the receiver is vi,j = νi + dj . Using this
definition, we find the distance vi,j between the LED and the
PD, the radiation angle φi,j , i.e. the angle between vi,j and
the normal nL,i of the LED, and the incidence angle θi,j , i.e.
the angle between the vi,j and the normal nP,j of the PD:

vi,j = �vi,j� , (1)

cos (φi,j) =
nT

L,ivi,j

�vi,j� =
nT

L,i (νi + dj)
�νi + dj� , (2)

cos (θi,j) = −nT
P,jvi,j

�vi,j� = −nT
P,j (νi + dj)
�νi + dj� . (3)

For bare PDs (and upon some constant scaling factor
also for PDs with a hemispherical lens), the channel gain
corresponding to the LOS component of the ith LED and jth

PD is given by [26]:

hi,j = (γ+1)AR,j

2πv2
i,j

cosγ (φi,j) cos (θi,j)Π
�

θi,j

θFOV

�
Π
�

φi,j

φF OV

�
,

(4)

where AR,j is area of the jth PD (in m2), θFOV is the field
of view (FOV) of the PD, φFOV is the FOV of the LED,
the Lambertian order of the LEDs equals γ, and Π(·) is the
rectangular function defined as

Π(x) Δ=

�
1, |x| ≤ 1.
0, |x| > 1.

(5)

The factor Π(θi,j/θFOV ) ·Π(φi,j/φFOV ) in (4) implies that
a PD can detect the light only when the LED is within its
FOV, and the PD itself is within the FOV of the LED, i.e.
when 0 ≤ θi,j ≤ θFOV and 0 ≤ φi,j ≤ φFOV .

Taking into account (1)–(3), (4) can be rewritten as

hi,j =Ki,j

�
nT

L,i(νi+Rdj,0)
�γ

�νi+Rdj,0�γ+3 (RRP,jn0)
T (νi + Rdj,0) ,

(6)

where Ki,j = − (γ+1)AR,jΠi,j

2π and Πi,j = Π(θi,j/θFOV ) ·
Π(φi,j/φFOV ).

We assume a proper multiplexing protocol is used, e.g.
frequency-division multiplexing (FDM) [27], time-division
multiplexing (TDM) [28] or color-division multiplexing
(CDM) [29], so that each PD is able to separate the signals
from the different LEDs. Then the total observation consists of
the RSS values from every link between a PD and a LED. Let
us define the NLNP × 1 vector y =

�
yT

1 , . . . ,yT
NP

�T
as the

vector of observation, with yj = [y1,j, . . . , yNL,j]
T. Assuming

the LOS component dominates the received signal, we obtain

y = h + w, (7)

where the NLNP × 1 vector h is defined as h =�
hT

1 , . . . ,hT
NP

�T
with hj = Rp,j [Pt,1h1,j, . . . , Pt,NLhNL,j ]

T,
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Pt,i is the power transmitted by the ith LED and Rp,j is
the responsivity of the jth PD. The NLNP × 1 vector w
models the shot noise, which is represented by a zero-mean
multivariate Gaussian random variable with covariance matrix
Σw = σ2

wINLNP . Based on the observation (7) the SPO
algorithm needs to jointly estimate the position r and the
orientation R.

III. ESTIMATION ALGORITHM AND THEORETICAL BOUND

In this section, we first show that the SPO problem is a
constrained non-linear least squares problem (constrained by
the rotation matrix) that can be solved by standard optimiza-
tion algorithms. However, the resulting algorithms are complex
and non-robust. To reduce the complexity and increase the
robustness, we then show that by viewing the optimization
problem in the SO(3) manifold, the problem reduces to an
unconstrained non-linear problem that can be solved using the
principle of optimization on manifolds. While in the standard
optimization algorithm, the estimated variable and incremental
step are in the same Euclidean space, in the optimization
algorithm on manifolds, the estimated variable and incremental
step are located in different spaces, i.e. the estimated variable
in the manifold and the incremental step size in the associated
tangent space. We first consider the Gauss-Newton method on
manifolds. Its counterpart, i.e. standard Gauss-Newton, is an
iterative method that is regularly used for solving non-linear
least squares problems. However, the Gauss-Newton method
does not always converge properly. Therefore, in order to
achieve a proper convergence, we propose an interior point
method on manifolds that additionally considers the boundary
condition, i.e. the constraint imposed on the position vector.
This algorithm is an extension of the standard interior method,
which is an effective method to solve non-linear optimization
problems that contain an inequality constraint.

