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ABSTRACT In this paper, we study a resource allocation problem in orthogonal frequency division
multiple access (OFDMA)-based Device-to-Device (D2D) communications. To this end, we propose a
multi-objective optimization problem (MOOP) framework, which jointly maximizes the sum rate of D2D
users (DUs) and cellular users (CUs) in uplink communications and minimizes the total transmit power. The
proposed problem formulation takes into account the minimum data-rates and the maximum transmitted
power budget for both DUs and CUs. We transform this MOOP into a single-objective optimization
problem (SOOP) using the weighted sum method and then propose an approach to solve this SOOP via
a monotonic approach yielding an efficient optimal solution. Furthermore, a suboptimal solution based on
the successive convex approximation (SCA) is presented to compromise complexity and performance gain.
This is done to reveal that the proposed suboptimal solution closely approaches an optimal solution through
simulation analysis. Numerical results unveil an interesting tradeoff between D2Ds CUs and demonstrate
the superiority of our proposed solution compared to other baseline schemes.

INDEX TERMS Device-to-Device (D2D), resource allocation, multi-objective optimization problem
(MOOP), weighted sum method, monotonic optimization, successive convex approximation (SCA).

I. INTRODUCTION
Device-to-Device (D2D) communication is developed as
a new paradigm to enhance network performance and to
improve resource utilization in fifth generation (5G) cellular
networks and advanced standards. With D2D communica-
tions, a direct link can be set up between a pair of D2D
users within the cellular coverage without the help of the
base station. In the underlay mode (shared spectrum) of
D2D communications, the interference mitigation between
the D2D users (DUs) and cellular users (CUs) due to the
shared spectrum is considered as one of the most critical
issues [1].

Most previous works on resource allocation in D2D
communications considered a single-objective optimiza-
tion problem (SOOP) optimizing only D2D or cellular
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links [2]–[9]. In [2], the authors maximized the sum data-rate
of the D2D pairs when the basic data-rate requirements of all
CUs in uplink communication are guaranteed, by optimizing
power and subchannel allocation iteratively. In [3], spectral
efficiency (SE) and energy efficiency (EE) were separately
maximized by a SOOP to strike a balance between energy
and spectral efficiency in underlaying D2D communications.
In [4], a SOOP was formulated to maximize the total EE in
D2D communications underlaying uplink cellular networks
when the quality of service of each D2D pair and the trans-
mit power threshold are guaranteed. The problem of relay
selection, bandwidth and power allocation was investigated
in [5] to enhance the weighted sum EE, while guaranteeing
the minimum data-rate requirement for CUs, by exploiting
the theory of fractional programming. In [6], the authors
studied the energy-efficient resource allocation problem for
D2D communication to maximize the minimumweighted EE
by decoupling the problem into two sub-problems, i.e., the
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subchannel and power allocation. To improve SE and reduce
latency, a D2D enabled cloud radio access network was
developed in [7], where a distributed approach for mode
selection and resource allocation was presented. The problem
of joint mode selection and resource allocation to maximize
the system sum rate for D2D underlaid cellular communi-
cations was studied in [8] and algorithms for centralized
and decentralized approaches were considered. The energy-
efficient resource allocation problem in the downlink for a
D2D communication heterogeneous network incorporating
energy harvesting with time slot allocation was investigated
in [9]. The authors in [10] considered multi-hop coopera-
tive communications to improve the coverage range of D2D
communications underlaying cellular networks while taking
into account the network coding (NC). However, the single-
objective optimization frameworks in [2]–[10] are not appro-
priate to consider the tradeoff between DUs and CUs.

In [11], the spectrum allocation problem of D2D enabled
cellular networks was investigated, where the cooperative
game theory is employed. In [12], the cooperative relaying-
based spectrum trading process between the cellular sys-
tem and D2D link was considered by a principal-agent
framework. For such a framework, the authors offered a
contract-based cooperative spectrum sharing mechanism to
exploit transmission opportunities for the D2D links and
obtain the maximum profit of the cellular links. A spec-
trum sharing mode for D2D communications in cellular
networks was presented in [13], where two or more D2D
links with exclusive use of sub-bands were allowed to share
their sub-bands without consulting the operators. Under
this model, the authors designed a game-theoretic model
called Bayesian non-transferable utility overlapping coalition
formation game to analyze the spectrum sharing problem.
In [14], to derive analytical rate expressions, a hybrid network
model of D2D enhanced cellular networkswas studied, where
a random spatial Poisson point process modeled the positions
of mobiles. The authors in [14] considered two D2D asso-
ciation approaches, namely the simultaneous and sequential
D2D associations, where both schemes aimed to concurrently
maximize the desired link quality and minimize the effect of
interference effect at D2D receivers.

