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a b s t r a c t 

In ultra-wideband (UWB) orthogonal frequency-division multiplexing (OFDM) systems, compressive sens- 

ing (CS) is often employed to produce an estimate of the typically sparse channel from the observation of 

a limited number of allocated pilot subcarriers. Moreover, it is well established that proper pilot subcar- 

rier allocation (PA) design is the key for CS-based channel estimates to achieve a good performance. In 

this paper, we propose three novel PA algorithms. These are referred to as deterministic greedy algorithm 

(DGA), simplified deterministic greedy algorithm (SDGA) and simulated annealing (SA). The proposed al- 

gorithms are attractive alternatives for the state-of-the-art method because they are orders of magnitude 

less complex but yield only a small system performance degradation (SDGA), or they yield a better sys- 

tem performance as well as a lower complexity (DGA and SA). 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Ultra-wideband (UWB) communication has recently received a

ot of attention from both scientific community and industry [1–6] .

n UWB communication, multi-band orthogonal frequency-division

ultiplexing (MB-OFDM) is considered as one of the most promis-

ng techniques to achieve high-data-rate transmission at a rel-

tively low cost [7,8] . Practical UWB MB-OFDM systems require

hannel estimation at the receiver. As the UWB channel can often

e modeled as sparse, channel estimation methods based on com-

ressive sensing (CS) can be used to obtain an accurate estimate of

he channel impulse response (CIR) with low overhead (i.e., from a

mall amount of pilot subcarriers) [9–13] . 

CS enables us to accurately recover a signal from a small num-

er of linear measurements if the signal itself is sparse or sparse in

 certain transform domain. The performance of the sparse vector

ecovery is determined by three important aspects of CS applica-

ions, which are the reconstruction algorithm, the dictionary ma-

rix and the measurement matrix. In [14–20] , several algorithms

re proposed to effectively reconstruct the sparse signal. Any of

hese algorithms can be applied to estimate sparse channels. The

ictionary matrix is intended to make a signal sparse in a specific

omain. Owing to the inherent sparsity of the CIR, an identity ma-
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rix is usually adopted as the dictionary matrix for sparse chan-

el estimation [21–23] . As for the measurement matrix design, it

as shown in [24] that a small measurement matrix mutual co-

erence (MMMC) is desirable (i.e., to have a measurement ma-

rix whose columns have small normalized mutual correlations).

n the case of pilot subcarrier based channel estimation, the mea-

urement matrix is fully determined by the pilot pattern (i.e., the

osition and the value of the pilots); hence, the measurement ma-

rix design boils down to pilot pattern design. For the sake of

implicity and tractability, one often imposes that all pilots have

he same amplitude. As the MMMC only depends on the ampli-

ude of the pilots and not on their phases, the measurement ma-

rix design then further reduces to a pure pilot subcarrier allo-

ation (PA) problem, which is in itself a combinatorial optimiza-

ion problem. PAs corresponding to cyclic difference sets (CDS) are

nown to yield minimum MMMC [25–29] ; however, in most prac-

ical situations a CDS PA does not exist. Because an exhaustive

earch for the PA that minimizes the MMMC is usually too com-

lex, several approximation algorithms have been put forward over

he last five years [25–28,30–36] . The state-of-the-art PA design

ethod is the stochastic sequential search (SSS) algorithm from

i et al. [27] . SSS combines a limited complexity with a relatively

ood performance. Nevertheless, the search for more efficient PA

esign algorithms continues. In this paper, we propose three new

A algorithms, and we demonstrate their superiority with respect

o SSS. The rest of the paper is organized as follows. The OFDM

WB communication system is described in Section 2 . The novel

A methods are derived in Section 3 . Numerical results are pro-

https://doi.org/10.1016/j.sigpro.2020.107666
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Fig. 1. A block diagram of the system. 
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vided in Section 4 and a summarizing conclusion is provided in

Section 5 . 

2. System description 

We consider a packet-based MB-OFDM implementation of an

UWB transmission system. A MB-OFDM packet consists of concate-

nated OFDM symbols that form a known preamble/header section,

followed by a payload. The preamble can be employed for initial

packet synchronization. The payload is primarily intended to con-

vey the data. It will be further assumed to consist of D OFDM sym-

bols. Traditionally, pilots are added to the payload data in order to

provide a-priori information to the channel estimator. In the fol-

lowing, we will assume that in each payload symbol N p out of the

N subcarriers are allocated to pilot transmission. Obviously, chan-

nel estimation accuracy can be expected to improve if the ratio 
N p 
N 

increases, but for the sake of power and bandwidth efficiency, the

ratio 
N p 
N should be kept as small as possible. In [37] , it is argued

that in MB-OFDM UWB the coherence time of the channel is typi-

cally several times larger than the maximum transmission time of

a packet. This means that the channel can be considered as con-

stant over the packet and that the channel estimator can base its

outcome on all the D · N p pilots in the entire packet. 

A block diagram of the considered communication system is

shown in Fig. 1 . The d th OFDM symbol in the packet payload

(with d = 1 , 2 , . . . , D ) conveys m 

(
N − N p 

)
information bits b d =

[ b d ( 1 ) , b d ( 2 ) , . . . , b d 
(
m 

(
N − N p 

))
] , with b d ( i ) ∈ {0, 1}. At the trans-

mitter, the sequence b d is divided into 
(
N − N p 

)
groups of m bits

that are bijectively mapped to the 2 m elements of a complex-

valued constellation � = { ω 1 , ω 2 , . . . , ω 2 m } with zero mean and

average symbol energy E s = 

1 
2 m 

∑ 2 m 

i =1 | ω i | 2 . The resulting 
(
N − N p 

)
data symbols are subsequently interweaved with N p pilots with

amplitude 
√ 

E s and known phase. The resulting sequence X d =
[ X d ( 1 ) , X d ( 2 ) , . . . , X d ( N ) ] T is used to modulate the N subcarriers of

the d th OFDM symbol. If i is an element of P d = { p d, 1 , p d, 2 , . . . ,

p d,N p } , X d ( i ) is a pilot, otherwise, it is a data symbol. To construct

the d th OFDM symbol, the vector X d is first applied to an N -point

inverse discrete Fourier transform (IDFT) unit, after which a cyclic

prefix (CP) is added. 