Let us define the wanted parameter set Θ = {r, R} and
define the log-likelihood function as

L (Θ;y) = ln p (y|Θ)

= const−1
2
�y − h�2

Σw
, (8)

where �x�2
Σ = xTΣ−1x denotes the squared Mahalanobis

distance with respect to covariance Σ, and p (y|Θ) is the
conditional probability density function of y given Θ, which
complies with y|Θ ∼ N (h (Θ) ,Σw). The maximum likeli-

hood (ML) estimate of Θ, i.e. Θ̂ =
	
r̂, R̂



, maximizes the

log-likelihood function L:

Θ̂ = arg max
Θ

L. (9)

As (9) is a non-linear least squares (NLS) problem, it has no
closed-form solution, and has to be solved using an iterative
optimization algorithm. Even worse, since R is a member of
SO(3) rather than an arbitrary 3 × 3 real matrix, R has to
satisfy the following constraints:

RTR = RRT = I, det (R) = +1. (10)

To solve (9) constrained by (10), we can resort to a con-
strained non-linear optimization algorithm, which is complex,

Fig. 2. Optimization on a manifold.

time consuming and non-robust. However, since SO(3) is
an embedded submanifold of R

3×3, we can estimate the
parameters in SO(3) using an (iterative) optimization algo-
rithm on manifolds [30]. In each iteration, the algorithm
calculates the incremental steps in the tangent space so(3)
to the manifold SO(3), and then those incremental steps
are mapped back on the manifold again to update the steps,
which is elaborated in detail in Fig. 2. Since the optimization
is iteratively progressed in the manifolds, it relieves the
restrictions imposed by the constraints (10), simplifying the
optimization process. In Subsection III-A, we adapt Newton’s
method on SO(3) from [31] to solve the problem at hand,
while the interior point method on SO(3) is discussed in
Subsection III-B.

A. Gauss-Newton Method on Manifolds

As in the standard Gauss-Newton optimization, the first step
is to find the greatest descent direction to determine the search
direction. This search direction ΔΘ =

�
ΔT

r ,ΔT
R

�T
is given

by

ΔΘ = − (∇Θh)† (h − y) , (11)

where (·)† denotes the Moore-Penrose pseudoinverse, ∇Θh =
[∇Θh1, . . . ,∇ΘhNP ]T ∈ R

NLNP×6 denotes the Jaco-
bian matrix of h with respect to Θ, with ∇Θhj =
Rp,j [Pt,1∇Θh1,j, . . . , Pt,NL∇ΘhNL,j ]

T ∈ R
NL×6, and

∇Θhi,j =
��

∂hi,j

∂r

�T

,
�

∂hi,j

∂R

�T
�

∈ R
1×6. The partial

derivative ∂hi,j

∂r is calculated in Euclidean space, while ∂hi,j

∂R
is calculated by introducing an infinitesimal perturbation
exp (ω×) [32] as follows,

∂hi,j

∂R

=
∂

∂ω






ω=0

�
Ki,j

�
nT

L,i(νi+exp (ω×)Rdj,0)
�γ

�νi+exp (ω×)Rdj,0�γ+3

× (exp (ω×)RRP,jn0)
T (νi+exp (ω×)Rdj,0)

�
, (12)
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where the infinitesimal perturbation exp (ω×) ∈ SO(3) is
expressed as

exp (ω×) = exp

⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ , (13)

the operator (·)× converts the rotation vector ω = [ωx ωy ωz]
T

into a skew-symmetric matrix ω× ∈ so(3), and exp (·) is the
matrix exponential function. The partial differential vector of
hi,j is then given by

∇Θhi,j = Ki,j ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ
�
nT

L,ivi,j

�γ−1 �
nT

P,jvi,j

�
�vi,j�γ+3�
nT

L,ivi,j

�γ
�vi,j�γ+3

− (γ + 3)
�
nT

L,ivi,j

�γ �
nT

P,jvi,j

�
�vi,j�γ+5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

·

⎡
⎢⎣ nT

L,i, nT
L,i · (Rdj,0)

T
×

nT
P,j, νT

i · (Rn0)
T
×

vT
i,j , νT

i · (Rdj,0)
T
×

⎤
⎥⎦ . (14)

In contrast to the standard Gauss-Newton algorithm,
the update step for the algorithm on manifolds is given by

rt+1 = rt + αΔr, Rt+1 = exp
�
(αΔR)×

�
Rt, (15)

where α is the step size, and exp (·) maps (αΔR)× – an
element in so (3) – back into exp

�
(αΔR)×

�
– an element in

SO(3), i.e. step (3) in Fig. 2.

B. Interior Point Method on Manifolds

In our experiments, we found that the Gauss-Newton algo-
rithm not always converges properly, especially when the
SNR is low or the number of observations is small. In these
situation, it often happens that a position is found that is
outside of the room with the LEDs and reciver. To avoid such
outliers and improve the convergence of the algorithm, in the
following we design an interior point method on manifolds
that takes into account a boundary condition, i.e. the position
of the receiver is confined within a target area (the room),
which is expressed as 0 ≤ r ≤ b, where the position r of
the receiver is confined within the bounds of the room given
by the coordinates 0 and b. As the bounds 0 ≤ r ≤ b are
hard to implement in a practical optimization algorithm, due
to the discontinuity of the equality sign, the interior point
method replaces the strict inequality by a barrier function
−μ
�6

i=1 log ([s]i), where s is a slack variable vector and μ
is the barrier parameter, and [·]i is defined as the operator
that returns the ith element when the operand is a vector
and it returns the ith row as a row vector when the operand
is a matrix. Forcing s to be strictly positive is equivalent to
0 ≤ r ≤ b. This barrier function is added as a penalty function
to our objective function (9) to enforce the boundary condition:

