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PDR/UWB Based Positioning of a Shopping Cart
Stef Vandermeeren and Heidi Steendam , Senior Member, IEEE

Abstract—In this article, we consider indoor positioning of
a shopping cart in a store with a hybrid approach combining
ultra wideband (UWB) and a people dead reckoning (PDR)
system. While UWB can provide a very accurate positioning
estimate in ideal circumstances, its accuracy reduces in non-
line-of-sight situations and the update rate decreases when
the number of users increases. To solve these issues, each
shopping cart is not only equipped with a UWB tag, but also
with an inertial measurement unit (IMU) sensor to determine
the step length and heading of the user moving the shopping
cart, in order to track the shopping cart in between two
UWB measurements. As the IMU is not attached to the body,
the measured accelerationwill be different than in other works
considering PDR systems. In this article, we therefore first extract a model for the acceleration,and use the resulting model
in the PDR system, where we look for the best acceleration component to track the cart. To combine the PDR and UWB
information, we consider two approaches, i.e. Kalman and particle filtering, and compare both approaches. Moreover,
we investigate the effect of the presence of map information of the store on the trajectory information. Our experiments
show that the average positioning error using UWB only equals 62.6 cm, while the Kalman and particle filter result in
an accuracy of respectively 34.1 cm and 41.3 cm, and when using map information in combination with particle filtering,
the accuracy improves to 28.0 cm.

Index Terms— Step counter, shopping cart, accelerometer, sensor fusion.

I. INTRODUCTION

APROMISING technology to provide accurate position
estimates in retail environments is ultra wideband

(UWB) [1]–[4], which can achieve an accuracy of the order
of tens of centimetres. However, an issue with UWB-based
positioning is that the accuracy will locally degrade in non-
line-of-sight (NLOS) situations. In a retail environment, this
can happen when the direct path between the UWB tag and
anchor is obstructed by e.g. metal racks. Furthermore, due
to scalability issues, the position update rate of the UWB
system decreases for an increasing number of users. To reduce
the effect of these drawbacks of the UWB system, we can
combine the UWB system with another positioning system
that does not suffer from NLOS conditions and does not
depend on the number of users. A popular approach is to use
the inertial measurement unit (IMU) sensors that nowadays
are available in most mobile devices. This IMU consists of
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an accelerometer, gyroscope and sometimes a magnetometer,
enabling us to track the motion and orientation of the mobile
device so that it can be used e.g. in a People Dead Reckoning
(PDR) application [5]–[8]. PDR is an indoor positioning
technique that combines the number of detected steps with
their respective length and orientation to keep track of the
position of the user. A downside of this approach is that
it can provide relative position updates only, and that due
to errors in the estimated orientation and length of a step,
the position estimate will quickly start to diverge from the true
position. Combining the PDR system with the UWB system
will resolve the initialization and drift problems of the PDR,
as the UWB system provides regularly position updates that
do not diverge in time, resulting in a system that is able
to produce frequent, and in the long term stable, position
updates.

In this article, we focus on tracking customers in a retail
environment. As we combine the information from the UWB
system with the IMU, we need a device with integrated IMU
and UWB hardware. Although many customers have a mobile
device with integrated IMU, integrated UWB hardware is
currently not available in most smartphones. Further, privacy-
issues could inhibit customers to use their own device. Hence,
to track the customers, the shop must provide dedicated hard-
ware to the customers. An option is to let the customers carry
the tag during their visit, e.g. by incorporating it in a scanner to
be used to scan the products. However, not all retailers provide
a scanner to the customers, and moreover, the close proximity
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Fig. 1. System architecture.

of the human body can influence the accuracy of the UWB
system [9]. Therefore, we consider another approach, where
we incorporate the sensors in the handle of a shopping cart.
When the IMU is fixed to the human body, we can directly
detect the steps of a user by measuring the periodic pattern in
the acceleration in the direction of gravity. However, when the
IMU is attached to a shopping cart, the change in acceleration
in the direction of gravity is almost absent, implying detecting
the steps of a user will not be straightforward. In this work,
we propose an algorithm that detects the steps of a customer,
using a shopping-cart-mounted accelerometer. To this end,
we first propose a model for the acceleration that is measured
by the shopping-cart-mounted IMU, which is then used to
derive the step detection algorithm. Further, we apply this
step detector in a PDR system and implement a sensor fusion
algorithm to combine the information from the PDR and UWB
system, enabling us to accurately track a shopping cart in retail
environments.

The rest of the article is organised as follows. In Section II,
we introduce the system architecture of our positioning system.
The PDR system consists of three building blocks, i.e. the step
detection, the step length estimator and the step orientation
estimator. In this article, we will mainly focus on the step
detection algorithm, and briefly discuss the other two building
blocks. In Section III, we explain the limitations of state-of-
the-art step detection algorithms when the IMU is attached to
the handle of a shopping cart. Further, we present our model
for a shopping-cart-mounted accelerometer and propose a step
detection algorithm based on the measurements. In Sections IV
and V, we describe the two remaining building blocks of the
PDR system, i.e. to respectively determine the step length and
heading. Next, in Section VI, we elaborate on the sensor fusion
algorithm that combines the information of the PDR and UWB
systems. In the results section (Section VII), we evaluate the
performance of the resulting step detection algorithm and the
sensor fusion algorithms and finally, conclusions are given in
Section VIII.

II. SYSTEM ARCHITECTURE

Before we go into the details of the different building
blocks, we first give in this section an overview of the system
architecture of our positioning system for a shopping-cart-
mounted IMU. The high-level block diagram for the chosen
system architecture is shown in Figure 1. The IMU collects
the measurements from the accelerometer and gyroscope, and
feeds them to the PDR block. The PDR updates the position
of the shopping cart by extracting the steps, step length and

heading of the user of the cart from the measured data.
To correct the drift of the resulting position estimate, caused
by the noisy IMU measurements, and obtain more reliable
position estimates, we apply a sensor fusion algorithm to
combine the position estimates from the PDR block with the
measurements of the UWB system. In the remainder of this
section, we give a more detailed description of the PDR, UWB
and sensor fusion blocks.