The UWB CIR is represented by a sparse random vector h =
[ h ( 1 ) , h ( 2 ) , . . . , h ( L d )] 

T , with K � L non-zero elements. It is as-

sumed that h remains fixed over the duration of a packet. The re-

ceiver removes the CP and performs the inverse N -point discrete

Fourier transform (DFT) operation. Assuming that the CP is longer

than L , the vector Y d = [ Y d ( 1 ) , Y d ( 2 ) , . . . , Y d ( N )] T at the DFT output

can be modeled as: 

 d = diag ( X d ) H + W d , (1)

where W d = [ W d ( 1 ) , W d ( 2 ) , . . . , W d ( N ) ] T ∼ CN 

(
0 , σ 2 I N 

)
is additiv e

white Gaussian noise (AWGN) at d th OFDM symbol time, and H =
 

H ( 1 ) , H ( 2 ) , . . . , H ( N ) ] T is defined as: 

 = F h , (2)

ith F the N × L matrix with elements F u, v = 

1 √ 

N 
e − j2 π ( u −1 ) ( v −1 ) 

N , u =
 , 2 , . . . , N and v = 1 , 2 , . . . , L . 

The DFT output Y d passes through a zero-forcing equalizer (ZFE)

o neutralize the effect of the channel. First, the pilot symbol ob-

ervations Y d ( i ), with i ∈ P d and d ∈ { 1 , 2 , . . . , D } , are used to gen-

rate an estimate ˆ h of h . Then, the information symbol observa-

ions Y d ( i ), with i / ∈ P d are divided by ˆ H ( l ) , with 

ˆ H ( l ) denoting the

 th element of the vector ˆ H = F ̂  h . Next, for l / ∈ P d , the symbol de-

ision unit recovers X d ( l ) from Z d ( l ) = 

Y d ( l ) 
ˆ H d ( l ) 

, using a decision rule

hat is optimum for ˆ H ( l ) equal to H ( l ). Finally, estimates 

{ 

ˆ b d ( i ) 

} 

of

he conveyed information bits { b d ( i )} are obtained by demapping of

he resulting symbol estimates 
{

ˆ X d ( l ) = arg min ω∈ � ‖ Z d ( l ) − ω ‖ 2 
}

. 

A good measure for the overall system performance is the aver-

ge BER, i.e., 

ER = E 

[
BER | H , W , b 

]
, (3)

here E [ ·] denotes the statistical expectation with respect to

he joint distribution of H , W = ( W 1 , W 2 , . . . , W D ) and b =
( b 1 , b 2 , . . . , b D ) , and 

BER | H , W , b = 

1 

m ( N − N p ) D 

D ∑ 

d=1 

m ( N−N p ) ∑ 

i =1 

∣∣∣ˆ b d ( i ) − b d ( i ) 

∣∣∣. (4)

he BER of a practical system is lower bounded by the BER of a

irtual system that has perfect channel knowledge at the receiver.

he use of inaccurate channel estimates in the equalization stage

f the receiver may significantly degrade the BER. 

The accuracy of the channel estimator itself is usually measured

n terms of the mean squared error (MSE), i.e., 

SE = E 

[
MSE | H , W 

]
, (5)

ith 

MSE | H , W 

= 

1 

N 

N ∑ 

i =1 

∣∣ ˆ H ( i ) − H ( i ) 
∣∣2 

(6)

nd where E [ ·] denotes averaging over the statistics of the channel

nd the noise. 

The sparsity of the channel at hand allows to adopt a CS based

hannel estimation methods [14–20] . This in turn makes it possible

o accurately estimate h from a very small number of pilots per

acket, or equivalently, by using a very small ratio 
N p 
N ) [20–23] .

he rationale behind CS based channel estimation is to find 

ˆ h so

hat 

ˆ 
 = arg min ‖ 

h ‖ 1 s . t . Y 

( pilot ) = �h + W 

( pilot ) , (7)
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1 The elementary operations on real quantities include addition, subtraction, mul- 

tiplication and division of real numbers. 
here Y ( pilot ) = [ Y 1 
(

p 1 , 1 
)
, . . . , Y 1 

(
p 1 ,N p 

)
, . . . , Y d 

(
p d, 1 

)
, . . . , Y D 

(
p D,N p 

)
] T 

 

(pilot) = [ W 1 

(
p 1 , 1 

)
, . . . , W 1 

(
p 1 ,N p 

)
, . . . , W d 

(
p d, 1 

)
, . . . , W D 

(
p D,N p 

)
] T ,

nd 

= diag 
(
X 

( pilot ) 
)
F ( pilot ) , (8) 

ith X 

( pilot ) = [ X 1 
(

p 1 , 1 
)
, . . . , X 1 

(
p 1 ,N p 

)
, . . . , X d 

(
p d, 1 

)
, . . . , X D 

(
p D,N p 

)
] T 

nd F (pilot) the DN p × L matrix with elements F ( 
pilot ) 

u, v =
1 √ 

N 
e − j2 π ( p u −1 ) ( v −1 ) 

N , where v = 1 , 2 , . . . , L and 

p u = p ⌈ 
p u 
N p 

⌉ 
, mod ( p u −1 ,N p ) +1 

, (9) 

or u = 1 , 2 , . . . , DN p . In CS theory, � is termed the ’measurement

atrix’ because it specifies the relationship between the measure-

ents Y 

(pilot) and the sparse signal h to be recovered from Y 

(pilot) .

or (7) to be accurate, it is imperative that � is an almost orthog-

nal matrix [9,10] . A suitable measure for the orthogonality of �
s its mutual coherence μ( �), which is defined as [24] : 

{ �} = max 
1 ≤m<n ≤L 

| 〈 φm 

, φn 〉 | 
‖ 

φm 

‖ 2 ‖ 

φn ‖ 2 

, (10) 

here φm 

denotes the m th column of � and 〈 · 〉 represents the

calar product operation. The lower the measurement matrix mu-

ual coherence (MMMC) is, the better. Using (8) and taking into

ccount that 
∣∣X d (p d,i 

)∣∣2 = E s for i = 1 , 2 , . . . , N p , we have 

{ �} = max 
1 ≤m<n ≤L 

1 

DN p 

∣∣∣∣∣
DN p ∑ 

i =1 

e − j2 π
(p i −1) ( m −n ) 