Θ̂ = argmin
Θ

�
−L− μ

6�
i=1

log ([s]i)

�
,

s.t. c − s = 0 (16)

where cT =
�
rT, (b− r)T

�
is the rearranged inequality

vector. The interior point method consists of finding (approxi-
mate) solutions of (16) for a sequence of positive {μ} that
converges to zero. In the first steps, the barrier parameter
μ is taken strictly positive to keep the algorithm within the
feasible region, whereas in later steps, the barrier parameter
converges to zero to better resemble the condition 0 ≤ r ≤ b.
For each μ, the interior point method finds the solution to
the Karush-Kuhn-Tucker (KKT) conditions for (16) using
Newton’s method. As such, the interior point method is a
two-level iteration algorithm, where the outer iteration decays
μ gradually and the inner iteration updates iteratively the state
(comprised of the parameter set Θ, the Lagrange multiplier
z of c, and the slack variable vector s) for a given μ.
To determine the search direction (ΔΘ,Δz,Δs) for the inner
iteration, the algorithm finds the solution to the symmetric
primal-dual system [33], which is given by�−∇2

ΘΘL (Θ) AT

A −Z−1S

�
·
�

ΔΘ

−Δz

�

=
�
ATz + ∇ΘL (Θ)

μZ−11− c

�
, (17a)

Δs = Z−1 (μ1− Zs − SΔz) , (17b)

where 1 is the all-ones vector, the diagonal matrices Z and S
are given by Z = diag (z), S = diag (s), respectively, and

A =
�

I3×3 03×3

−I3×3 03×3

�
(18)

is the Jacobian matrix of c with respect to Θ. Since in
the Hessian matrix in (17a), the analytical derivation of
∇2

ΘΘL (Θ) is cumbersome, in the following it is approxi-
mated by ∇2

ΘΘL (Θ) ≈ (∇Θh)T (∇Θh). Note that the same
expression can be found in the Moore-Penrose pseudoinverse,
used in the Gauss-Newton algorithm.

The solution of (17) defines the search direction for the
inner iteration, while the step length is determined by

αmax
s = max {α ∈ (0, 1] : s + αΔs ≥ (1 − τ) s,

α�ΔR� ≤ (1 − τ)π} , (19a)

αmax
z = max {α ∈ (0, 1] : z + αΔz ≥ (1 − τ) z} . (19b)

The constraint, α�ΔR� ≤ (1 − τ)π, in the formula of αmax
s

prevents the absolute value of the incremental step for R from
being larger than π, which arises from the fact that the matrix
exponential function that converts the incremental step back
in the manifold is a periodic function with a period of 2π.
As a result, the update step for the interior point algorithm on
manifolds is given by

rt+1 = rt + αsΔr, Rt+1 = exp
�
(αsΔR)×

�
Rt, (20a)

st+1 = st + αsΔs, zt+1 = zt + αzΔz. (20b)

The merit function measuring the quality of an updated state
is given in terms of the barrier function (16) by

mι (Θ, s) = −L (Θ) − μ

6�
i=1

log ([s]i) + ι�c − s�1, (21)
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where ι is the penalty parameter that determines the weight
that we assign to constraint satisfaction relative to the min-
imization of the objective. The error function (reflecting the
maximum residual error in the KKT conditions), which indi-
cates whether a local minimum solution is achieved, is calcu-
lated by [33]

� = max
��∇ΘL (Θ)+ATz�, �Sz− μ1�, �c− s�� . (22)

An overview of the proposed interior point method on the
SO(3) manifold is shown in Algorithm 1, where �TOL is the
tolerance that specifies the required accuracy of the computed
solution, μ is initialized by a large positive number and
decreases iteratively with a decay rate of σ, and τ could be
set to a typical value of τ = 0.995 [33].

Algorithm 1 Algorithm for IPM on the SO(3) Manifold

Input: 0 ≤ r0 ≤ b, R0 ∈ SO(3)
Output: Θ

Initialisation: Select μ > 0, τ ∈ (0, 1), σ ∈ (0, 1), �TOL,
set t = 0

1: Compute z0, s0

LOOP Process
2: for i = 1 to maxiterationso do
3: for j = 1 to maxiterationsi do
4: Compute ΔΘ,Δz,Δs from (17)
5: Compute αmax

s , αmax
z using (19)

6: Compute αs ∈ (0, αmax
s ], αz ∈ (0, αmax

z ] such that (21)
decreases

7: Update Θ, s, z using (20)
8: Compute � from (22)
9: if � ≤ �TOL then

10: break
11: end if
12: end for

Set μ = σμ
13: end for
14: return Θ

C. Convergence and Complexity Analysis

Besides the performance of the proposed methods, which
will be discussed in Section V, we also want to discuss the
convergence and complexity of the algorithms. First we dis-
cuss the convergence. In the Gauss-Newton method, the con-
vergence is determined by the properties of the Jacobian matrix
∇Θh. Assuming the dimension of the observation vector is
not less than the number of unknown parameters, the Jacobian
matrix is full-row-rank, implying ∇Θh is invertible. Further,
since