A. PDR
A PDR system keeps track of a user’s position in a relative

manner. Given an initial position p0, the PDR iteratively
updates the position pk = [px,k, py,k] of a user as follows:

px,k = px,k−1 + Lk cos(�k)

py,k = py,k−1 + Lk sin(�k), (1)

where px,k and py,k are respectively the x and y coordinate
of the user at the end of the kth step, and Lk and �k are
respectively the length and orientation of the kth step. Hence,
to be able to update the position, the PDR must accomplish
the following three subtasks:

• Step detection, i.e. detect the start and end of step k
• Step length estimation, i.e. determine Lk

• Step heading estimation, i.e. determine �k

The PDR in our algorithm receives input from the IMU,
which measures the acceleration and rotation of an object,
from which we can extract the needed information. Note that,
although the update expression (1) does not depend on the
location of the IMU, i.e. body-fixed or shopping-cart-mounted,
the measurements made with the IMU will depend on this
location, implying the algorithms to determine the steps, step
length and orientation will differ depending on the location
of the IMU. Many works on PDR research consider an IMU
that is attached to the body, e.g. it is head-mounted [5], foot-
mounted [6], waist-mounted [7] or handheld [8]. Less research
was done on PDR systems using IMUs attached on a cart [10].
This can be explained as in contrast to body-fixed IMUs,
steps are not directly visible in the accelerometer data of
cart-mounted IMUs. To solve this issue, the authors of [10]
extract from the accelerometer data of a cart-mounted IMU
an effective motion frequency, from which they determine
the time interval between successive steps. The authors then
augment the step counter by one step when the time since the
last step is larger than this time interval. Further, the authors
also estimate the heading of the cart. Unfortunately, the authors
implement their step detector in their PDR algorithm without
analysing the step detector accuracy in detail.

The benefit of a PDR system is that no infrastructure is
required in the environment, i.e. each user only needs to be
equipped with a single IMU. However, the PDR approach
also has its limitations. First, the PDR system needs an initial
estimate of the position and heading, which are hard to
determine without the use of another positioning technique.
Secondly, errors in the estimation of the step length Lk and
heading ψk will eventually lead to a large drift in the estimated
position. As a consequence, the PDR system can only provide
very accurate incremental position updates for a short period.
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In Sections III-V, we will discuss the implementation of the
different components of our PDR in detail. The accuracy of
the step detector and the PDR algorithm will be analysed in
the results section, i.e. Section VII.

B. UWB
To overcome the limitations of the PDR approach, we com-

bine in the proposed positioning system the PDR system with
a UWB system. This UWB system provides regular updates
of the estimated position and promises an accuracy of the
order of tens of centimetres. In contrast to the PDR approach,
this system requires a dedicated infrastructure to estimate the
position. The infrastructure consists of a number of anchors
that must be placed at fixed and known positions in the envi-
ronment. The carts, that are moving in the environment, are
equipped with a tag. This tag communicates with one anchor
at a time by transmitting a signal, and from the time delay
of the line-of-sight (LOS) component of the received signal
we can extract the distance between the tag and the anchor.
Based on the distances to the different anchors, the position
of the tag can be determined. As the distance is obtained
from the LOS component, it is clear that an incorrect estimate
of the distance to an anchor will be obtained if the direct
path between the tag and an anchor is obstructed by e.g.
a metal rack. An incorrectly estimated distance will in turn
have an influence on the UWB position estimate, implying
the accuracy of the UWB system may degrade locally due to
non-line-of-sight (NLOS) conditions. Moreover, as each tag
needs to range with all anchors, and at each time instant only
one tag is allowed to communicate with a single anchor to
avoid interference, the update rate for each user can be low,
implying in between two updates, no position information is
available.

C. Sensor Fusion
From the previous sections, it is clear that the PDR and

UWB systems are complimentary, and that each system can
help the other where it fails. Hence, combining the information
of both systems can result in a hybrid system that provides
frequent, and in the long term accurate, position estimates.
To merge the information of the PDR and UWB systems,
we use a sensor fusion algorithm in this work. In this fusion
algorithm, we combine the position information from the PDR
and UWB systems, to obtain a position estimate with a lower
uncertainty than would be possible when the systems are used
separately. Due to the non-linear nature of the positioning
problem, we cannot employ the commonly used Kalman
filter approach. However, the extended Kalman filter (EKF)
is able to deal with non-linear dynamical systems. Similarly
as the Kalman filter, the EKF consists of two phases, i.e. the
prediction phase, where the new state is predicted based on
the old state perturbed with Gaussian noise, and the update
phase, where the predicted state is updated based on the
measurements. The prediction and update are based on the
non-linear relations fk and hk :

xk = fk(xk−1,wk) (2)

zk = hk(xk, vk) (3)

where xk is the state at timestep k, zk is a vector containing the
sensor measurements, and wk and vk are the Gaussian noise
terms in respectively the prediction and update phase. To solve
the problem, the EKF linearizes the non-linear functions fk

and hk . While this EKF approach is able to tackle non-linear
problems, the performance is not always satisfactory due to
the assumption that the noise term is Gaussian, which is not
always satisfied in practical systems. Another approach that
can be used for non-linear dynamical systems experiencing
non-Gaussian noise is the Particle Filter (PF) approach, which
uses a Sequential Monte Carlo method. In this approach,
the particle filter starts with a large number of particles, where
each particle corresponds to a possible state. The PF approach
uses the same equations as EKF (note that now the noise
components wk and vk no longer are restricted to be Gaussian),
i.e. (2) predicts the next state for each particle, and (3) is
used to determine a score for each particle that indicates how
well the state of the particle matches with the measurements.
This more general PF approach generally results in better
performance, but comes at the cost of a higher computational
complexity compared to EKF. In this article, we will consider
both EKF and PF to estimate the state, i.e. the position
of the cart, and compare the performance and complexity
of both approaches. Further, the PF approach enables us to
easily include map data of the environment in the fusion
algorithm. Hence, we also consider a map matching algo-
rithm to further improve the performance of our positioning
system.

III. STEP DETECTION

The first step in the PDR system is the detection of the
steps of the user, i.e. the determination of the number of steps
and the start and end of each step. In this section, we discuss
how this information can be extracted from the acceleration
measured with an IMU mounted on a shopping cart. For
comparison, we first discuss the case of a body-fixed IMU,
which is often considered in the literature. When the IMU is
fixed on the body of a user, the steps of the user will mainly be
visible in the vertical component of the acceleration, due to the
up and down movement of the body during taking steps, and
the impact of the foot on the ground. Further, the acceleration
will also reflect the repetitive nature of taking steps. As a
consequence, most works in the literature operate in the time
domain to detect the peaks and/or zero crossings in (mainly)
the vertical component of the measured acceleration [11]–[15].
In contrast to the body-fixed IMU, the vertical movement of a
shopping cart-mounted IMU will be limited, implying that the
vertical component of the acceleration might be less suited to
extract the steps from the measurements.

To determine the best approach to estimate the steps from
the measured acceleration, we therefore first introduce a novel
mathematical model for the acceleration of a cart-mounted
IMU. We start by defining the coordinate system relative to
the shopping cart, and assume that the x-axis of the IMU
is aligned with the direction in which the shopping cart is
heading, while the z-axis is aligned with gravity. The y-axis
then corresponds to the direction in the horizontal plane per-
pendicular to the moving direction, as illustrated in Figure 2.
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Fig. 2. Coordinate system shopping cart.

Fig. 3. Acceleration acart,x from starting/stopping the shopping cart.