N 

∣∣∣∣∣
= max 

1 ≤q ≤L −1 

1 

DN p 

∣∣∣∣∣
DN p ∑ 

i =1 

e − j2 π
(p i −1) q 

N 

∣∣∣∣∣. (11) 

t follows from (11) that, for given L , given N and given DN p , μ{ �}

s fully determined by P = { p 1 , p 2 , . . . , p DN p } . The set P indicates

hich subcarriers are allocated to pilot symbols and is further

imply referred to as the pilot allocation (PA). Using the Cauchy-

chwarz inequality, it is easily seen that (11) is upper bounded by

, with equality if and only if either column φm 

or φn is a multiple

f the other (which includes the special case that either of them is

he zero vector). It immediately follows that it is not a good idea

o have p u = p u ′ for any u � = u ′ , in P . Hence, without loss of op-

imality, we will further assume that P consists of DN p different

ubcarrier indices ranging from 1 to N . 

The remainder of this paper focuses on designing a PA with a

ow MMMC. As the MMMC is known to be lower bounded by the

elch bound [25,29,38] , we will always have: 
 

N − DN p 

DN p ( N − 1 ) 
≤ μ{ �} ≤ 1 . (12) 

. Novel PA methods 

Finding the PA P that minimizes the MMMC μ{ �} is essentially

 combinatorial optimization problem: 

 opt = argmin 

P 
μ{ �} s . t . P ⊂ N = { 1 , 2 , . . . , N } . (13)

n most practical situations (for the majority of ( L, N, DN p ) com-

inations), no closed-form solution of (13) exists, so that approxi-

ate solution methods have to be used. Otherwise, if we want to

nd the optimal PA, we need to calculate the MMMC of all possible

As, which quickly becomes impractical (even for offline computa-

ion). For example, more than 10 40 PAs need to be tested for ev-

ry L , if N = 256 and DN p = 32 . The state-of-the-art PA method is

he stochastic sequential search (SSS) algorithm proposed in [27] .

t is an iterative method consisting of two loops, i.e., the outer
oop (run for T out iterations) and the inner loop (run for T in iter-

tions). At the start of the n th outer loop iteration, a novel ran-

om PA, denoted as P 

(n ) , is generated. This initial PA is then fur-

her optimized by running T in inner loop iterations. During each

nner loop iteration, every element p (n ) 
i 

of P 

(n ) is sequentially up-

ated, keeping the other elements of P 

(n ) (i.e., the elements in

 

(n ) 
∼i 

= P 

(n ) \ 
{ 

p (n ) 
i 

} 

) fixed. Updating p (n ) 
i 

, consists in replacing the

urrent value of p (n ) 
i 

with the value in { 1 , 2 , . . . , N } \P 

(n ) 
∼i 

yield-

ng the lowest MMMC. The PA P 

(n ) that is obtained after com-

leting T in inner loop iterations, as well as the corresponding

MMC �( n ) , are stored for further processing. The final outcome

f SSS is the PA with the lowest MMMC among all stored PAs

P 

(1) , P 

(2) , . . . , P 

(T out ) } . Since SSS is essentially a random search, it

ill theoretically always converge to the optimal MMMC (for T out 

ufficiently large). However, the main disadvantage of SSS is its

omplexity. Measuring the computational complexity in terms of

he number of elementary operations on real quantities (NOR) 1 in-

olved, the computational complexity of SSS is easily calculated as:

OR SSS = T out T in 2(DN p ) 
2 ( N − DN p ) ( L − 1 ) . (14)

he value of T out and T in can be used to leverage between perfor-

ance and complexity. For N much larger than DN p and for L large

s compared to 1, the following approximation applies: 

OR SSS ≈ 2 T out T in N(DN p ) 
2 L. (15)

PA algorithms are often run offline: an appropriate PA for every

ossible combination of N, L and DN p is pre-computed and the re-

ulting PA dictionary is stored. In such a scenario, one can argue

hat the complexity of the employed PA algorithm is not so rele-

ant. Nevertheless, since it is such an impossible job to find the

rue optimal PA (this would require an exhaustive search), design-

rs keep continuously looking for novel ways to compute better

As in less time. This will be particularly true when the number

f required dictionary entries is large. By means of example, we

onsider an OFDM system with N = 1024 subcarriers and a cyclic

refix length L cp = 

N 
4 . In this case, L can take all (integer) values

rom 1 to 256 and DN p can take all (integer) values from 1 to L − 1 .

When DN p > L , accurate channel estimation can be obtained with

onventional methods and this case is not considered in our pa-

er.) This means that the number of entries in the dictionary gets

s large as 

 dic = 

256 ∑ 

l=1 

(l − 1) = 32640 . (16)

s the example shows, dictionaries with several thousands of en-

ries are not an exception. It should also be noted that devices with

imited memory may have not enough space to store a PA dictio-

ary of that size. In such a scenario, online PA computation is the

nly option and the use of low complexity PA algorithms becomes

ven more important. 

In the following, we propose three efficient PA methods with a

ower complexity than SSS, i.e., the deterministic greedy algorithm

DGA), the simplified deterministic greedy algorithm (SDGA) and

 simulated annealing (SA) based method. The respective perfor-

ance of the proposed methods will be contrasted to that of the

tate-of-the-art in Section 4 . Two of the proposed methods, namely

GA and SA, outperform the state-of-the-art SSS in terms of con-

ergence speed by several orders of magnitude. This has important

onsequences: as our simulations demonstrate, it is not possible

or SSS to achieve the same accuracy as SA and DGA within a rea-

onable amount of computation time. The third PA method that
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we propose, SDGA, focuses entirely on complexity; it is therefore

of interest only for scenarios with online PA. 