�
(∇ΘL)T · ΔΘ

�
< 0 holds for any non-critical point,

the sequence {ΔΘ} of incremental steps towards the opti-
mal Θ is a gradient-related sequence, whose accumulation
point Δ•

Θ is a critical point according to the convergence of
line-search methods. As a consequence, in the neighborhood
of Δ•

Θ, the convergence rates of the Gauss-Newton method
is superlinear [30]. On the other hand, in the interior point
method, the convergence rate is determined by the properties
of the Hessian matrix of the objective function in (16) and

its approximation. In case the difference between the actual
and approximated Hessian matrices becomes sufficiently small
at the critical point, the optimization in the inner iteration
will converge superlinearly [30]. In the situation at hand,
the approximated Hessian matrix differs from the actual one by
a symmetric matrix that equals zero at the critical point, imply-
ing the inner iterations converges superlinearly. By reducing
the barrier parameter μ at an appropriate rate [34], the conver-
gence of the combination of inner and outer iterations, i.e., the
interior point method as a whole, also is superlinear. Hence,
both proposed algorithms will show superlinear convergence
rates.

Next, we discuss the complexity. In the Gauss-Newton
method, the complexity during each iteration is dominated
by the computation of the Moore-Penrose pesudoinverse of
∇Θh, which is a NLNL × 6 matrix. As a consequence,
the Gauss-Newton method has a complexity of O

�
(NLNP )2

�
flops per iteration [35]. On the other hand, the complexity of
the interior point method is dominated by the matrix inversion
required to solve (17a) in each inner iteration. Therefore,
the interior point method has a complexity of O

�
(NLNP )3

�
flops per iteration [35]. Hence, it is clear that the complex-
ity of the interior point method is higher than that of the
Gauss-Newton method.

D. The Theoretical Lower Bound

We first define the measure of the estimation error in the
estimated position and orientation. The estimation error in
position is straightforwardly measured by the relative distance
between r̂ and r, i.e. r� = r̂− r, while the estimation error in
orientation is measured by the rotation error projected onto
the Lie algebra, i.e. (u�)× = log (R�), where the matrix
logarithmic function log (·) maps from SO(3) into so (3), and

R� = RR̂T ∈ SO(3) (23)

is the error rotation matrix that physically measures how much
R̂ must rotate to reach R. According to Euler’s rotation
theorem [36], u� is physically the axis-angle presentation of
the rotation matrix R�, implying u� could be calculated more
conveniently by

u� =
θ�

2 sin θ�

⎡
⎣ [R�]3,2 − [R�]2,3

[R�]1,3 − [R�]3,1

[R�]2,1 − [R�]1,2

⎤
⎦ , (24)

where θ� = arccos
�

tr(R�)−1
2

�
represents the angle compo-

nent of u� physically. Here, we define a unified estimation
error vector g� measuring the overall error, with g� =
[rT

� , ξuT
� ]T, where ξ > 0 reflects the scale order on the

orientation error compared to the position error. Then using
the CRB for vector parameter transformation [37], the error
covariance matrix of g� is lower bounded by

E{g�gT
� } 	 diag

��
1T, ξ1T

��
J−1diag

��
1T, ξ1T

��
, (25)

where

J =
1

σ2
w

(∇Θh)T (∇Θh) (26)
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is the Fisher information matrix. Taking into account [38],
it follows that the orientation associated component of (25) is
actually the intrinsic CRB on SO(3). To get the lower bound
on the error covariance matrix of r�, we first rewrite the Fisher
information matrix as a partitioned matrix,

J =
�
J (r�, r�) J (r�,u�)
J (u�, r�) J (u�,u�)

�
. (27)

Consequently,

E{r�rT
� }	

�
J (r�, r�)−J (r�,u�)J−1 (u�,u�)J (u�, r�)

�−1
.

(28)

Similarly, the error covariance matrix of u� is lower bounded
by

E{u�uT
� }	

�
J (u�,u�)−J (u�, r�)J−1 (r�, r�)J (r�,u�)

�−1
.

(29)

IV. INITIAL COARSE ESTIMATION

The algorithms given in the previous section are iterative
methods, and a proper initialization is required for conver-
gence. To this end, we propose in this section an initialization
algorithm. In the following, we assume that all LEDs are
installed at the ceiling and an angular diversity receiver is
considered. This receiver type, which is considered in several
works [19], [39]–[41], consists of multiple PDs orientated
symmetrically at different directions to achieve a better angular
diversity. More specifically, NP,s PDs are placed symmetri-
cally around the center of the receiver, and are tilted away from
the center of the receiver, as shown in Fig. 3. Let the angle
between the normal of the receiver and the normal of a PD
be θP . Using the axis-angle representation, the normal of the
jth PD is specified by nP,j,0 = exp

�
(θP zP,j)×

�
n0, where

zP,j = [cos(j2π/NP,s), sin(j2π/NP,s), 0]T. An additional PD
placed right above the center of the receiver has normal n0.
The relative distance vector dj,0 that specifies the position
of jth PD to the center of the receiver is given by dj,0 =
djnP,j,0, i.e. dj,0 is parallel to nP,j,0. In the following,
we will show that the problem of position and orientation
estimation can be converted into a plane-based pose estimation
problem, by properly selecting a set of points at the ceiling that
correspond to the intersections of the normals nP,j,0 on the
virtual image plane, i.e., the plane in the frame of the receiver
containing all points having amplitude 1 in the z-direction.
This plane-based pose estimation problem can easily be solved
using the direct linear transformation (DLT) method from
computer vision. As in this method, the points at the ceiling
must be known, we design a method to estimate these points.