In the mathematical model, we decompose the acceleration
into the following contributions:

• asteps, i.e. the acceleration due to taking steps that can be
measured by the shopping-cart-mounted IMU. As taking
steps is a repetitive activity, we model this component as a
sinusoid with a frequency equal to the stepping frequency.

• acart , i.e. the acceleration that is necessary to accel-
erate and slow down the shopping cart when the user
starts or stops walking. This component mainly is present
in the movement direction of the shopping cart, i.e.
in the x-direction. We model this component as a set
of triangular pulses, as illustrated in Figure 3. More
specifically, when the user accelerates the cart from a
rest state, this acceleration component is modeled as a
positive triangular pulse and when the user stops the cart,
as a negative triangular pulse.

• aturn , i.e. the acceleration caused by taking turns (cen-
tripetal force). This component mainly is present in the
y-direction and results in a bias in the y-component that
is correlated with the angular rate measured with the
gyroscope in the z-axis.

• g, i.e. the measured acceleration due to gravity. Due to
the selection of the coordinate system, this component is
present in the z-direction only.

• an , i.e. the noise of the measured acceleration. This
component also comprises the acceleration due to e.g.
vibrations of the shopping cart.

Hence, the acceleration in the x-, y- and z-axis is approxi-
mated by:

ax = asteps,x + acart,x + an,x

ay = asteps,y + aturn,y + an,y

az = asteps,z + gz + an,z (4)

Fig. 4. Acceleration asteps,x related to taking 11 steps.

Fig. 5. Comparison of the modeled and low-pass filtered measured
acceleration in the x-direction.

The noise contribution is modeled as a zero-mean random
variable. In the following, we assume that the acceleration is
filtered with a low-pass filter to remove the noise contribution,
and neglect the presence of the noise in the example.

To illustrate the effectiveness of the model, we compare the
low-pass filtered acceleration measured in the x-direction with
the above model, for a user taking 11 steps in a straight line.
The x-component of our model consists of two contributions:
acart,x , shown in Figure 3 and asteps,x, illustrated in Figure 4.
In Figure 5, we show ax = acart,x + asteps,x along with the
low-pass filtered measured acceleration. The figure demon-
strates that the proposed model matches fairly well with the
measured acceleration. Comparing the measured acceleration
with the model, we observe some differences. First, we notice
that the amplitude of the sinusoidal component in the measured
acceleration is not constant. A similar effect can be observed
in body-fixed IMUs, and can be explained as each step we
take is unique and has slightly different amplitude. A second
observation is that the measured acceleration is not always
centered around zero, i.e. there is a slowly time-varying bias.
In our model, we assume the cart is moving at a constant speed
between the triangles corresponding to starting and stopping
the cart. However, in reality, the walking speed of a user is
not constant, but subject to slowly time-varying variations.
Further, the cart is pushed by the hands of the user, and
the user does not have a rigid body. Hence, the pose of the
body, arms and hands may change during the pushing of
the cart, as the user slightly stretches and bends the arms.
Consequently, the arms will behave like a sort of spring,
resulting in variations in the acceleration that are visible in
the x-component. It is clear from the above example that
the x-component of the acceleration can be used to extract
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Fig. 6. Comparison of the modeled acceleration of the shopping cart
and the moving average (N = 13) of the total modeled acceleration.

Fig. 7. Comparison of the modeled acceleration related to taking steps
and the total modeled acceleration minus the moving average.

the steps of the user. However, the presence of acart,x ham-
pers the detection of the steps, as the triangular pulse from
(de)accelerating the shopping cart is spread over several steps.
To remove the contribution acart,x from the acceleration ax ,
we filter the acceleration ax with a moving average filter with
fixed length N corresponding to approximately the duration
of one step, where N determines the number of samples
over which we average the acceleration. The value of N
depends on the sample frequency fs used in the measurements.
Given the step frequency fstep and the sample frequency fs ,
we expect that a good value for the length of the moving
average filter is approximately N ≈ fs

fstep
. Typically, the step

frequency ranges approximately from 1.5Hz to 2Hz and for
our measurements, the sample frequency was approximately
20Hz so N ∈ [10, 14] samples. In the results section, we will
determine the value for N that results in the best performance
on our collected accelerometer data. In Figure 6, we show the
acceleration acart,x from the shopping cart and the moving
average āx of ax (4), where N was set equal to 13 samples.
We can clearly see that āx matches well with the acceleration
acart,x of the shopping cart. Figure 7, showing the difference
between the total acceleration and the moving average, i.e.
ax − āx , together with the acceleration astep,x , demonstrates
that we can easily extract the steps from ax − āx by using e.g.
zero-crossing or peak detection. In the evaluation of the effect
of the moving average filter, we did not take into account
the effect of the biases present in the measured acceleration.
However, the moving average filter will also remove to a large
extent the slowly time-varying biases present in the measured
acceleration.

A similar approach can be used to extract the acceleration
related to taking steps from the y- and z-component of the

Fig. 8. Comparison of the moving average āy of the low-pass filtered
measured acceleration in the y-direction and −sgn(ωz)·ω2

z , with ωz
the low-pass filtered angular rate measured by the gyroscope in the
z-direction.

Fig. 9. Block diagram step detection algorithm.

acceleration. In our model for the y-component of the accel-
eration, a term related to taking turns aturn,y was included.
Assuming that during a turn the IMU follows a perfectly
circular path and that the x-axis of the IMU is tangential to
the path, we can write aturn,y as aturn,y = −r · sgn(ωz) · ω2

z ,
where r is the radius of the turn, ωz is the angular rate
in the z-direction measured by the gyroscope, and sgn(·)
is the sign function. As a turn is spread over several steps,
we can extract the contribution of aturn,y from ay by filtering
the measured acceleration with a moving average filter with
length N , and remove the contribution to a large extent from
the measured acceleration. In Figure 8, we show the moving
average of the low-pass filtered measured acceleration āy in
the y-direction together with −sgn(ωz) · ω2

z , where ωz is the
low-pass filtered angular rate, measured with the gyroscope,
for a user that took 50 steps. From this figure, it is clear that
āy and −sgn(ωz) · ω2

z indeed are correlated. However, some
differences are also visible due to the assumptions we made
on the path we follow during the turn. In reality, the IMU
does not take a perfect circular turn, implying writing aturn,y

as −r · sgn(ωz) · ω2
z is only a rough approximation of the

acceleration the IMU measures during a turn. Similarly as
in the x-direction, we also noticed a time-varying bias in
the measured acceleration in the y-direction of the measured
acceleration, which will also be removed by the moving
average filter. According to the model for the z-component,
the acceleration should contain a more or less constant bias
of 1g due to gravity. In our measurements however, we also
notice, as with the x- and y-component, a time-varying bias,
which can, just as the constant bias, be removed with the
moving average filter. By subtracting the moving average from
the low-pass filtered measured acceleration in either the x-,
y- or z-component, we will obtain an acceleration component
related to the acceleration asteps from taking steps.