3.1. DGA 

The first algorithm that we propose is a deterministic greedy

algorithm (DGA) that sequentially finds the pilot positions p t , t =
1 , 2 , . . . , DN p . DGA takes p 1 equal to 1. Subsequently, the values of

p t for t = 2 , 3 , . . . . are obtained, using the following recursive equa-

tion: 

p t = argmin 

p t ∈N\P t−1 

(
max 

1 ≤q ≤L −1 

1 

t 
αq (t) 

)
, (17)

where P t = { p 1 , p 2 , . . . , p t } collects the first t pilot positions,

N \P t−1 is the set of all subcarrier indices in { 1 , 2 , . . . N } but not

in P t−1 and αq ( t ) is defined as: 

αq (t) = 

∣∣∣∣∣
t ∑ 

i =1 

e − j2 π
(p i −1) q 

N 

∣∣∣∣∣. (18)

The procedure is summarized in Algorithm 1 . 

Algorithm 1 DGA and SDGA. 

1: Set p 1 = 1 and P 1 = { p 1 } . 
2: for t = 2 , 3 , . . . , DN p do 

3: Find p t from (17) for DGA, or from (26) for SDGA 

4: Construct P t as the union of P t−1 and p t 
5: end for 

6: Output P = P DN p . 

The NOR involved in the DGA is: 

NOR DGA = 

DN p ∑ 

t=2 

( N − t + 1 ) 2 t ( L − 1 ) , 

= 

DN p ( DN p + 1 ) ( 3 N − DN p + 1 ) − 6 N 

3 

( L − 1 ) , (19)

which, for N much larger than DN p and for L large as compared to

1, can be approximated as: 

NOR DGA ≈ N(DN p ) 
2 L. (20)

Comparing (20) with (15) , it follows that DGA is about half as com-

plex as SSS with T out = T in = 1 . This can be attributed to the ab-

sence of iterations and to the fact that the number of positions to

be tested decreases on every recursion. 

For completeness, we mention that a greedy approach similar

to DGA was proposed in [26] ; however, instead of minimizing the

MMMC directly, the algorithm in [26] minimizes the variance of

pilot location difference. The computational complexity of the al-

gorithm in [26] is of order O ( N! ) . Hence, DGA has a far lower com-

plexity. Furthermore, numerical results (not reported in this paper)

show that DGA in general yields a lower MMMC than the method

from Pakrooh et al. [26] , which in its turn results in a lower chan-

nel estimation MSE and system BER. 2 

3.2. SDGA 

Although DGA has a significant lower complexity than SSS and

than the method from Pakrooh et al. [26] , the computational com-

plexity still increases proportionally with N and L . To derive a

lower complexity algorithm, we first rewrite (11) as: 

μ{ �} = max 
q 

1 

DN p 
αq (DN p ) . (21)
2 For example, for N = 256 , L = 64 and DN p = 32 , the MMMC of the method from 

Pakrooh et al. [26] is 0.2402, as opposed to 0.1896 for DGA. 

a  

s  

a  
ith αq ( · ) defined as in (18) . The MMMC μ{ �} is the maximum

mong α1 (DN p ) , . . . , αL −1 (DN p ) and therefore αq ( DN p ) should be

ow for all q in { 1 , . . . , L − 1 } in order to have a low MMMC. Keep-

ng this in mind, we propose to solve the simpler problem of find-

ng a PA yielding a small αq ( DN p ) for a given value of q . Adopting

 similar greedy approach as before, such a PA can be found using

p 1 = 1 and the recursive relationship 

p t = argmin 

p t ∈N\P t−1 

∣∣∣αq (t − 1) + e − j2 π
(p t −1) q 

N 

∣∣∣, (22)

hich allows to compute p t , for t = 2 , 3 , . . . , DN p , from

 

p 1 , p 2 , . . . , p t−1 } , using the definition of αq (t − 1) from (18) .

or given αq (t − 1) , (22) is equivalent to 

p t = argmin 

p t ∈N\P t−1 

f q ( p t ;P t−1 ) , (23)

ith 

f q ( p t ;P t−1 ) = 

∣∣∣
∣∣∣arg ( αq (t − 1) ) + 2 π

( p t − 1 ) q 

N 

∣∣∣
2 π

− π
∣∣∣, (24)

here | x | 2 π denotes the value of x modulo-2 π with values in [0,

 π ] and arg( x ) is the argument of x with values in [ −π, π ] . The

unction f q ( λ;P t−1 ) is a saw-tooth function of λ with period N / q ,

o that the interval [ 1 2 , N + 

1 
2 ] corresponds to q entire periods of

f q ( λ;P t−1 ) . The complexity of (23) can be significantly reduced

y noting that the search can be limited to the 2 q values of p t in

 \P t−1 that are closest to the q zero-crossings (λ1 , λ2 , . . . , λq ) of

f q ( λ;P t−1 ) from (24) in [ 1 2 , N + 

1 
2 ] . The lowest complexity is ob-

ained with q = 1 , in which case only 2 values of p t need to be

ested to find the solution to (23) and we obtain 

p t = argmin 

{ p ∗
t,l 

,p ∗t,s } 
f 1 ( p t ;P t−1 ) , (25)

here p ∗t,s is the largest element in N \P t−1 smaller than or equal

o λ1 , and p ∗
t,l 

is the smallest element in N \P t−1 larger than or

qual to λ1 , with λ1 the unique solution to f 1 (λ, P t−1 ) = 0 . 

As our goal is to derive a low complexity PA algorithm, a sim-

le ad-hoc approach could be to use p 1 = 1 and (25) to derive

 DN p . Unfortunately, it turns out that this approach often results

n a rather large MMMC. This does not come as a complete sur-

rise. In many cases, a PA that yields a very small α1 ( DN p ) yields

 very large μ{ �}. An obvious example of such a PA is an equidis-

ant PA in which the pilot subcarriers are evenly spread over the

ntire bandwidth. To allow (25) to escape from this undesired PA

ithout jeopardizing the minimization of α1 ( DN p ) too much, we

ropose to replace (25) with 

p t = argmin 

{ p ′ 
t,l 

,p 
′ 
t,s } 

f 1 ( p t ;P t−1 ) , (26)

here p 
′ 
t,s is the largest element in N \P t−1 smaller than or equal

o λ1 + 1 , and p 
′ 
t,l 

is the smallest element in N \P t−1 larger than

1 − 1 . The PA algorithm that uses p 1 = 1 and (26) is further re-

erred to as simplified deterministic greedy algorithm (SDGA). The

rocedure of SDGA is similar to that of DGA, and is also summa-

ized by Algorithm 1 . The computational complexity of SDGA is of

he order O 

(
DN p 

)
only. 