The MOOP framework studies the correlation between
conflicting objectives in wireless systems [15]–[17]. In this
regard, a MOOP tradeoff was studied in [15] to compro-
mise between EE and SE. This problem was transformed
into a SOOP via the epsilon method, and a two-stage iter-
ative solution was proposed. Furthermore, in [16], a multi-
objective cell association optimization for arranging several
D2D links in a multi-cell network based on the fractional
frequency reuse schemewas considered. However, because of
the interference experienced by DUs in each cell, and also the
effect of the received interfering power fromCUs on theDUs’
achievable rate, a non-trivial tradeoff between DUs and CUs
would be expected. Derivation of a tradeoff between DUs and
CUs can lead to an interesting optimization problem that has
not been addressed in the literature yet.

Contrary to [2]–[9], [15], [16], we investigate in this
paper the performance tradeoff between DUs and CUs in
OFDMA D2D networks underlaying CUs, by optimizing
the EE and throughput using a MOOP. This performance
tradeoff can enhance the load balancing between DUs and
CUs. For balancing the load between different DUs and CUs,
a service provider utilizes adjustable weighting parameters
in executing the resource allocation policy to guarantee a
better degree of freedom while providing a fairness among
the DUs and CUs. To this end, we formulate in this paper
a MOOP framework that jointly maximizes the uplink sum
rates of CUs and DUs and minimizes the total transmit power
at DUs and CUs. To the best of our knowledge, this has not
been investigated in literature before. The contributions of
this paper are summarized as follows:

• We formulate a MOOP to simultaneously maximize
the sum data-rate and minimize the transmit power for
both CUs and DUs while constraining on the minimum
data-rate requirement and feasibility of the transmitted
powers.

• To do so, we first apply the weighted sum method,
which transforms the problem into a SOOP. Then, we
propose an optimal approach that assigns subchannels
to both CUs and DUs, and also allocates power to
them. Besides, a sub-optimal solution based on succes-
sive convex approximation (SCA) is proposed to strike
a balance between complexity and performance gain
which demonstratesmuch lower compared tomonotonic
approach. Based on the weights given to the CUs and
DUs, we can determine the priority being assigned to
DUs and CUs, respectively.

• In the numerical results, we show the superiority of the
MOOP formulation compared with SOOP in a special
region, where the data-rate of only DUs is maximized,
i.e., no tradeoff exists between DUs and CUs. Using this
tradeoff, we are able to exploit the whole capability of
network resources while considering the feasibility of
the transmit power for both DUs and CUs together with
the minimum required data-rate of both DUs and CUs.

The remainder of the paper is organized as follows.
Section II introduces the system model and Section III for-
mulates and analyzes the MOOP. An optimal and suboptimal
solution are discussed in Section IV.The complexity analysis
of the solutions are covered in Section V. Numerical results
are given in Section VI. Finally, we conclude the paper in
Section VII.

II. SYSTEM MODEL
We consider an uplink (UL) single macro cell OFDMA-based
cellular network as shown in Fig. 1. This cell has one base
station to serveM CUs, where K D2D links (DUs), i.e., pairs
of D2D users, exist in this cell. The set of CUs and DUs are
denoted as M = {1, 2, , . . . ,M} and K = {1, 2, , . . . ,K },
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FIGURE 1. The system model of an uplink single macro cell OFDMA-based
cellular network with one base station to serve M CUs and K DUs. In this
figure, the green arrow shows the cellular transmission link between the
base station and the CUs, while the dotted line indicates the D2D links.

respectively. The bandwidth of BHz is divided intoN orthog-
onal subchannels so that each subchannel has a bandwidth
of Bc = B/N Hz, where the subchannel set is denoted
as N = {1, 2, , . . . ,N }. The subchannels are modeled as
block flat-fading channels, hence they remain constant dur-
ing each time slot, but may vary independently from one
time slot to another. Nevertheless, all the subcarriers are
considered to be entirely orthogonal to one another, and no
inter-subcarrier interference exists. Furthermore, we assume
that perfect channel state information (CSI) is available at the
resource allocator for both CUs andDU to devise the resource
allocation policy so as to unveil the performance analysis of
the considered network.1 Hence, the obtained rates using our
proposed algorithms can be considered as upper bounds on
the achievable rates for the case where the channel needs to
be estimated. For ease of readability, we first present some
of the essential parameters that are used to define the system
model:

• hnk,BS(t): The instantaneous channel power gain between
the k-th DU and the base station in subchannel n and
time slot t .

• ĥ
′n
k ′,k (t): The instantaneous channel power gain from the
k ′-th DU transmitter to the k-th DU receiver on subchan-
nel n and time slot t .