In the remainder of this section, we propose the step
detection algorithm that is based on the above described
model for the acceleration. The block diagram of the step
detection algorithm is shown in Figure 9. First, we collect
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the three outputs of the shopping-cart-mounted accelerometer,
corresponding to the acceleration a = (ax , ay, az) in the x ,
y and z-direction. As most of the body-fixed step detectors
use the magnitude of the acceleration, we also determine
the magnitude |a| =

√
a2

x + a2
y + a2

z of the raw acceleration
and test it in our step detection algorithm. Secondly, we use
a low-pass filter to reduce the effect of the noise on the
measured acceleration. In this work, we use a 3rd order low-
pass Butterworth filter with cut-off frequency f to obtain
the smoothed signals a f,α = L P(aα) and |a| f = L P(|a|),
where L P(h) applies the low-pass filter to signal h, and
α ∈ {x, y, z}. Next, we feed the smoothed signals to a
moving average filter with length N . Subtracting the moving
average a f = (a f,x , a f,y, a f,z) or |a| f from the low-pass
filtered measured acceleration approximately eliminates the
acceleration components that are not related to taking steps, i.e
as = a f −a f ≈ asteps or |a|s = |a| f −|a| f . Finally, we apply
as,α or |a|s to a zero-crossing step counting algorithm with
timing and amplitude constraints.

For convenience, we use as for the remainder of this section
to signify as,α or |a|s . In this step counting algorithm, we first
determine the possible start and end points of the steps in
signal as . To this end, we iterate through the signal and look
for time instants where as crosses threshold th = 0g with a
positive slope, i.e. as,i > th and as,i−1 < th. These instants
are considered as possible start and/or end points of a step.
The first time a sample as,i meets this condition, it can only
be the start of the first step. In that case, we set the start of
the step under consideration equal to istart = i . Otherwise,
the sample as,i can indicate the end of the current step that
started at sample istart (and the corresponding start of the next
step). To validate if as,i is indeed the end of the current step
and limit the number of falsely detected steps, we determine
the maximum M and minimum m of the the acceleration as

in the interval [istart, i ]:
M = max

l∈[istart ,i]
(as,l)

m = min
l∈[istart ,i]

(as,l), (5)

and check that 1) M is larger than a threshold Mth 2) that the
difference between the maximum and minimum, i.e. M − m,
is larger than (M − m)th , and 3) that the duration between
the two zero crossings, i.e. i − istart , lays in the interval
[imin, imax ]. The first two constraints prevent that acceleration
patterns with only a small variation in the acceleration would
lead to a step detection, while the third constraint makes sure
that only patterns with a time duration that could correspond to
a step are considered. If we find a positive-slope zero crossing
that satisfies the above three conditions, we conclude that a
valid step occurred: the step count is increased by one, we set
the sample index of the found end of the step as the start istart

of the next step, and start the search procedure again to find
the end of the next step. If no valid end of a step is found, i.e
if the two first conditions are not satisfied within the interval
[imin, imax ], we start looking for a new start of a step starting
from the first zero crossing after time index istart and start
looking for a new positive zero-crossing from this point. In the
results section, we will use a grid search to find the values

of the multiple parameters in our algorithm that result in the
step detector with the best performance. Additionally, we also
compare the performance of our algorithm on the different
axes and magnitude of the acceleration, i.e. we compare the
performance for as,α, with α ∈ {x, y, z} and |a|s .

IV. STEP LENGTH

Several approaches to estimate the step length exist. On the
one hand, we can estimate the step length by finding a para-
metric model that maps different variables (e.g. the maximal
acceleration in a step) to the step length of that step [16]–[19].
A drawback of this approach is that these models also contain
some parameters that need to be tuned to a specific user. As we
do not have ground truth for the step lengths, we cannot use
this parametric approach. On the other hand, Kalman filters
can be used to estimate the step length as in [20], [21].
A downside of this approach, however, is that it only performs
well if the IMU is attached to the foot. As in this work,
the IMU is shopping-cart-mounted, we also cannot use Kalman
filters to estimate the step length. Hence, for simplicity, in this
article, we model the step length in our PDR system as a
constant, i.e. initially L = 0.7m. Although this a very rough
approximation, it will not jeopardize the proper action of our
positioning system as we later will combine the PDR system
with UWB measurements in an extended Kalman filter (EKF)
or particle filter (PF), which both allow us to update the step
length based on the UWB measurements.

V. HEADING ESTIMATION

To unambiguously determine the orientation of the shopping
cart, we first need to define the different coordinate frames
that will be used in this article. The navigation frame is the
frame in which we determine the position and orientation. This
frame is fixed and can e.g. be aligned with a room. In this
article, we align the navigation frame with the coordinate
frame of the UWB system, i.e. the x- and y-axis lie in the
horizontal plane and the z-axis is aligned with gravity. The
body frame corresponds with the frame in which the IMU
measures the acceleration and angular rate of the shopping
cart. As the shopping cart moves relative to the navigation
frame, the orientation between the body and navigation frame
will continuously change. To track the orientation of the
body frame relative to the navigation frame, we will use
an extended Kalman filter based on [22] to determine the
orientation in quaternion form from the IMU data. Quaternions
are a four-dimensional representation of the orientation that
have as an advantage over the more common Euler angles
that they do not suffer from the well-known gimbal lock.
In Figure 10, we show the high-level block diagram for the
heading estimation.

First, we use the accelerometer to determine the initial
orientation. Next, we use the gyroscope to continuously update
the current orientation. To decrease the error of the orientation
estimation, we use the measurements of the accelerometer and
gyroscope while the shopping cart is static, e.g. when the user
stops to take an item from the shopping racks, which only
happens occasionally. In the remainder of this section, we will
discuss the heading estimation in more detail.
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Fig. 10. Block diagram for heading estimation.