.3. SA 

Because DGA and SDGA are deterministic greedy algorithms,

hey guarantee to produce a result in a limited amount of steps.

owever, as they never reconsider their choices, they mostly fail

o find an approximation of the globally optimal solution. To en-

ble the search algorithm to escape from a local optimum while

till limiting the computational effort, simulated annealing can be

dopted [39] . Algorithm 2 details how SA can be applied to solve
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Algorithm 2 SA. 

1: Set T init , T stop , T rate and T iter . 

2: Select an initial PA P . 

3: Set T = T init . 

4: while T > T stop do % outerloop 

5: for l = 1 , 2 , . . . , T iter do % innerloop 

6: Randomly pick a pilot index k from { 1 , 2 , . . . , DN p } . 
7: Exchange p k with a randomly selected value from N \Pto 

form P tmp . 

8: Calculate μ{ �} tmp correspondingto P tmp 

9: if μ{ �} tmp − μ{ �} < 0 or e −
μ{ �} tmp −μ{ �} 

T > rand ( ·) then 

10: Set P = P tmp . 

11: end if 

12: end for 

13: T = T · T rate . 

14: end while 

15: Output P . 
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13) . Basically, we randomly alter the value of a randomly picked

ilot position p k , and compute the MMMC μ{ �} tmp for the new

A. Theoretically, it is possible that the new PA has already been

ested in one of the previous steps. However, the probability that

his happens is low. For example, if the total number of subcar-

iers N and the total number of pilot subcarriers DN p equal 256

nd 32, respectively, the probability of repeated testing is in order

f 1 
DN p (N−DN p ) 

= 1 . 4 · 10 −4 . If μ{ �} tmp of the new PA is better than

he MMMC μ{ �}, we update the PA. However, as we are chang-

ng only one pilot symbol at a same time, using this condition is

quivalent to searching for a local optimum in the neighborhood of

he initial PA, implying we risk to get trapped in a local optimum.

o solve this issue, SA allows a new PA to be selected, even if the

MMC is not better than the old PA. This is done by adding the

ondition 

xp 

(
−μ{ �} tmp − μ{ �} 

T 

)
> rand ( ·) , (27) 

.e., the new PA is selected, even when μ{ �} tmp − μ{ �} > 0 , if the

xponential of (27) is larger than a random value generated with

 continuous uniform distribution from 0 to 1, i.e., rand ( · ) ~ U [0,

]. The exponential in (27) depends on the parameter T , which is

alled the temperature of the SA algorithm. If T is large, the prob-

bility that the condition (27) is fulfilled is large, implying that the

lgorithm can easily escape a local optimum. However, for large T ,

his easiness to escape an optimum also hinders the convergence

f we are close to the global optimum, as the probability that the

lgorithm jumps away from the global optimum is large. Therefore,

e start with a high initial temperature, T init , and gradually reduce

he temperature by scaling the temperature with a factor T rate < 1.

he algorithm ends when the temperature reaches a (low) stop

emperature T stop (outer loop). For each value of T , the algorithm

ries to converge to an optimum by randomly selecting T iter new

ilot symbol positions p k , and checking one by one if at least one

f the conditions in line 9 of the algorithm is satisfied (inner loop).

he set of rules presented in [40] provide useful guidelines to se-

ect the parameters T init , T stop , T rate and T iter . 

The computational complexity of SA is dominated by the

MMC calculations involved in Algorithm 2 . The evaluation of a

ingle MMMC has complexity 2 DN p (L − 1) , and the number of

MMC calculations is T iter 

⌈ 

log T rate 

(
T stop 

T init 

)⌉ 

. This results in a total

omplexity number of 

OR SA = βN 2 DN p (L − 1) ≈ βN 2 DN p L, (28)

ith βN = T iter 

⌈ 

log T rate 

(
T stop 

T init 

)⌉ 

. 
. Numerical results and discussion 

In this section, we demonstrate the performance of the pro-

osed DGA, SDGA and SA methods for PA design in terms of NOR,

MMC, MSE and BER. Unless specified differently, SDGA is em-

loyed to select the initial PA in the case of SA. Alternatively,

andom (RAND) or equidistant PA initialization can be used. Fol-

owing SSS, we also consider the option to extend the SA algo-

ithm with an outer loop, running for T out iterations. Then, in

ach iteration t out = 1, 2,..., T out , a new initial PA (further repre-

ented as PA t out −1 , 0 ) is selected and further optimized according

o the SA procedure from Algorithm 2 , after which the MMMC

f all T out obtained PAs is compared and only the PA with the

owest MMMC is retained. Compressive sampling matching pursuit

CoSaMP) [15] was chosen as the reconstruction algorithm. CoSaMP

s a variant of the well-known orthogonal matching pursuit algo-

ithm [15] and is known for its good performance and low com-

lexity. Preliminary results, not presented here, indicate that very

imilar results are obtained using other CS reconstruction methods

17–20] . As the MMMC depends on the product DN p but not on D

nd N p separately, we will further focus on the single OFDM sym-

ol case only; hence, D = 1 and the number of elements in P is N p 

n our simulations. Preliminary results, not reported in this paper,

onfirm that a system with D = x and N p = y behaves virtually the

ame as a system with D = 1 and N p = xy, if the channel remains

onstant for at least D OFDM symbols. This means that, assum-

ng that the required number of pilot subcarriers is known (mainly

etermined by the sparsity of the channel), increasing D can im-

rove the bandwidth and power efficiency of the transmission. The

umber of subcarriers, N , is a power of 2. We assume that L = 

N 
4 

41,42] . Further, N p = 

N 
8 is considered as a typical number of pi-

ot symbols per OFDM symbol [41] . To estimate the BER and the

SE, the expectation in (3) and (5) is replaced by an arithmetic

ean over a large amount of random realizations of b , h and W .

ereby, all possible sequences b are picked with equal probabil-

ty 2 −m (N−N p ) . Quadrature phase shift keying (QPSK) and Gray code

it-to-symbol mapping is applied. Furthermore, each possible way

o select K out of L channel tap indices is picked with equal proba-

ility (K!(L − K)!) /L ! . The values of the non-zero channel taps are

enerated independently according to CN 

(
0 , 1 

K 

)
. Finally, the noise

amples vector W is generated according to CN 

(
0 , σ 2 I N 

)
. Results

re presented as a function of the average signal-to-noise ratio

SNR), i.e., SNR = E [ 
| X d ( l ) | 2 | H ( l ) | 2 

σ 2 ] = 

E s 
σ 2 . 