• gnm,BS(t): The instantaneous channel power gain between
the m-th CU and the base station in subchannel n and
time slot t .

• g
′n
m,k (t): The instantaneous channel power gain between
the m-th CU and the k-th DU receiver on subchannel n
and time slot t .2

1It is assumed the base station transmits orthogonal preambles, pilot
signals, to the users in the DL direction. Each user then estimates the CSI
and transfers this information back to the base station through a feedback
channel. Subsequently, the corresponding base station monitors the sounding
reference signals communicated by users and grants the CSI to the central-
ized controller for the resource allocation design.

2Hereafter, the time index t is removed to simplify the notations.

• pnk : The transmitted power from the k-th DU in the
subchannel n.

• p̂nm: The corresponding transmitted power for the m-th
CU in the subchannel n.

• ψn
m: The binary variable indicator for subchannel alloca-

tion in the cellular network with ψn
m = 1 if subchannel

n is allocated to CU m and ψn
m = 0, otherwise. That is,

ψn
m =

{
1, if subchannel n is allocated to CU m,
0, otherwise.

• ϕnk : The binary variable for subchannel allocation in the
D2D network with ϕnk = 1 if subchannel n is allocated
to DU k and ϕnk = 0, otherwise. That is,

ϕnk =

{
1, if subchannel n is allocated to DU k,
0, otherwise.

Then, the instantaneous received signal-to-interference-
plus-noise ratio (SINR) at the k-th DU receiver on subchannel
n can be written as:

SINRnk,DU =
ϕnkp

n
kh

n
k

N0Bc +
M∑
m=1

ψn
mp̂nmg

′n
m +

K∑
k ′=1,
k ′ 6=k

ϕnk ′p
n
k ′ ĥ
′n
k ′,k

, (1)

where g
′n
m is the instantaneous channel power gain between

the m-th CU and the k-th DU receiver on subchannel n and
M∑
m=1

ψn
mp̂

n
mg
′n
m is the interference term arising from cellular

links. Furthermore,
K∑

k ′=1,k ′ 6=k
ϕnk ′p

n
k ′ ĥ
′n
k ′,k denotes the interfer-

ence from other D2D pairs, in which ĥ
′n
k ′,k is the instantaneous

channel power gain from the k ′-th DU transmitter to the k-
th DU receiver on subchannel n. It should be noted that in
formula (1), N0 is the flat noise power spectral density (of an
additive white Gaussian noise (AWGN) random process with
zero mean and variance σ 2) in all frequencies.
In addition, the instantaneous received SINR at the m-th CU
in subchannel n is given by:

SINRnm,CU =
ψn
mp̂

n
mg

n
m

N0Bc +
K∑
k=1
ϕnkp

n
k ĥ
′n
k

, (2)

where ĥ
′n
k is the instantaneous power gain of the channel

between the k-th DU transmitter and the CUm on subchannel

n. In (2), the term
K∑
k=1
ϕnkp

n
k ĥ
′n
k corresponds to the interference

term from D2D links.
Let us now define ϕ ∈ ZKN×1 and ψ ∈ ZMN×1 as

the vectors of subchannel assignment variables in D2D and
cellular networks, respectively. Further, the vectors contain-
ing total transmit power in D2D and cellular networks are
p ∈ RKN×1 and p̂ ∈ RMN×1, which show the collections of
power allocation variables in these networks. According to
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the famous Shannon capacity formula, the data-rate of the
k-th DU over the subcarrier n can be written as:

RDU,k (ϕ,p) =
N∑
n=1

log2(1+ SINRnk,DU). (3)

Similarly, we can define the data-rate of the m-th CU over
the subcarrier n as:

RCU,m(ψ, p̂) =
N∑
n=1

log2(1+ SINRnm,CU). (4)

III. MOOP FORMULATION
In this section, to find a tradeoff between DUs and CUs on
the system performance, we formulate a MOOP in which
jointly the sum rate of the DUs, RDU, and that of the CUs,
RCU, are maximized and the total transmit powers of DUs
and CUs, PDU respectively PCU, are minimized. The aim
of the proposed MOOP framework is to obtain an efficient
power allocation as well as subchannel assignment strategy
to balance between an as large as possible data-rate and an as
small as possible transmit power of DUs and CUs in a fad-
ing environment. This joint optimization can be formulated
through the following MOOP:

max
{p,p̂,ϕ,ψ}

RDU =

K∑
k=1

RDU,k (ϕ,p) (5a)

max
{p,p̂,ϕ,ψ}

RCU =

M∑
m=1

RCU,m(ψ, p̂) (5b)

min
{p,p̂,ϕ,ψ}

PDU =
K∑
k=1

N∑
n=1

ϕnkp
n
k (5c)

min
{p,p̂,ϕ,ψ}

PCU =
M∑
m=1

N∑
n=1

ψn
mp̂

n
m (5d)

s.t. C1 :