First, let us define two planes: P � denotes the plane of
ceiling, while P is the virtual image plane containing the
point qj = nP,j,0/ [nP,j,0]3.2 Let q�

j represent the intersection

2Taking into account that the plane P contains all points with [x]3 = 1,
i.e., having amplitude 1 in the z-direction, then qj is the intersection point
of P with the line starting in Or and radiating in the direction nP,j,0. Since
both qj and P are defined in the frame of the receiver, they will move and
rotate along with the receiver in a rigid way, i.e. qj has a fixed location on
P .

Fig. 3. Angular diversity receiver with NP,s = 6.

point of the plane P � with the line starting from the center r
of the receiver and radiating in the direction nP,j . Assuming
the intersection points q�

j are known (the estimation of q�
j

is deferred to the end of this section), then the problem
of finding the closed-form SPO solution is converted into a
plane-based pose estimation problem3 as shown in Fig. 4. With
at least four

�
q�

j ,qj

�
, the position vector and rotation matrix

can be estimated using the direct linear transformation (DLT)
method [42], which is a commonly used method for the
estimation of the relative pose between a plane and a camera,
based on projections of sets of coplanar features in computer
vision. The solution of the DLT is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R̂ =

#
T̂T�

T̂T
�
1
×
�
T̂T
�
2

$
,

r̂ = −R̂M

⎡
⎢⎣ 0

0
λ

⎤
⎥⎦+ diag

�
[0, 0, 1]T

�
b,

(30)

where b is the boundary condition (see Subsection III-B), λ =
tr(T̂TM)
tr(M̂TM) , M is given by

[[M]1 , [M]2 , [M]3]
T = m, (31)

with m the last column of VQ that comes from the Singular
Value Decomposition (SVD) of Q = UQΛQVT

Q, where the
diagonal elements of ΛQ are arranged in descending order,
and the matrix QT =

�
QT

1 , . . . ,QT
N

�
, where Qi is defined as

Qi =

#
03×1, −q�T

i , [qi]2 q�T
i

−q�T
i , 03×1, − [qi]1 q�T

i

$
. (32)

The matrix T̂ ∈ R
3×2 in (30) is given by T̂ = UTVT

T, where

UT and VT come from the thin SVD of
�
[M]1 , [M]2

�
=

UTΛTVT
T, where the operator [·]i returns the ith column of

a matrix as a column vector. Since the above algorithm does
not make any assumption about the visibility of either side of
the plane P �, another potential estimate exists, i.e., the mirror

3Because qj and P move and rotate along with the receiver in a rigid
way, q�

j is actually the projection of qj along nP,j on P �. However, if we
switch the roles of these two points (taking q�

j as the object and qj as the
projection), qj and q�

j could be viewed as points in a pinhole camera model
where the pinhole is positioned at the receiver center r and has a focus of
unit length. “Object” q�

j (in the frame of the system) is “projected” onto the
virtual image plane as qj (represented by homogeneous coordinates in the
frame of the receiver).
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Fig. 4. Plane-based pose estimation problem. P : the virtual image
plane, P �: the plane of the ceiling.

symmetry with respect to the plane P �, given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R̂ = diag
�
[−1,−1, 1]T

�# T̂T�
T̂T
�
1
×
�
T̂T
�
2

$
.

r̂ = R̂M

⎡
⎢⎣ 0

0
λ

⎤
⎥⎦+ diag

�
[0, 0, 1]T

�
b.

(33)

From the two possible solutions, the algorithm has to select the
solution for which [r̂]3 ≤ [b]3, implying that the z coordinate
of the estimated position must be smaller than the boundary
in the z direction.

The remaining problem is to find a method to estimate the
intersection point q�

j . The idea to achieve this is based on the
observation that typically the relative distance between PDs
within a PD array is very small compared with the distance
between the receiver and LEDs. Hence, for each LED we
can select the PD within the array that receives the largest
power from this LED. Due to the channel characteristics,
this selected PD is, in the absence of noise, the one with
the smallest incident angle for that LED. Following the idea
above, we could find a set of LEDs, for which the jth PD
has the smallest incident angle. The spatial average (weighted
by associated received power) of the positions of the LEDs
within this set can be seen as an approximation to q�

j .
A second initial point, {b/2, I3} (the receiver pointing

upwards and located at the center the area) is also considered
in our paper to ensure that the iterative algorithm converges to
the global optimum and to serve as a valid initial point when
the DLT algorithm fails, i.e., when less than 4 pairs of

�
q�

j ,qj

�
are obtained or three out of four of the obtained intersection
points q�

j are collinear [43].