.1. Evaluation of SDGA 

We first discuss the performance of SDGA. Considering three

ases N p = 26, 28 and 32 for N = 256 and L = 64, the achieved

MMCs of SDGA are 0.3476, 0.3575 and 0.3337, respectively. Note

hat randomly selecting a PA might also result in a satisfactory

MMC. To demonstrate the effectiveness of SDGA, we determine

he average amount of PAs that needs to be randomly generated

efore finding one that has a lower MMMC than SDGA. To this

nd, we randomly generate 10 6 PAs for each of the abovemen-

ioned cases and calculate their corresponding MMMC. To simplify

he analysis, we split these MMMCs into 10 6 / N g groups of size N g ,

ith N g = 1, 2, 5, 10, 20, 25, 40 or 50. Finally, we count in how

any groups the minimum MMMC is lower than the MMMC ob-

ained with SDGA, and calculate the probability Pr [ MMMC SDGA <

in i =1 , 2 , ... ,N g { MMMC 

(i ) 
rand 

} ] that the MMMC of SDGA is smaller than

he lowest of each group. The value of this probability is shown

n Fig. 2 as a function of N g . For N g = 1 , in over 67% of the cases

over 87% for N p = 26 ), SDGA yields a lower MMMC than a ran-

omly generated PA. Further, it can be observed that in order to

utperform SDGA with a certainty of 99%, one should randomly
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Fig. 2. Probability that SDGA yields a lower MMMC than the best out of a group of 

N g randomly generated PAs. 

Table 1 

List of SA inner loop parameter settings. 

Sett in T init T stop T iter T rate 

1 10 −1 10 −6 50 0.95 

2 10 −2 10 −6 50 0.95 

3 1 10 −6 50 0.95 

4 10 −1 10 −6 50 0.90 

5 10 −1 10 −6 50 0.97 

6 10 −1 10 −6 20 0.95 

7 10 −1 10 −6 70 0.95 

8 1 10 −7 70 0.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Lowest MMMC found versus the number of PAs tested, for N = 256, N p = 

32 and L = 64 , using SSS and SA with different parameter settings; PA 0,0 denotes 

the type of PA that is used to bootstrap the algorithms, if random initialization is 

employed, a different subindex i in RAND i indicates that the random generator was 

initialized with a different seed; T out is the number of outer SSS or SA iterations; T in 
is the number of inner SSS iterations; and Sett in is the index of the SA inner loop 

parameter settings from Table 1 . The different curves result from varying the value 

of T in , T out or Sett in , while keeping the value of the other parameters fixed. 

Fig. 4. Average number k of SSS inner loop iterations required to achieve conver- 

gence, for N = 256, N p = 32 and L = 64 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  
generate 12 (for N p = 32 , 28 ) or even 35 (for N p = 26 ) PAs, evaluate

all corresponding MMMCs and determine the PA with minimum

MMMC. However, this results in a complexity of O(24 N p (L − 1))

or O(70 N p (L − 1)) , which is far larger than that of SDGA. Owing

to the acceptable performance and the extremely low complexity,

SDGA can be considered as an effective method for situations with

online PA computation where the PA needs to be redesigned fre-

quently due to fast channel variations. 

4.2. SSS and SA parameter selection 

For a meaningful comparison, suitable values for T init , T stop , T rate ,

T iter and T out for SA, and for T in and T out for SSS, need to be se-

lected for each system setting. A short-list of 8 interesting SA in-

ner loop parameter combinations ( T init , T stop , T rate , T iter ) is made by

taking into account [40] ; these settings, labeled with an integer

Sett in ranging from 1 to 8, are tabulated in Table 1 . Fig. 3 shows

the MMMC of PAs obtained for N = 256 , N p = 32 and L = 64 , us-

ing SSS or SA with different types of initialization, different T out ,

different T in and different Sett in . We make the following observa-

tions: 

• The black curves show the evolution of the MMMC as a func-

tion of the number of inner SSS iterations. Independent of the

initial PA, the MMMC barely decreases after the 5th inner loop

iteration. This is confirmed by Fig. 4 , showing (for a total of 100

experiments) the percentage of experiments where the MMMC

does not change between the k th and the 10th inner loop iter-

ation. We conclude that, for the considered set-up, the number

of SSS inner loop iterations T in can be safely limited to 5, with-

out loosing performance. 
• The red curves show the evolution of the MMMC as a function

of the number of outer SSS iterations. The blue curve with cir-
cular markers does the same for SA with Sett in = 1. The blue

star-shaped markers show the effect of the SA inner loop pa-

rameter values for T out equal to 1. Both SSS and SA converge

towards the PA with the smallest MMMC, but SA decreases the

MMMC significantly faster than SSS. For example, the number

of PAs that needs to be tested to obtain an MMMC of less than

0.19 is 30 to 200 times larger with SSS than with SA. More-

over, while SA achieves an MMMC lower than 0.184 after having

tested only 37100 PAs, the lowest MMMC achieved with SSS af-

ter testing over 3 · 10 6 PAs is still larger than 0.185. In order to

compare algorithms with a similar complexity, it is reasonable

to take T out equal to 1, for SSS and SA both. As for SA, Sett in =
1 can be considered to offer a close-to-optimum NOR-MMMC

trade-off for the considered value set-up. 

We also did simulations for other values of N and found sim-

lar results. Although both SSS and SA have the potential to find
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Table 2 

Parameter values for SSS and SA. 