N∑
n=1

ϕnkp
n
k ≤ Pmax,DU, (5e)

C2 :

N∑
n=1

ψn
mp̂

n
m ≤ Pmax,CU, (5f)

C3 : RDU,k ≥ Rmin,k,DU, ∀k ∈ K, (5g)

C4 : RCU,m ≥ Rmin,m,CU, ∀m ∈M, (5h)

C5 :

M∑
m=1

ψn
m ≤ 1, ∀n ∈ N , (5i)

C6 : ϕ
n
k ∈ {0, 1}, ∀k ∈ K, n ∈ N , (5j)

C7 : ψ
n
m ∈ {0, 1}, ∀m ∈M, n ∈ N . (5k)

In the optimization problem (5), C1 (5e) and C2 (5f) show
that the total transmit power of should not exceed their maxi-
mum threshold, which are denoted by Pmax,DU and Pmax,CU.
The minimum data-rate requirement for each DU and CU,
Rmin,DU and Rmin,CU, are assured in constraints C3 (5g) and
C4 (5h), respectively. Constraint C5 (5i) sanctions each sub-
carrier to be allocated to at most one CU. Finally, C6 (5j)

and C7 (5k) constraints affirm that the subcarrier indicator
variable necessitates only binary values.

Note that optimization problem (5) is a mixed-integer non-
linear programming (MINLP) because of the presence of the
binary constraints, multiplication of two variables, and the
inter-cell interference present in the data-rate functions in
both CUs and DUs [21]–[24].

In the following section, we first restate the problem (5)
as a mathematically tractable form to optimize the chal-
lenging objective functions. We also guarantee a minimum
data-rate for both CUs and DUs, and ensure a maximum
power budget for all users is fulfilled. We propose optimal
and suboptimal resource allocation algorithms, which have
a polynomial-time computational complexity to compromise
between complexity and system performance.

IV. PROPOSED SOLUTION
A technique to solve a MOOP is the weighted sum
method [20] that linearly combines the competing objective
functions into a single objective function. This can formally
be stated as follows:

max
{p,p̂,ϕ,ψ}

α

ωα
RCU+

β

ωβ
RDU−

γ

ωγ
PDU−

δ

ωδ
PCU (6a)

s.t. C1(5e)− C8(5k), (6b)

where α, β, γ , and δ denote the weighting coefficients indi-
cating the importance of the different objectives.3 In the
following, to solve the highly nonconvex optimization prob-
lem (6) globally, we apply an approach which deals with
subchannel assignment and power allocation as follows.

A. OPTIMAL SOLUTION
To obtain the global optimal solution of (6), we use a global
optimization approach known as the monotonic optimization
method. By using monotonicity or hidden monotonicity in
the objective function as well as constraints, this method
guarantees the convergence. Some necessary definitions and
results related to monotonic are given as [27]–[32]:
Definition 1 (Box): A box with vertex z is defined as the

hyper rectangle [0, z] = {x | 0 ≤ x ≤ z} for given any vector
z.
Definition 2 (Normal Set): An infinite set Z ⊂ RN+1

+ in a
normal set when for any given element z ∈Z , the box [0, z] ⊂
Z .
Definition 3 (Monotonic Optimization): Apolyblockwith

vertex set υ is defined as the union of all boxes [0, z] , z ∈υ
for given any finite set υ ⊂ RN+1

+ .

Definition 4 (Monotonicity in RN ): For y1 � y2,
if f (y1) � f (y2), then, any function f : RN

→ R is
monotonically increasing (� is component-wise ordering).
Definition 5 (Projection): The projection of z onto

the boundary of Z , i.e., 8(z) = αz in which

3Note that ωα, ωβ , ωγ , and ωδ are the normalization factors to make the
four terms in the expression dimensionless, where the addition of the rate
and the power becomes meaningful. It should be noted that for the weighting
coefficients we have α

ωα
+

β
ωβ
+

γ
ωγ
+

δ
ωδ
= 1.
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FIGURE 2. Visualization of the outer Polyblock approximation algorithm. As seen, the outer Polyblock approximation algorithm constructs a nested
sequence of polyblocks which approximates X from above. The objective function is maximized by approximating the performance region X
(around the optimal point) from above employing a polyblock. The approximation is enhanced iteratively, and parts that cannot restrain the optimal
point are not used.