In this article, we write the state of our EKF at time index i
as xi = [qbn

i , bωb,i , bab,i ]T , where qbn
i = [qbn

i,0, qbn
i,1, qbn

i,2, qbn
i,3]

is the quaternion that describes the rotation from the navigation
frame to the body frame, bωb,i and bab,i are respectively
the bias of the gyroscope and accelerometer both in the
body frame, and �T denotes the transpose operation. At the
start of the algorithm, we assume that the shopping cart is
static and that the initial heading is known, e.g. because
the carts are lined up at the entrance, enabling us to easily
extract the orientation of the IMU in Euler angle format from
the measured acceleration. The initial (z,y,x)-Euler angles
[ψ0, θ0, φ0] can be determined with

ψ0 = ψ̃0

θ0 = arctan(
−ab

x,0√
(ab 2

y,0 + ab 2
z,0

)

φ0 = arctan(
ab

y,0

ab
z,0

), (6)

where ab
x , ab

y and ab
z are respectively the x-, y- and

z-component of the measured acceleration in the body frame,
and ψ̃0 is the known initial heading. When the initial heading
is not known, we can set ψ̃0 to a random value, e.g. ψ̃0 = 0◦,
as the state of the fusion algorithm of Section VI, amongst
others, also contains the heading error. Hence, if we choose a
high initial variance for the heading error, the fusion algorithm
is able to estimate this error within a few UWB updates.
However, as our EKF needs the orientation in quaternion form,
we still need to transform the Euler angles into a quaternion
with

qbn
0,0 = cos(

φ0

2
) cos(

θ0

2
) cos(

ψ0

2
)+ sin(

φ0

2
) sin(

θ0

2
) sin(

ψ0

2
)

qbn
0,1 = − sin(

φ0

2
) cos(

θ0

2
) cos(

ψ0

2
)+cos(

φ0

2
) sin(

θ0

2
) sin(

ψ0

2
)

qbn
0,2 = − cos(

φ0

2
) sin(

θ0

2
) cos(

ψ0

2
)−sin(

φ0

2
) cos(

θ0

2
) sin(

ψ0

2
)

qbn
0,3 = − cos(

φ0

2
) cos(

θ0

2
) sin(

ψ0

2
)+sin(

φ0

2
) sin(

θ0

2
) cos(

ψ0

2
).

(7)

For the accelerometer and gyroscope, we assume that the
initial bias is equal to zero, i.e. bωb,0 = bab,0 = [0, 0, 0].

In the prediction step of the Kalman filter, we predict the
state x̂i = [q̂bn

i , b̂ωb,i , b̂ab,i ]T at time index i as a function of

the state at time index i − 1 using:

q̂bn
i = exp(

−�ti
2

(ωb
i − bωb,i−1))� qbn

i−1

b̂ωb,i = bωb,i−1

b̂ab,i = bab,i−1, (8)

where q̂bn
i , b̂ωb,i and b̂ab,i are respectively the predicted

quaternion, accelerometer bias and gyroscope bias. Further,
�ti corresponds to the time interval between time index i
and i − 1, ωb

i is the angular rate at time index i in the body
frame, � is the quaternion product, and exp(·) the quaternion
exponential defined as

exp(v) =
(

cos(‖v‖), v

‖v‖ sin(‖v‖)
)

(9)

In the update step of the EKF, we first determine if the
shopping cart is static, i.e. if the shopping cart is not moving.
If so, the accelerometer will only measure the acceleration of
the gravitational force and a bias, and the gyroscope will only
measure the bias of the gyroscope. Hence, we can write this
as

ab
i = Rq̂bn

i
[

0, 0, g
]T + b̂ab,i

ωb
i = b̂ωb,i , (10)

where ab
i and ωb

i are respectively the measured acceleration

and angular rate in the body frame, Rqbn
i , given by

Rq =
⎛
⎝q2

0 +q2
1 −q2

2 −q2
3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0 −q2

1 −q2
2 +q2

3

⎞
⎠

(11)

is the rotation matrix that performs the rotation from the
navigation frame to the body frame and g = 9.81m/s2 is the
gravitational acceleration. Using these measurements, the EKF
updates the predicted state x̂i into the updated state xi . Finally,
to find the heading ψi at each time index i , we use the updated
quaternion qbn

i to transform the angular rate ωb
i in the body

frame into the angular rate ωn
i in the navigation frame. As the

z-component of ωn
i determines the change of the heading,

we can use this angular rate to iteratively determine the current
heading ψi :

ψi = ψ̃0 +
i∑

j=1

�t j [Rqbn
j (:, 3)]T ωb

j = ψ̃0 +
i∑

j=1

�t jω
n
j,z

= ψi−1 +�tiω
n
i,z (12)

where Rqbn
j (:, 3) corresponds to the third column of Rqbn

j and
RT denotes the transpose of matrix R. Note that (12) assumes
that ψ0 = ψ̃0.

VI. SENSOR FUSION ALGORITHM

In this section, we describe the algorithm that fuses the
data from the PDR and UWB system to combine the benefits
and limit the drawbacks of each system. To fuse the UWB
and PDR data, we consider and compare an extended Kalman
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Fig. 11. Block diagram for sensor fusion.

filter (EKF) and a particle filter (PF). In Figure 11, we show
the block diagram of the sensor fusion implementation.

First, we use the step detection from Section III to detect
if a user took a step. If so, we determine the heading of the
step with the heading estimation algorithm from Section V.
The fusion algorithm can then use this information to predict
the new position of the user. Next, at time instants where
new UWB measurements are available, we use the UWB
information to improve the accuracy of predicted position and
finally, we use the floor map to correct the position if the
position estimate is not possible, e.g. the position estimate
would require that the user passed through a wall. In the
remainder of this section, we describe each part of the fusion
algorithm in more detail.

To model the system, we use the state vector xk =
[ pk, Lk ,��k]T , where pk = [px,k, py,k] corresponds to the
x and y coordinate of the shopping cart after step k, and Lk

and ��k are respectively the step length and heading error of
the kth step. To initialise the sensor fusion algorithm (either
the EKF or PF), we calculate the initial state using

px,0 = pUWB
x,0

py,0 = pUWB
y,0

��0 = 0

L0 = 0.7m (13)

where we use a UWB measurement to determine the initial
position and assume that the initial heading error and step
length are respectively 0 and 0.7m.

As already mentioned, both the extended Kalman and
particle filter consist of two phases, i.e. the prediction and the
update phase. In the prediction phase, we use the data from
the PDR system to predict the next state x̂k = [ p̂k, L̂k ,��̂k]T

using

p̂x,k = px,k−1 + Lk−1 cos(�k +��k−1) (14)

p̂y,k = py,k−1 + Lk−1 sin(�k +��k−1) (15)

��̂k = ��k−1 (16)

L̂k = Lk−1 (17)

where �k is the heading of the kth step, found by averaging
the heading reported by the heading estimator of the PDR
system (Section V) over the entire duration of the step. Hence,
we predict the new position of the user based on the previous
position estimate, the estimated heading of the step and current

estimate of the step length and heading error in the state. For
the step length and heading error, we assume no change.