N 

SSS SA 

T in T init T stop T iter T rate βN 

64 2 10 −1 10 −6 50 0.90 5500 

128 3 10 −1 10 −6 50 0.95 11250 

256 5 10 −1 10 −6 50 0.95 11250 

512 5 1 10 −6 50 0.95 13500 

1024 6 1 10 −6 50 0.97 22700 

Table 3 

NOR for SSS, DGA and SA when L = 

N 
4 

and N p = 

N 
8 

. 

N 

NOR 

SSS DGA SA 

64 2.1504 ∗10 5 6.4680 ∗10 4 1.3200 ∗10 6 

128 5.3330 ∗10 6 1.0292 ∗10 6 1.1400 ∗10 7 

256 1.4451 ∗10 8 1.6311 ∗10 7 4.5360 ∗10 7 

512 2.3304 ∗10 9 2.5928 ∗10 8 2.1946 ∗10 8 

1024 4.4920 ∗10 10 4.1328 ∗10 9 1.4819 ∗10 9 
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Fig. 5. Exact NOR of SSS, DGA and SA for L = N/ 4 . 

Table 4 

MMMC for SSS, SDGA, DGA and SA when L = 

N 
4 

and 

N p = 

N 
8 

. 

N 

MMMC 

SSS DGA SDGA SA 

64 0.3062 0.3062 0.7304 0.3062 

128 0.2791 0.2782 0.7716 0.2576 

256 0.1974 0.1896 0.3337 0.1868 

512 0.1606 0.1547 0.2916 0.1498 

1024 0.1291 0.0976 0.2290 0.0895 
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he global optimum, implying they eventually will converge to the

ame MMMC for a large number of outer iterations, our simula-

ion results indicate that the SA algorithm has a better conver-

ence speed than SSS. As a consequence, a pilot allocation yield-

ng a given MMMC that is obtained with SA within a few hours or

ays, would take weeks or months to compute using the SSS al-

orithm. This situation will occur when N > 256 and/or T out > 1.

t is clear that this is not practical, even though the pilot alloca-

ion can be computed offline. In Table 2 , we enlist suitable values

f T init , T stop , T rate , T iter for SA, and T in for SSS, for N = 64, 128, 512,

024 (with N p = 

N 
8 and L = 

N 
4 ). The number of outer iterations T out 

s fixed to 1 throughout the rest of the paper. 

.3. NOR 

We now compare the computational complexity of DGA, SDGA,

A and SSS for different values of N and N p / N . The value of βN in

28) obtained with the proposed values of T iter , T stop , T rate and T init 

s displayed in the seventh column of Table 2 . 

It is immediately clear from (15), (20) and (28) that, as com-

ared to DGA, SA and SSS, SDGA has negligible complexity (only

 

(
N p 

)
). Table 3 shows numerical values for the NOR of DGA, SA

nd SSS, for a fixed ratio 
N p 
N = 

1 
8 . We observe that for large N

 N = 512 and N = 1024 ), SA yields a lower NOR than DGA, which in

urn yields a lower NOR than SSS. This is in correspondence with

N increasing less than proportional to 
NN p 

2 (see (15), (20) and

28) ). For smaller values of N ( N = 256, 128, 64), DGA turns out

o be less complex than SA. This is because, for small N , the pref-

ctor βN is large as compared to 
NN p 

2 . For the considered values of

 ( ≥ 256), SSS yields the highest NOR. 

The impact of the pilot subcarrier ratio N p / N on the compu-

ational complexity of the considered PA methods is shown in

ig. 5 where, on a log-log diagram, NOR DGA , NOR SA and NOR SSS 

re plotted as a function of 
N p 
N ∈ [ 1 

32 , 
1 
4 ] , for N = 256 , N = 512 and

 = 1024 . The curves for SSS and SA were obtained with the val-

es of the parameters fixed to the values proposed in Table 2 for

 = 256 , 512 , 1024 and N p = N/ 8 . So, for given N , the parameters

N and T in do not vary with N p / N . We make the following obser-

ations: 

• For given N (and L = N/ 4 ), the NOR of SA increases proportion-

ally to N p , whereas the NOR of DGA and SSS increases propor-

tionally to N 

2 
p . For given N and given N p / N , DGA is 2 T in ≈ 10

times less complex than SSS. For given N and small N p / N , DGA
is also less complex than SA. For given N and very small N p / N ,

even SSS becomes less complex than SA. However, for given N

and large N p / N , both SSS and DGA are more complex than SA. 
• If N increases, the value of N p / N above which SA becomes the

least complex method decreases. The NOR values at N p / N =
1/8, correspond to the ones reported in Table 3 . For values of

N p / N in the vicinity of this typical value, DGA is the least com-

plex method for N = 256 (and below) and SA is the least com-

plex method for N = 1024 (and above), while SA and DGA have

about the same complexity (but significantly lower than SSS)

for N = 512 . 

.4. MMMC 

In Section 4.3 , it was argued that all three proposed algorithms

re significantly less complex than the state-of-the-art method. In-

erestingly, Table 4 and Fig. 6 show that the complexity reduction

ffered by the proposed algorithms, not necessarily comes at the

xpense of an increased MMMC. Table 4 contains MMMC results

or several values of N and N p fixed to N /8. Fig. 6 shows MMMC

alues for fixed N ( N = 256 ) as a function of N p , for N p values in

he vicinity of N /8. 

The very simple SDGA method results in much higher MMMC

alues than SSS. However, as the obtained MMMC decreases with

 , SDGA might still be considered an interesting option for sys-

ems with a large amount of subcarriers and very stringent com-

lexity constraints. On the other hand, DGA and SA both yield a

ower MMMC than SSS in all considered cases. In all scenarios, the

owest MMMC is obtained with SA, even though this method has a

ower complexity than SSS and, for high N , also a lower complexity

han DGA. 