α = max {β | βz ∈Z } and β ∈ R+ for given any non-empty
normal set Z ⊂ RN+1

+ and any vector z ∈ RN+1
+ .

To facilitate the presentation, we define the following
relations:

0 ≤ unm,k ≤ 1+
p̃nmg

n
m

N0Bc +
∑k

k=1 q̄
n
k ĥ
′n
k

, (7)

0 ≤ vnk,m ≤ 1+
q̄nkh

n
k

N0Bc +
∑M

m=1 p̃
n
mg
′n
m +

∑
k ′ 6=k q̄

n
k ′ ĥ
′n
k ′,k

,(8)

where p̃nm = ψn
mp̂

n
m and q̄nk = ϕnkp

n
k . The right-hand side of

both relations (7) and (8) are the terms inside the logarith-
mic functions in (1) and (2), respectively. Now, we redefine
the objective function of the optimization problem in (6) as
follows:

W(p, p̂,ϕ,ψ) =
N∑
n=1

M∑
m=1

K∑
k=1

(
log2(u

n
m,k )

α
ωα + log2(v

n
m,k )

β
ωβ

−
γ

ωγ

p̃nm
M
−

δ

ωδ

q̄nk
K

)
, (9)

then, the optimization problem (6) can be restated as:

max
{p,p̂,ϕ,ψ}

W(p, p̂,ϕ,ψ) (10a)

s.t. Ċ1 :

N∑
n=1

q̄nk ≤ Pmax,DU, (10b)

Ċ2 :

N∑
n=1

p̃nm ≤ Pmax,CU, (10c)

Ċ3 : p̃nm ≥ 0, ∀m ∈M, n ∈ N , (10d)

Ċ4 : q̄nk ≥ 0, ∀k ∈ K,∈ N , (10e)

Ċ5 :

N∑
n=1

log2(u
n
m,k ) ≥ Rmin,m,CU, ∀m ∈M, (10f)

Ċ6 :

N∑
n=1

log2(v
n
m,k ) ≥ Rmin,k,DU, ∀k ∈ K, (10g)

C5(5i)− C7(5k), (10h)

where p̃ ∈ R2MN×1 and q̄ ∈ R2KN×1 are the collection of all
p̃nm and q̄nk . Subsequently, we define:

fe(p̃, q̄) =



N0Bc +
K∑
k=1

q̄nk ĥ
′n
k + p̃

n
mg

n
m, e = 1,

N0Bc +
M∑
m=1

p̃nmg
′n
m +

K∑
k ′=1,
k ′ 6=k

q̄nk ′ ĥ
′n
k ′,k

+ q̄nkh
n
k , e = E

4 +1,

exp (
p̃nk
M ), e = E

2 +1,

exp ( q̄
n
m
K ), e = 3E

4 +1,

(11)

ge(p̃, q̄) =



N0Bc +
K∑
k=1

q̄nk ĥ
′n
k , e = 1,

N0Bc +
M∑
m=1

p̃nmg
′n
m +

K∑
k ′=1,
k ′ 6=k

q̄nk ′ ĥ
′n
k ′,k ,

e = E
4 +1,

1, e = E
2 +1,

1, e = 3E
4 +1,

(12)

where1 = (n−1)MK+(m−1)K+k and E = 4KMN . Let us
define x = [x1, . . . , xE ]T = [u11,1, . . . , u

N
M ,K , v

1
1,1, . . . , v

N
M ,K ,

exp (
p̃11
M ), . . . , exp ( p̃

N
K
M ), exp (

q̄11
K ), . . . , exp ( q̄

N
M
K )]T . Then, the

original monotonic form of the primary optimization prob-
lem (10a) can be written as:

max
x∈Z

E∑
j=1

log2(xj)
µj , (13)

where the µj’s are the corresponding weights for each sum
rate and total transmit powers, i.e, µj = α

ωα
, ∀j ∈ {1, . . . , E4 },

µj =
β
ωβ

, ∀j ∈ {E4 + 1, . . . , E2 }, µj = −
γ
ωγ

, ∀j ∈ {E2 +

1, . . . , 3E4 }, µj = −
δ
ωδ
, and ∀j ∈ { 3E4 + 1, . . . , E}. Moreover,

the feasible set X in (13) can be expressed as:

X = {x | 1 ≤ xj ≤
fj(p̃, q̄)
gj(p̃, q̄)