In the update phase, we use the information of other sensors
to further improve the accuracy of the estimated state. To this
end, we check if a UWB position update pUWB occurred
during the kth step. If a UWB update is available, we use

pUWB
x,k = pUWB

x +Lk−1 cos(�k +��k−1)
tk,end −tUWB

tk,end −tk,begin
(18)

pUWB
y,k = pUWB

y +Lk−1 sin(�k +��k−1)
tk,end −tUWB

tk,end −tk,begin
(19)

to estimate the UWB position at the end of the kth step.
In these equations, pUWB

k = [pUWB
x,k , pUWB

y,k ] is the esti-
mated UWB position at the end of the kth step, pUWB =
[pUWB

x , pUWB
y ] is a vector containing the x and y coordinate

of the UWB position update at timestamp tUWB, and tk,begin

and tk,end are respectively the start and end timestamp of the
kth step. This pUWB

k can then be used in the update phase
to correct the predicted state x̂k to the final estimate xk for
the state at the end of the kth step. For the EKF, this is
achieved with xk = x̂k + K k · ( pUWB

k − p̂k), where K k

is the Kalman gain, which can be derived from the models
for the prediction and update phase, and determines how much
the measurement will influence the final state estimate xk .
For the PF on the other hand, we update the weight of each
particle based on pUWB

k . The weight of a particle indicates how
well it matches with the measurements, where a high weight
implies that the particle matches well with the measurements.
Hence, depending on how well a particle agrees with the
measured pUWB

k , we increase or decrease the weight of that
particle.

Till now, the fusion algorithm was similar for both the sen-
sor fusion algorithms, i.e. the EKF and PF. The PF, however,
is ideally suited to include information of a floor plan. Hence,
in the update phase of the PF, we can also use the floor plan to
detect if impossible state transitions occurred and improve the
estimate of the state. Impossible state transitions would occur
when e.g. some particles of the PF would go through a wall.
Similar to [23], we use the floor plan to detect if particles
cross a wall during the prediction phase and exclude these
particles for the final position estimate. In the results section,
we will compare the performance of the EKF and PF, and
investigate the performance improvement when a floor plan
of the environment is used with the PF.

VII. RESULTS
In this section, we evaluate the performance of our

PDR/UWB based indoor positioning system. First, we show
the results of the step detector of the PDR algorithm. Next,
we discuss the different test environments in which we tested
our positioning system and finally, we also evaluate the sensor
fusion algorithms in these environments. For all performed
trials, we attached a Pozyx device [24] to the handlebar of
a shopping cart. This device incorporates amongst others an
accelerometer, gyroscope, magnetometer, and a UWB tag.
During each test, we captured the acceleration, angular rate
and UWB updates at 20Hz. To investigate the influence of
a lower UWB update rate on the performance of the sensor
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TABLE I
OPTIMAL PARAMETERS STEP DETECTION ALGORITHM FOR x-, y- AND

z-AXIS AND THE MAGNITUDE COMPONENT

fusion algorithm, we downsample the UWB measurements
accordingly.

A. Results Step Detection
In this part, we discuss the results of the step detection

algorithm discussed in Section III. To this end, we gathered
data from the accelerometer corresponding to 32 trials with
in total 1462 steps. During these trials, the user was free to
choose his/her walking pace. Before and after each trial, the
user holds the handlebar of the shopping cart while standing
still, which allows excluding the acceleration from gripping
and releasing the handlebar of the shopping cart.

In Section III, we introduced several parameters in our step
detection algorithm that required tuning. These parameters
were the length N of the moving average filter, the cut-
off frequency f of the low-pass filter, the threshold Mth

for the maximum acceleration during a step, the threshold
(M − m)th for the difference between the maximum and
minimum acceleration during a step, and the minimum and
maximum duration of a valid step tmin and tmax . As the
average step frequency is typically around 2Hz [25], which
approximately corresponds to a walking velocity of 5km/h,
we expect that a cut-off frequency around f ≈ 2Hz will
eliminate acceleration components that do not correspond with
steps and hence, will result in a good performance. The goal
of the moving average filter was to determine the acceleration
component not related to taking steps by averaging over the
length of approximately one step. Hence, a logical value for
the moving average length N would be equal to the length of a
step. Using that the typical step frequency is around 2Hz and
that we sampled the accelerometer at 20Hz, a logical value
for N would be around 10.

In the remainder of this section, we determine the optimal
parameters for the step detection algorithm using a grid search
for the x-, y- and z-acceleration and the magnitude component.
For the grid search, we use the average step error rate over
all trials to optimise our algorithm, where the step error rate
for one trial is equal to the absolute value of the difference
between the true and estimated number of steps for that trial
divided by the true number of steps. Hence, the lower the
average step error rate the better the performance of the step
detector.

In Table I, we show the optimal parameters for our step
detection algorithm when either the x-, y- or z-component
or the magnitude of the acceleration is used. To find these
values, we used 50% of the steps from our trials, while the
other 50% is used to validate the step detection algorithm
on new data. From this table, we can see that for all four

Fig. 12. Example of the processed acceleration a) in the x-axis b) of the
magnitude component together with the detected steps.

acceleration components most of the parameters have similar
values. For all four acceleration components, we see that
the optimal cut-off frequency is f = 2Hz as expected. For
the x- and y-component, we see that the optimal length for the
moving average filter equals N = 9, which is close to the
expected value 10, while for the z-component and magnitude
the length is higher.

In Figures 12 and 13, two fragments of the processed accel-
eration in the x-direction and of the magnitude component are
shown together with the detected steps. While in Figure 12,
we clearly see the periodic nature of the acceleration, based
on which we selected our sinusoidal model for the steps,
we observe in Figure 13 some anomalies around 4s for the
x-axis and around 10s for both the x-axis and the magnitude.
At these instants, the amplitude of the acceleration signal
suddenly becomes very small although the user is continuously
walking. This implies that at these instants, our step detection
might not detect the zero-crossing of the signal, resulting in
undetected steps.

In Figures 14 and 15, we again show two fragments of
the processed x-component acceleration and of the magnitude
component, but this time for a user respectively walking in
a straight line and taking a turn. These figures show that,
irrespective of the walking direction, our step detection algo-
rithm will be able to extract the steps from the acceleration.
Comparing the fragments for respectively the x-axis and the
magnitude, we can see that with a few exceptions both result
in approximately the same detected steps.

In Table II, we give the average step error rate of our
step detector using the optimal parameters from Table I both
for the training set, i.e. the trials that were used to find
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Fig. 13. Another example of the processed acceleration a) in the x-axis
b) of the magnitude component together with the detected steps, where
some steps are not detected.

Fig. 14. Example of the processed acceleration a) in the x-axis b) of
the magnitude component together with the detected steps while walking
straight.

the optimal values, and on the test set, i.e. the remaining
trials. From this table, we can see that the x-axis has the
worst performance on the training set and the y-axis has
the best performance. On the test set, on the other hand,

Fig. 15. Example of the processed acceleration a) in the x-axis b) of
the magnitude component together with the detected steps while taking
a turn.