V. NUMERICAL RESULTS

In the evaluation of the estimator and the theoretical
lower bound through computer simulations, we consider an
8 m×6 m×3 m area (b = [8, 6, 3]T) with NL = 48 LEDs.
The LEDs are uniformly distributed over the ceiling, with the
number of LEDs in the X direction NL,X = 8 and in the Y
direction NL,Y = 6, i.e., the positions of the LEDs are given

Fig. 5. Simulation setup. The three orthonormal vectors in three different
colors at each sample on the path represent the frame of the receiver (shown
with θR = 0◦), where the red, green and blue vector represent the x-axis,
y-axis and z-axis, respectively. The pink arrows represent the LEDs (only a
fraction of them are shown) on the ceiling. θr indicates the traveled angle
along the dotted ellipse in the XY plane.

Fig. 6. RMSE versus iteration for SNR= 10 dB and SNR= 20 dB.
(a) Position estimation errors, (b) Orientation estimation errors.

by
�

[b]1(2i−1)

2NL,X
,

[b]2(2j−1)

2NL,Y
, [b]3

�T
, with i ∈ {1, . . . , NL,X} and

j ∈ {1, . . . , NL,Y }. All LEDs are assumed to have a transmit
power of Pt = 1 W, a Lambertian order γ = 1, an FOV
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Fig. 7. RMSE of the estimator and the theoretical bound for θR = 0◦ . SNR = 10 dB for (a) and (c), SNR = 20 dB for (b) and (d). Top row contains
position estimation errors ((a) and (b)), while bottom row contains orientation estimation errors ((b) and (d)).

of φFOV = 90◦ and point downwards (nL,i = [0, 0,−1]T).
The receiver consists of seven PDs, with six of them being
symmetrically equipped around the centroid and tilted away
from the center by θP = 40◦. All PDs have a relative vector
(the distance vector to the centroid) of dj,0 = djnP,j,0, with
dj = 0.02 m (see Section IV for the expression of nP,j,0).
Each PD is assumed to have an FOV of θFOV = 80◦, a unit
responsivity Rp = 1 and an area of AR = πr2

P with the
radius rP = 5 × 10−3 m. The above parameter settings for
the physical properties of the LEDs and the PDs are similar
to the ones used in [44]. To evaluate the performance of the
estimators, we consider the path shown in Fig. 5. The path has
an elliptical pattern in the XY plane and a sinusoidal pattern
in the Z direction. The semi-major axis and the semi-minor
axis of the ellipse are 2.5 m and 1.5 m, respectively. The
ellipse (the dotted line) is centered at [4.0, 3.0, 1.5]T m, i.e.
the center of the considered area. Starting at the coordi-
nates [4.0, 4.5, 1.5]T m (the black arrow), the path oscillates
sinusoidally in the Z direction and completes the path with
three periods. The receiver follows the path clockwise, and

at each sample point the orientation of the receiver is chosen
such that the frame of the receiver is tangent to the path,
more specifically, R = exp

�
(θRnR,y)×

�
R0, where R0 =

[nR,x,nR,y,nR,z], nR,z = nR,x × nR,y , nR,y is the unit
tangent vector of the path at the sample point, nR,x is the unit
vector that resides in the XY plane and satisfies nT

R,xnR,y = 0
and [nR,z]3 > 0, and θR (the roll angle) controls how much
R0 is rotated around nR,y . The frame of the receiver (the
column vectors of R) along the path is illustrated in Fig. 5
(shown with θR = 0◦) by three orthonormal vectors in three
different colors. Here we define a parameter θr to specify
the sample point, where θr is the traveled angle along the
ellipse pattern in the XY plane. In the following, the SNR is

defined as SNR �
�

ARPtRp

2πσw

�2

. To the best of our knowledge,
there is no algorithm that simultaneously estimates position
and orientation for MLMP-based VLP systems. Therefore, for
comparison, we will use as baseline method the algorithm
from [20], which estimates the position of the receiver only.
In this baseline method, we set the rotation matrix R̂ equal to
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Fig. 8. RMSE versus θR for SNR= 10 dB and SNR= 20 dB. (a) Position
estimation errors, (b) Orientation estimation errors.

the identity matrix, i.e., we assume the receiver points straight
upwards.