, (p̃, q̄) ∈ P, (ϕ,ψ) ∈ S}, (14)
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where the feasible sets P and S are spanned by all the
constraints of Ċ1(10b)-Ċ4(10e), C5 − C8(10h). Moreover, G
is the feasible set which is spanned by constraints Ċ5(10f) and
Ċ6(10g). Since the objective function and all constraints in the
problem (10) are monotonic increasing functions, the outer
polyblock approximation method can be applied to obtain a
globally optimal solution that would be at the boundary of
Z = X ∩ G [31]. Hence, we make a sequence of polyblocks
to reach the boundary of the feasible set. To do this, first a
polyblock B(1) with a vertex set H(1) is built that includes
just one vertex x(1) and the feasible set Z = X ∩ G. Based
on B(1), a new smaller polyblock B(2) is built by substi-
tuting x(1) with new vertices H̃(1)

= {x̃(1)1 , x̃
(1)
2 , . . . , x̃

(1)
E }

where x̃(1)j can be obtained by the following relation x̃(1)j =

x(1) −
(
x(1)j − φj(x(1))

)
νj. Specifically, νj is a unit vector

that has a nonzero value at j-th index, 8(x(1)) ∈ CE×1 is
the projection of vertex x(1) at the boundary of feasible set
X whose j-th element is φ(x(1)). Therefore, the new vertex
set H(2) related to the polyblock B(2) can be obtained by
H(2)

= (H(1)
− x(1)) ∪ H̃(1). Moreover, the corresponding

vertex can be found by the following maximization problem
x(2) = argmax

x∈H(2)∩G

{∑E
j=1 log2(φj(x))

µj
}
. In a similar manner,

new smaller polyblocks can be built one after another to
approach the feasible set, i.e., Z ⊂ . . . ⊂ B(2)

⊂ B(1).
As the system utility function is increasing in this opti-
mization problem, the optimum of the objective function
is achieved using a proper vertex. This is the fundamental
concept behind the outer Polyblock approximation algorithm;
if a polyblock approximates X , then proper vertices of this
polyblock approximate the strong Pareto boundary. The outer
Polyblock approximation algorithm does this via construct-
ing a nested sequence of polyblocks, which approximates
X from above. This approximation procedure is visualized
in Fig. 2. The outer Polyblock approximation method is
presented in Algorithm 1. Furthermore, 8(x(k)) = γ x(k) is
the projection on the boundary of feasible set which can be
attained as follows:

γ = max{α | αx ∈ X }

= max{α | α ≤ min
1≤e≤E

fe(p̃, q̄)

x(k)e ge(p̃, q̄)
, (p̃, q̄) ∈ P}

= max
(p̃,q̄)∈P

min
1≤e≤E

fe(p̃, q̄)

x(k)e ge(p̃, q̄)
. (15)

Note that the problem (15) is a fractional programming
that can be solved efficiently by employing Dinkelbach’s
method [36] given in Algorithm 2, as follows:

(p̃∗i , q̄
∗
i ) = argmax

p̃,q̄∈P
χ (16a)

s.t. fe(p̃, q̄)− γix
(k)
e ge(p̃, q̄) ≥ χ, ∀e, (16b)

where χ is an auxiliary variable and γi is the Dinkelbach
parameter. The problem (16) can be solved efficiently by
applying convex optimization solvers such as CVX [38]. The
flowchart of for this optimal solution is shown in Fig. 3.

Algorithm 1 Outer Polyblock Approximation Algorithm
1: Initialize

Set the iterations index i = 1 and the maximum
tolerance ε � 1. Set unm,k = 1+ gnmPmax,CU and
vnk,m = 1+ hnkPmax,DU to build the polyblock B(1) with
vertex setH(1)

= {x(1)}.
2: repeat {Main Loop}
3: Build a smaller polyblock B(i+1) with vertex set H(i+1)

by substituting x(i) with new vertices {x̃(i)1 , x̃
(i)
2 , . . . , x̃

(i)
E }

where x̃(i)e can be obtained by x̃(1)e = x(1) −
(
x(1)e −

φ(x(1))
)
νe. In particular, the e-th element of 8(x(i)) is

φ(x(i)) which can be obtained by Algorithm 2.
4: Find the new vertex x(i+1) by solving the following max-

imization problem
x(i+1) = arg max

x∈H(i+1)∩G

{∑E
j=1 log2(φj(x))

µj )
}
.

5: Set i = i+ 1.
6: until ‖x

(i)
−φ(x(i))‖
‖x(i)‖ ≤ ε

7: Return x∗ = 8(x(i)), p̃∗i , and q̄
∗
i

Algorithm 2 Projection Algorithm
1: Initialize

Set the iteration index d = 1 and the maximum tolerance
δ � 1, and initialize γj = 0.

2: repeat {Main Loop}
3: (p̃∗d , q̄

∗
d ) = argmax

p̃,q̄∈P
min

1≤e≤E

{
fe(p̃, q̄)− γjx

(k)
e ge(p̃, q̄)

}
.