TABLE II
STEP ERROR RATE ON TRAINING AND TEST SET

the magnitude performs the best, while the y-axis now results
in the worst performance, although now the step error rates
for the x-, y- and z-axis are much closer to each other. If we
take the average of the step error rate over the training and test
set, the magnitude component results in a step error rate of
approximately 4.3%, the y- and z-component result in a step
error rate of approximately 5.6%, while the x-component has a
step error rate of around 7.9%, which is worse than most body-
fixed step detectors and will hence result in a PDR system
with a lower performance. However, as we combine the PDR
system with UWB measurements, the UWB measurements
will correct some of the errors of the PDR system. Now that
we tuned the step detection algorithm, we can use it in the
PDR system. In the next section, we test the PDR system and
sensor fusion algorithm and determine if the PDR system can
improve the accuracy of the UWB system.

B. Results PDR and Sensor Fusion
Test Environments: So far, we only evaluated the per-

formance of the step detection algorithm from Section III.
In this section, we use this step detector in the PDR system
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Fig. 16. a) Floor map of small-scale test environment (6m × 8m). The
position of the reference points and the traversed path are also shown.
b) Floor map of the shopping environment (17m × 28m). The position of
the UWB anchors and the path through the shopping environment are
also marked.

described in Section II-A and also combine it with the
UWB measurements using an extended Kalman or particle
filter. To evaluate the performance of our PDR system and
sensor fusion algorithms, two different test environments are
considered. The first small-scale test setup was installed in a
room of approximately 6m by 8m at our department, where
multiple metal cabinets were placed to mimic the metal racks
in a shopping environment. In this room, four UWB anchors
are installed and additionally, two reference points, which are
used to evaluate the accuracy of the positioning algorithms, are
marked on the floor. In Figure 16a, we show the floor map of
this environment together with the anchors, reference points
and the approximate traversed path. The second, more realistic,
test environment was a shopping environment (17m × 28m),
for which the floor map is shown in Figure 16b together
with the position of the 16 UWB anchors and the traversed
path. As in this environment no accurate ground truth is
available, the trials in this environment will only be used to
visually inspect how the algorithms perform in more realistic
environments.

Small-Scale Environment: For the tests in the small-scale
environment, we repeatedly traverse the path shown in
Figure 16a as close as possible. In Figure 17, we show an
example of the estimated path we obtain with the EKF when
no UWB updates are used, i.e. when only the PDR system is
used. For the step detection algorithm, we used the magnitude
component of the acceleration. From this figure, it is clear
that the PDR system on its own cannot provide an accurate
position estimate, i.e. although we still see in the figure the
paths corresponding to the different tours around the metal
cabinet, the position of the path moves to the lower left
corner of the figure and the orientation of the path shows
an increasingly larger error. The downward drift of the path
results from errors made by the step detector, either detecting
a step too many or too few, and the assumption of a fixed step
length in our simple PDR algorithm. However, when we take
a turn, the step length is typically smaller and consequently,
the accuracy will decrease even further if we use a fixed
step length. The orientation error, on the other hand, can be

Fig. 17. Estimated path with the EKF without UWB updates and step
detection on the magnitude of the measured acceleration.

attributed to errors in the gyroscope data, causing an increasing
skew relative to the correct path.

Therefore, to improve the accuracy of our positioning algo-
rithm, we want to combine the PDR system with the measure-
ments of the UWB system, which on its own also has some
limitations. Due to the metal cabinets in this environment,
the line-of-sight between some of the UWB anchors and the
UWB tag on the handlebar of the shopping cart is frequently
obstructed, which results in less accurate UWB measurements,
and hence a worse positioning accuracy. Especially when the
user walks between the two rows of cabinets (see Figure 16a),
we expect that the accuracy of the UWB system is severely
degraded.

In this section, we compare four positioning algorithms, i.e.
with UWB measurements only, the extended Kalman filter,
the particle filter and the particle filter combined with floor
map information. For these results, we set the update rate of
the UWB measurements equal to 1Hz and assume that the
initial orientation of the shopping cart is known.1 For the EKF
and PF, we also compare the accuracy when the x-, y- or
z-component or the magnitude of the acceleration is used
for step detection. To evaluate the accuracy of the different
positioning algorithms, two reference points were marked on
the floor. To ensure that the ground truth at these points
was accurate, we indicated on the floor where the wheels
of the shopping cart should stop, which results in a ground
truth accuracy of approximately 5cm. During our experiments,
we briefly stop at these points and press a button attached to

1In practice, this initial heading will often not be known. However,
the fusion algorithm allows to correct for errors in the initial heading through
the error heading state. After a few UWB updates, the heading will converge
to the correct heading, implying the effect of an incorrect initial heading on the
performance will be visible in the initial phase only. To remove the influence
of the initial worse positioning on the overall performance, we assume in the
results that the initial orientation is known.
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TABLE III
AVERAGE EUCLIDEAN DISTANCE ERROR (IN CM) FOR UWB ONLY,

THE EKF FUSION ALGORITHM, PF FUSION ALGORITHM AND THE

PF WITH FLOOR MAP INFORMATION FUSION ALGORITHM WHEN

THE x, y, z OR MAGNITUDE ACCELERATION IS USED

FOR STEP DETECTION

the UWB tag so that the exact time at which we need to
compare the different algorithms is known.

To determine which of the algorithms performs the best,
we performed a total of 15 tests in the small-scale environ-
ment, where we in total gathered 95 ground truth measure-
ments, i.e. the user stopped at a ground truth position and
pressed the button. For each of these ground truth measure-
ments we calculated the Euclidean error distance between
the true and the estimated position at each button press and
determined the mean of these Euclidean distances.

In Table III, we give the average Euclidean error dis-
tance for each of the four algorithms when the x-, y- or
z-component or the magnitude of the acceleration is used
for step detection. When comparing the different algorithms,
a first thing we notice is that all three sensor fusion algorithms
outperform the UWB-only algorithm, which has an average
Euclidean error distance of 62.6cm. Comparing the EKF and
PF algorithm, we see that the EKF with an average Euclidean
distance error around 37.7cm performs slightly better than the
PF with an average Euclidean error distance of 42.1cm. How-
ever, combining floor map information with the PF results in
the best performance, i.e. an average Euclidean error distance
of 31.6cm.

Comparing the algorithms when a different component of
the acceleration is used for step detection, we notice that the
magnitude of the acceleration results in the best performance.
We also notice that the x-component performs slightly better
than the y- and z-component, although the step detector using
the x-component of the acceleration did not always result in
the best step detection performance (see Table II). A reason
for this can be that the sensor fusion algorithm is able to
correct the position estimate when the step detector makes
an error. Hence, from these measurements we can learn that
although the step detector for a shopping-cart-mounted IMU
might perform worse than for a body-fixed IMU, using this
step detector can still significantly improve the accuracy when
used in a sensor fusion algorithm.