A. Performance of the Estimators

First, we consider the case of a roll angle θR = 0◦,
implying the x-axis of the receiver frame stays horizontal in
the system frame. The convergence behavior of the proposed
methods is presented in Fig. 6, which gives the average
RMSE over the entire path as a function of the number of
iterations when SNR = 10 dB and SNR = 20 dB. First,
we notice that, as expected, the baseline method (BAS) shows
an improving performance as a function of the number of
iterations for the position estimation, but a high, constant
RMSE for the orientation estimation. This is explained as
the baseline method estimates only the position but not the
orientation. Because of this limitation, the gap between the
RMSE of the baseline method and the proposed CRB is the
largest. On the other hand, the proposed algorithms based
on the Gauss-Newton method (GNM) and the interior point
method (IPM) converge to the CRB for a SNR of 20 dB, and

show only a small gap with the CRB for a SNR of 10 dB.
Hence, the proposed algorithms outperform the algorithm
from [20]. Comparing the convergence rate, we see that the
convergence for the orientation is similar for both the GNM
and the IPM, whereas for the position estimation, the GNM
shows a slower convergence. This is due to the absence of
the boundary condition in the GNM, implying outliers can
occur where the algorithm returns a position estimate outside
the considered area, resulting in large errors that slow down
the convergence. In Fig. 7, the RMSE of the estimate of the
position and orientation for the proposed estimators are shown
as a function of θr for the same SNRs as used in Fig 6.
Taking into account that the path we consider has a sinusoidal
pattern in the Z direction, there is a relatively larger distance
between the receiver and the LED in the valleys of the path.
At the same time, since the path has an elliptical pattern
in the XY plane, the largest distance between the receiver
and the LED occurs at the vertex of the ellipse lying in a
valley. Since the channel gain is inversely proportional to the
distance between the receiver and the LED, a higher RMSE is
expected at those points in the path that have a larger distance
between the receiver and the LEDs. This can be observed
in Fig. 7, where the performance along the path shows a
sinusoid-like pattern with three peaks and valleys appearing
in the RMSEs, corresponding to the valleys and peaks in
the path. The largest RMSE is obtained around θr = 90◦,
which corresponds to the largest distance point (the vertex in
the valley). Comparing the performances for different SNRs,
we can see that for SNR = 20 dB, both proposed estimators
reach the theoretical bound, while for SNR = 10 dB, the IPM
outperforms the GNM. As can be observed, the RMSE of the
baseline method for both position and orientation estimation
is (approximately) the same for 10 dB and 20 dB SNR.
Hence, due to the absence of orientation estimation in the
baseline method, the position estimate suffers from a bias. The
baseline’s RMSE for the orientation is due to the difference
between the true orientation, specified by the path, and the
reference orientation used in the baseline method, i.e., the
identity matrix. When θr/180◦ = 3/2, the true orientation
has a rotation matrix equal to the identity matrix, implying
the RMSE of the baseline method for the orientation equals
zero (see both Fig. 7c and Fig. 7d). As can be seen in Fig 7,
the baseline method generally performs worse when the true
orientation R is not the identity matrix. In Fig. 6 and Fig. 7,
we observe that at SNR = 10 dB, there is a the gap between
the performance of the proposed methods (GNM and IPM) and
the CRB. This gap is caused by the threshold phenomenon of
the CRB, which will be discussed in the following subsection.

Next, we will investigate the effect of the receiver orien-
tation on the performance. Fig. 8 gives the average RMSE
over the entire path as a function of the roll angle θR when
SNR = 10 dB and SNR = 20 dB. Because all LEDs are
attached to the ceiling, the receiver will sense less LEDs
when θR is increased. This can be observed in Fig. 8, as the
RMSE increases when |θR| increases. Further, from the figure,
it follows that the performance is worse when θR < 0.
This can be explained as when θR < 0, the receiver is
tilted towards the side boundary of the area, implying less

Authorized licensed use limited to: University of Gent. Downloaded on February 01,2021 at 17:50:29 UTC from IEEE Xplore.  Restrictions apply. 



1876 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 8, AUGUST 2020

Fig. 9. RMSEs of estimating position and orientation parameters as a function of SNR ((a) position estimation errors and (c) orientation estimation errors
when NL = 48) and as a function of the number of LEDs ((b) position estimation errors and (d) orientation estimation errors when SNR = 20 dB) for
Case 1: θR = 0◦ and Case 2: θR = −60◦. Upper row ((a) and (b)) for position estimation errors, bottom row ((b) and (d)) for orientation estimation errors.

LEDs will be visible compared to the case with θR > 0.
It also can can be seen in Fig. 8 that when the magnitude
of θR increases, the estimators’ performance degrades, and
θR = 0 corresponds the best performance. Comparing the
proposed estimators, we observe that the IPM outperforms the
GNM. Especially when θR < 0, the GNM fails to converge
properly, as the number of LEDs seen by the receiver is too
low.

B. Asymptotic Tightness

In this section, to investigate the asymptotic tightness of
the theoretical bound, the estimators are simulated for various
values of SNR and numbers of LEDs. The configuration is
the same as in Fig. 5. In Fig. 9, we show the RMSE averaged
over the path for two roll angles (Case 1: θR = 0◦, Case 2:
θR = −60◦) as a function of the SNR (Fig. 9a and 9c), and
as a function of the number NL of LEDs (Fig. 9b and 9d). As
expected, increasing the SNR or NL leads to a lower RMSE,
and we observe an asymptotic tightness of both proposed

estimators to the lower bound. Due to the introduced bias,
the performance of the baseline method shows an error floor
when SNR or NL is large. At low SNR or low NL, the RMSE
deviates from the CRB. This is explained as for these cases,
the bias in the position and orientation estimates becomes non-
negligible. Taking into account that the CRB only can serve as
a lower bound for unbiased estimators, this implies that, below
a threshold for the SNR or NL, no asymptotic tightness can
be reached between the RMSE of the proposed estimators and
the CRB.