4: γd+1 = min
1≤e≤E

fe(p̃,q̄)
x(k)e ge(p̃,q̄)

.

5: Set d = d + 1
6: until min

1≤e≤E

{
fe(p̃∗d−1, q̄

∗

d−1)−γjx
(k)
e ge(p̃∗d−1, q̄

∗

d−1)
}
≤δ

7: Return 8(x(k)) = γjx(k), p̃∗d−1, and q̄
∗

d−1

Additionally, the optimal subchannel allocation policies ϕnk
and ψn

m can be obtained as:

ϕ∗nk , ψ
∗n
m =

{
1 unm,k > 1, vnk,m > 1,
0 otherwise.

(17)

As a result, the proposed monotonic method to solve the
problem (10a) can obtain the globally optimal solution [32].
However, it can be perceived that the computational complex-
ity of monotonic approach is too high and grows exponen-
tially with the number of vertices, applied in each iteration.

In what follows, we provide a suboptimal resource allo-
cation algorithm with much lower complexity than that of
monotonic approach to make a tradeoff between complexity
and performance gain.

B. SUBOPTIMAL SOLUTION
In this subsection, we propose a low-complexity suboptimal
algorithm based on SCA that provides a locally optimal solu-
tion for the optimization problem in (7). To solve the highly
non-convex optimization problem (10), we apply an approach
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FIGURE 3. Flowchart of the optimal solution.

that deals with subchannel assignment and power allocation
as follows.

The product terms ϕnkp
n
k and ψ

n
mp̂

n
m are the main obstacles

for the design of an efficient resource allocation algorithm
due to the binary nature of ϕnk and ψn

m. To tackle this issue,
we impose two additional constraints to convert optimization

variables ϕnk and ψ
n
m into continuous variables as:

C̈1 : 0 ≤ pnk ≤ ϕ
n
kPmax,DU, ∀n, k, (18)

C̈2 : 0 ≤ p̂nm ≤ ψ
n
mPmax,CU, ∀n ∈ N ,m ∈M. (19)

We remove ϕnk and ψn
m from (10) while adding (18)

and (19) in (10). Following [23], we relax the binary variable
ϕnk in C6(5j) as:

C̈3 :

K∑
k=1

N∑
n=1

ϕnk −

K∑
k=1

N∑
n=1

(
ϕnk
)2
≤ 0, (20)

C̈4 : 0 ≤ ϕnk ≤ 1, ∀n ∈ N , k ∈ K, (21)

and similarly constraining on the binary variable ψn
m in

C7(5k) can be stated as:

C̈5 :

M∑
m=1

N∑
n=1

ψn
m −

M∑
m=1

N∑
n=1

(
ψn
m
)2
≤ 0, (22)

C̈6 : 0 ≤ ψn
m ≤ 1, ∀n ∈ N ,m ∈M. (23)

Now, the optimization variables ϕnk and ψ
n
m are continuous

values between 0 and 1. In order to handle constraints C̈3(20)
and C̈4(22), we reformulate the problem in (10) as:

max
{p,p̂,ϕ,ψ}

W(p, p̂,ϕ,ψ)

− λϕ

(
K∑
k=1

N∑
n=1

ϕnk −

K∑
k=1

N∑
n=1

(
ϕnk
)2)

− λψ

(
M∑
m=1

N∑
n=1

ψn
m −

M∑
m=1

N∑
n=1

(
ψn
m
)2)

s.t. C1(5e)− C4(5h), C̈1(18)− C̈2(19), C̈4(21),

and C̈6(23), (24)

where λϕ and λψ are large penalty factors to penalize the
objective function for any ϕnk and ψn

m, respectively, that are
not equal to 0 or 1, i.e., large penalty terms in the objective
function (24) enforce ϕnk and ψn

m to be 0 or 1. It can be
shown that with an appropriate choice of λϕ and λψ , prob-
lems (5) and (24) are equivalent in the sense that they result
into the same optimal solution [17], [23], [24], [33]. Now,
we change (24) as:

max
{p,p̂,ϕ,ψ}

A
(
p, p̂,ϕ,ψ

)
− B

(
p, p̂,ϕ,ψ

)
s.t. C1(5e)− C4(5h), C̈1(18)− C̈2(19),

C̈4(21), and C̈6(23),

a(p, p̂)− b(p, p̂) ≥ Rmin,m,CU,

c(p, p̂)− d(p, p̂) ≥ Rmin,k,DU, (25)

where A(p, p̂,ϕ,ψ), B(p, p̂,ϕ,ψ), a(p,p̂), b(p, p̂), c(p, p̂),
and d(p, p̂) are defined at the top of the next pages respec-
tively in formulas (26)-(31). It can be see that A

(
p, p̂,ϕ,ψ

)
and B

(
p, p̂,ϕ,ψ

)
are two concave functions.