In Figures 18(a) to 18(b), we show the estimated path
for the four algorithms, where the magnitude of the accel-
eration is used in the step detection algorithm, for one
of the trials together with the ground truth of the refer-
ence points and the estimated positions when the button

Fig. 18. Estimated paths for a) UWB only b) the EKF fusion algorithm
c) PF fusion algorithm d) PF with floor map fusion algorithm.

was pressed. From these figures, we can see that in the
UWB only case (Figure 18(a)), in some regions the accuracy
of the UWB measurements drops, especially as expected
when the user is located between the two rows of cabinets.
If we compare Figures 18(b), 18(c) and 18(d), we can see
that the estimated path matches more with the true path
than in the UWB only case. One thing we notice is that
in Figures 18(b), 18(c) and 18(d), the estimated path starts
inside a black area (a cabinet), which is caused by an inaccu-
rate initial UWB position estimate due to NLOS propagation
of the UWB signals. Nonetheless, we notice that the fusion
algorithms are able to correct themselves after this initial error.

Shopping Environment: As a final test for our sensor fusion
algorithms, we perform some additional trials in a more
realistic shopping environment. First, we compare both the
EKF and PF implementation and look at the influence of the
UWB update rate. Secondly, we add floor map information to
the particle filter and evaluate the effect on the performance.
To test our algorithm we roughly followed the path shown in
Figure 16b through the shopping environment. In Figure 19,
we show the estimated trajectory when only UWB data at
20Hz and no information from the PDR system is used.
In general, we see that the UWB system gives a very reliable
estimate for the position in the store. However, in some regions
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Fig. 19. Estimated trajectory using only UWB measurements at 20Hz.

we can clearly see that the accuracy is degraded, which can
be caused by NLOS propagation. For example, on the right
side of Figure 19 the estimated position at one point lies
approximately 5m outside the store. This shows that another
localisation technique is necessary to achieve good accuracy
in the whole store. In Figure 20, we show the resulting
trajectories of the EKF and PF for different UWB update rates.
For these results, we used the magnitude of the acceleration
for step detection and again assume that the initial orientation
is known. In Figures 20a and 20b, we see that the estimated
trajectories without the use of UWB measurements have a
shape similar to the true path. However, we notice that due
to incorrect step length and heading estimations the estimated
path diverges from the true path. When we periodically use
UWB updates to correct the position estimation, we see that
the drift is regularly compensated for, and that the estimated
trajectory follows the true trajectory better. A disadvantage we
notice with the estimated paths using sensor fusion, however,
is that the path is less smooth than without UWB due to
jumps in the estimated position when a UWB measurement
was available. Comparing respectively Figures 20c and 2e
and Figures 20d and 20f, we notice that in general a higher
UWB update rate results in a better estimate for the traversed
trajectory. However, on some parts of the trajectory (e.g. in
the bottom centre of the floor map), the estimated UWB
position was inaccurate due to NLOS propagation caused by
the metal racks in the shop, resulting in an erroneous position
update in our sensor fusion algorithm.2 Hence, on these parts
higher UWB updates decrease the accuracy of our algorithm.
Comparing Figures 20c, 20e, 20d and 20f, it follows that the
fusion algorithm with an update rate of 0.1Hz suffers less from
the erroneous UWB position estimates than with an update rate
of 1Hz. Finally, if we compare the trajectories using an EKF
and a PF, we notice that the performance is very similar for
both.

2Note that the performance of the UWB algorithm can be improved by
detecting the outliers caused by NLOS measurements, and ignoring these
outliers in the reconstruction of the path. However, outlier detection is only
possible if the UWB update rate is sufficiently high. With a UWB update rate
of 0.1 Hz, as used in Figures 20c and 20d, detecting an outlier will not be
straightforward.

Fig. 20. Estimated trajectories for the EKF and PF with different UWB
update rates.

In Figure 21, we show the estimated trajectories when
only UWB measurements are used with an update rate of
0.1Hz and 1Hz. For an update rate of 0.1Hz, we can see
that using only UWB measurements results in a trajectory
with a limited number of points. Comparing Figure 21a with
Figures 20c and 20d, it is clear that the sensor fusion algo-
rithm provides a trajectory with a much higher update rate,
although jumps in the trajectories are present. For an update
rate of 1Hz, on the other hand, comparing Figure 20b with
Figures 20e and 20f, we observe that the UWB-only case and
the sensor fusion algorithm both result in a trajectory with a
sufficient update rate. However, in the UWB-only case, outliers
are present, which are partially rejected by the sensor fusion
algorithm.

Until now, we have only used the data from the PDR and
UWB system in our sensor fusion algorithm. However, in the
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Fig. 21. Estimated trajectories for UWB-only with different UWB update
rates.

Fig. 22. Comparison of estimated trajectories for PF with/without map
information for multiple UWB update rates.

PF it is possible to easily include floor map information, pre-
venting particles of the PF to go through e.g. walls or shopping
racks. In Figure 22, we compare the estimated trajectories for
the PF with and without using the floor map when no UWB
updates are used and when the UWB update rate is 1Hz.
Comparing Figures 22a and 22c, we see that without UWB
updates, using the map information largely eliminates the drift
we noticed before. Even without UWB updates, the PF results
in a trajectory that is very similar to the true trajectory in
shape. Previously, in some positions, NLOS propagation of
the UWB signals deteriorated the position estimates such that
the position estimates were outside of the store. If we compare

Figures 22b and 22d, it is clear that using the floor map and
a UWB update rate of 1Hz is much more robust to bad UWB
measurements. The PF combined with map information and a
UWB update of 1Hz results in a trajectory that is very close
to the true trajectory.

VIII. CONCLUSION

The contributions of this article are twofold. First, we pro-
pose a model for the acceleration of a shopping-cart-mounted
accelerometer, which we then used to derive a step detection
algorithm. In our experiments, we compared the step detector
in the case it was used on the different components of the
measured acceleration. From these experiments, it followed
that as well the x-, y- and z-axis of the acceleration resulted
in a step detection error rate of approximately 7% on our
validation set, while the magnitude of the acceleration resulted
in a step detection error rate of 4.83%. Secondly, we then use
this step detector in a PDR system and fuse the information
of the PDR system with data from the UWB measurements.
To this end, we both implement an EKF and PF and compare
the performance of each sensor fusion algorithm. First, we test
our algorithms in a small-scale environment. Using only UWB
measurements and no sensor fusion results in a mean Euclid-
ean error distance of 62.6cm, while the EKF and PF results
respectively in a mean Euclidean error distance of 34.1cm
and 41.3cm. When floor map information is used in the PF
the mean Euclidean error distance even further improves to
28.0cm. Hence, fusing the data from the PDR and UWB
system can result in a significant improvement. Next, we eval-
uate our algorithms in a more realistic shopping environment.
From our experiments, we found that the performance of the
EKF and PF is very similar but the EKF has the advantage
that it requires less computational resources. Finally, we also
use map information in the PF, which significantly improves
the performance. Even without using UWB measurements,
the combination of the PDR system and floor map information
results in a good estimation of the traversed trajectory.
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