8 T. Li, N. Noels and H. Steendam / Signal Processing 175 (2020) 107666 

Fig. 6. MMMC values as a function of N p for SSS, DGA, SDGA and SA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. MSE for a system with N = 256 and (a) N p = 26, (b) N p = 28, or (c) N p = 

32. 
4.5. MSE 

The whole idea behind designing the PA with a view to mini-

mizing the MMMC relies on the assumed relationship between the

MMMC and the MSE performance of the considered channel es-

timator. Fig. 7 shows the obtained MSE as a function of the SNR

for a system with N = 256 , N p ∈ 

{
26 , 28 , 32 = 

N 
8 

}
, L = 

N 
4 = 64 and

K = 12 , if that system uses SSS, DGA, SDGA or SA PA design. At

given SNR and for given N p , SDGA yields a higher MSE than SSS,

SSS yields a higher MSE than DGA and SA yields the lowest MSE.

This order of improving MSE performance is in correspondence

with the observation in Fig. 6 that, for the considered values of

N p , SDGA yields a higher MMMC than SSS, which yields a higher

MMMC than DGA, which in turn yields a higher MMMC than SA.

At given SNR and for a given PA method, the obtained MSE de-

creases if N p increases. For N p = 26 , the difference between the

MSE values obtained with SSS, SDGA, DGA and SA is small. Increas-

ing N p from 26 to 28 results in a significantly larger MSE reduction

for SA and DGA than for SSS and SDGA, especially at large SNR.

This can be explained as follows. N p = 26 pilot symbols are insuffi-

cient to produce a fairly accurate channel estimate independent of

the PA. When N p is increased to 28, a relatively good channel esti-

mate can be obtained only with an appropriate PA (DGA and SA):

for N p = 28 , SA results in a 3 times lower MSE than SSS at an SNR

of 30 dB. For N p = 32 , the number of pilots is sufficiently large

to also obtain an accurate channel estimate with less good PAs.

For comparison, we also applied equidistant PAs for sparse channel

estimation, i.e., P equi, 26 = { 1 , 11 , . . . , 251 } , P equi, 28 = { 5 , 14 , . . . , 248 }
and P equi, 32 = { 1 , 9 , . . . , 249 } , which are the most common choice

for conventional (non-sparse) channel estimation [43–45] . The cor-

responding MMMC values are μ{ �} equi, 26 = 0 . 9336 , μ{ �} equi, 28 =
0 . 9805 and μ{ �} equi, 32 = 1 . For all three considered values of N p ,

the MSE corresponding to the equidistant PA is at least an order of

magnitude larger (at a nominal SNR of 15dB) than when the PA is

designed using SSS, DGA, SDGA or SA, indicating that equidistant

PAs are not suitable for sparse channel estimation, as was also ob-

served in [27,30,33] . 

4.6. BER 

From the above it follows that the proposed DGA and SA algo-

rithms are attractive alternatives for the state-of-the-art approach



T. Li, N. Noels and H. Steendam / Signal Processing 175 (2020) 107666 9 

Fig. 8. BER for a system with N = 256 and (a) N p = 26, (b) N p = 28, or (c) N p = 

32. 

Fig. 9. Minimum N p required to achieve and SNR for BER = 10 −2 at a given SNR. 
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SSS) from Qi et al. [27] . For N = 256 , N p ∈ 

{
26 , 28 , 32 = 

N 
8 

}
, L =

N 
4 = 64 and K = 12 , both SA and DGA yield a lower MSE and a

ower NOR than SSS. While SA outperforms DGA in terms of MSE,

he opposite is true with respect to the NOR. To conclude our anal-

sis, in Fig. 8 , we report the BER of the same system scenarios as

reviously considered in Fig. 7 . Obviously, for given N p and given

A, the BER decreases if the SNR increases. At given SNR and for

 given PA method, the BER decreases if N p increases. At a given

NR and for a given N p , a PA method yielding a lower MMMC

nd MSE, also yields a lower BER. The lowest BER is achieved with

A. With this method, N p = 32 = 

N 
8 pilot symbols per OFDM sym-

ol suffice to approach the BER of a system with perfect channel

nowledge at the receiver. Using SA rather than SSS (or SDGA) may

educe the required amount of pilot subcarriers per OFDM sym-

ol. This is illustrated more clearly in Fig. 9 , which (for N = 256 ,

 = 

N 
4 = 64 and K = 12 ) reports the minimum number of pilot sub-

arriers (( N p ) min ) that is required to achieve a BER lower than 10 −2 

s a function of the SNR. A system with perfect channel knowledge

t the receiver achieves a BER of 10 −2 at an SNR equal to 17 dB.

he same performance is achieved with SSS or SA and N p larger

han or equal to 32, and with SDGA and N p larger than or equal

o 33. For SNR larger than or equal to 17 dB, ( N p ) min decreases if

he SNR increases. With less than N p = 26 pilot subcarriers, it is

irtually infeasible to reach a BER as low as 10 −2 , independent of

he SNR. This is because for such low values of N p , all methods

esult in a BER floor above 10 −2 (see Fig. 8 (a)). We observe that

sing SA rather than SSS allows us to reduce the ratio N p / N from

lmost 11% to about 10% for SNR in [26 dB, 29 dB]. Moreover, we

otice that, for a given SNR, SDGA only needs about 2 (or 1) more

ilot subcarriers in a total of 256 subcarriers to reach the same re-

ult as that of SA, meaning that the loss in pilot efficiency of SDGA

s rather small. Hence, if there is no mandatory constraint on N p ,

ts extremely low complexity makes SDGA an attractive alternative

o SA (because the same BER can be achieved with only a small

ncrease of N p / N ). 

. Summary and conclusion 

In this paper, we considered PA for pilot-assisted sparse chan-

el estimation. To improve the performance of channel estimation,

e propose three novel PA methods, i.e., DGA, SDGA and SA. All

hree methods use the MMMC as a cost function. Among these

ethods, SDGA has the lowest computational complexity, but its
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achieved MMMC is far from minimum. The computational com-

plexity of DGA or SA is higher than that of SDGA, yet smaller than

that of the state-of-the-art method SSS. On the other hand, the

MMMC obtained with DGA or SA is far lower than that obtained

with SDGA and also considerably smaller than that obtained with

SSS. Numerical evaluation of corresponding MSE and BER results

indicate that both DGA and SA outperform SSS, while SDGA comes

with a small performance degradation but offers a huge complex-

ity reduction. 
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