C. Impact of Location of the Receiver

In this section, we investigate the CRB as a function of
the position of the receiver. Considering the setup illustrated
in Fig. 5, the CRB for SNR = 20 dB is shown in Fig. 10a and
Fig. for the XY plane fixed at z = 1.5 m, while in Fig. 10b
and Fig. 10d the CRB averaged over the XY plane is plot
as a function of the height for SNR = {20, 30, 40} dB. The
spatial sample points are evenly distributed in the area with an
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Fig. 10. Averaged CRB as a function of the position of the receiver. (a) The CRB on the position vector and (c) the CRB on the orientation matrix for the
XY plane fixed at 1.5 m in z-axis. (b) The CRB on the position vector and (d) the CRB on the orientation matrix as a function of the height.

interval of 0.2 m, and at each sample point, multiple random
orientations of the receiver are generated. Considering that in
reality the receiver will be placed roughly upwards, the zenith
angle of the generated orientation is uniformly distributed
within the interval [−60◦, 60◦]. The corresponding random
rotation matrix can be generated using the fast algorithm given
in [45].

Due to the limited FOV of the receiver, the closer the
receiver is to the side boundary of the area, the lesser LEDs it
will sense. This explains the inverted dome shape of the CRB
in Fig. 10a and Fig. 10c, where the lowest point is obtained
near the center of the XY plane, while the largest values locate
around the four corners. The limited FOV also explains the
results of Fig. 10b and Fig. 10d, where the CRB is shown as
a function of the height of the receiver. While the CRB first
improves for increasing height, as the distance between the
LEDs and the receiver reduces, for larger heights, the CRB
degrades again, because the angle between the receiver and
the LEDs increases, and the LEDs start to fall outside the
FOV of the receiver.

D. Configuration of the Receiver

In this section, we investigate the impact of the diversity
angle θP , i.e., the tilt angle between the PDs and the centroid
of the receiver, on the position and orientation estimation
accuracy. By increasing θP , we increase the FOV of the
receiver, as the receiver array will be able to sense LEDs that
are at larger incident angle. However, at the same time, each
PD of the receiver will sense less LEDs because of the larger
tilt angle, so the diversity of the receiver reduces. To find
the optimal configuration, the system setup and the sampling
method used in Subsection V-C are considered. As can be seen
from the previous analysis, the CRB significantly degrades
when the height is larger than 2.5 m, and considering that in
many cases, the user’s main active area is in the lower middle
area, samples with a height larger than 2.5 m are discarded.
The CRB on the unified estimation error vector g� is used
as an indicator. From the previous results, we found that the
CRBs on the position and orientation errors are of the same
magnitude. Therefore, we set the scale factor ξ = 1. The
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Fig. 11. Averaged CRB as a function of θP . (a) CRB for different SNRs (b) CRB for different NLs.

spatial averaged CRB is first plotted in Fig. 11a for different
SNR and is then plotted in Fig. 11b for different NL. From
Fig. 11a, it follows that the minimum of the CRB is obtained
at θP = 60◦ for all SNR values. However, it can also be
observed that the minimum is very broad, indicating that the
performance will be rather insensitive to the value of the tilt
angle for given SNR. When changing the number NL of LEDs,
we see a larger dependency on θP , especially for small values
of NL (see Fig. 11b). When NP is sufficiently large, again the
optimal tilt angle equals θP = 60◦. However, when NL ≤ 40,
the performance rapidly degrades when θP ≤ 50◦, and the
optimal value of the tilt angle increases. This can be explained
as when less LEDs are available, a larger FOV is required to
capture more LEDs at the receiver.

VI. CONCLUSION

In this study, we design two RSS-based simultaneous posi-
tion and orientation estimation algorithms for a visible light
system. Both algorithms exploit the principle of optimization
on manifolds, which alleviates the constraints imposed by the
restrictions on the rotation matrix, and increases the robustness
of estimation. As the proposed algorithms are iterative and
need a proper initialization to converge, we propose a coarse
estimator that uses the direct linear transformation. To theoreti-
cally analyze the proposed estimators, we evaluate the CRB for
simultaneous position and orientation estimation. The part of
the CRB corresponding to the orientation errors is the intrinsic
CRB, and is used to measure errors in the estimated rotation
matrix in a physically meaningful way.

The proposed estimators show asymptotic convergence to
the CRB, indicating the proposed estimators have excellent
performance. Comparing the results of both algorithms before
convergence, we show that the interior point method outper-
forms the Gauss-Newton method, but at the cost of complexity.

Based on the CRB, we also investigated the performance
of the simultaneous position and orientation estimation as a
function of the position of the receiver and the parameters

of the system. Based on these results, we can conclude that
the optimal configuration of the receiver consists of PDs that
are tilted over 60◦ with respect to the normal of the receiver,
to obtain a good trade-off between the FOV and diversity of
the receiver.
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