So, the optimization problem now belongs to the class of
difference of convex (D.C.) function programming, where
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successive convex approximation can be applied to obtain
a locally optimal solution [17], [24]–[26], [34]. Since
B
(
p, p̂,ϕ,ψ

)
, b(p, p̂), and d(p, p̂) are differentiable convex

functions, we employ the first-order Taylor approximation
for B

(
p, p̂,ϕ,ψ

)
, b(p, p̂), and d(p, p̂) at the t-th iteration to

make a convex optimization as:

B̃
(
p, p̂,ϕ,ψ

)
' B

(
pt−1, p̂t−1,ϕt−1,ψ t−1)
+∇pB

(
pt−1, p̂t−1,ϕt−1,ψ t−1).(p− pt−1

)
+∇p̂B

(
pt−1, p̂t−1,ϕt−1,ψ t−1).(p̂− p̂t−1

)
+∇ϕB

(
pt−1, p̂t−1,ϕt−1,ψ t−1).(ϕ − ϕt−1)

+∇ψB
(
pt−1, p̂t−1,ϕt−1,ψ t−1).(ψ − ψ t−1),

(32)

b̃
(
p, p̂

)
' b

(
pt−1, p̂t−1

)
+∇pb

(
pt−1, p̂t−1

)
.
(
p− pt−1

)
+∇p̂b

(
pt−1, p̂t−1

)
.
(
p̂− p̂t−1

)
, (33)

d̃
(
p, p̂

)
' d

(
pt−1, p̂t−1

)
+∇pd

(
pt−1, p̂t−1

)
.
(
p− pt−1

)

+∇p̂d
(
pt−1, p̂t−1

)
.
(
p̂− p̂t−1

)
. (34)

Since B
(
p, p̂,ϕ,ψ

)
b
(
pt−1, p̂t−1

)
, and d

(
pt−1, p̂t−1

)
are concave functions, the gradient are also super-
gradient. Therefore, we have the following inequality:

B
(
p, p̂,ϕ,ψ

)
≤ B̃

(
p, p̂,ϕ,ψ

)
, (35)

b
(
pt−1, p̂t−1

)
≤ b̃

(
pt−1, p̂t−1

)
, (36)

d
(
pt−1, p̂t−1

)
≤ d̃

(
pt−1, p̂t−1

)
. (37)

In a similar manner, we can handle the minimum data-rate
requirement to make a convex constraint. In fact, we adopt
the first-order Taylor approximation for b(p, p̂) and d(p, p̂)
respectively to obtain a convex constraint. Therefore, a lower
bound for any given pt−1, p̂t−1,ϕt−1 and ψ t−1 can be found
by solving the following convex optimization problem:

max
{p,p̂,ϕ,ψ}

A
(
p, p̂,ϕ,ψ

)
− B̃

(
p, p̂,ϕ,ψ

)
s.t. C1(5e)− C4(5h), C̈1(18)− C̈2(19),

C̈4(21), and C̈6(23),

a(p, p̂)− b̃(p, p̂) ≥ Rmin,m,CU,

c(p, p̂)− d̃(p, p̂) ≥ Rmin,k,DU. (38)

A(p, p̂,ϕ,ψ) =
β

ωβ

(
M∑
m=1

N∑
n=1

log2

(
p̂nmg

n
m + N0Bc +

K∑
k=1

pnk ĥ
′n
k

))
+
α

ωα

(
K∑
k=1

N∑
n=1

log2

(
pnkh

n
k + N0Bc +

M∑
m=1

p̂nmg
′n
m +

K∑
k ′=1,
k ′ 6=k

pnk ′ ĥ
′n
k ′,k

))

−
γ

ωγ

(
K∑
k=1

N∑
n=1

pnk

)
−

δ

ωδ

(
M∑
m=1

N∑
n=1

p̂nm

)
− λϕ

(
K∑
k=1

N∑
n=1
ϕnk

)
− λψ

(
M∑
m=1

N∑
n=1
ψn
m

)
,

(26)

B(p, p̂,ϕ,ψ) =
β

ωβ

(
M∑
m=1

N∑
n=1

log2

(
N0Bc +

K∑
k=1

pnk ĥ
′n
k

))
+
α

ωα

(
K∑
k=1

N∑
n=1

log2

(
N0Bc +

M∑
m=1

p̂nmg
′n
m +

K∑
k ′=1,
k ′ 6=k

pnk ′ ĥ
′n
k ′,k

))

−λϕ

(
K∑
k=1

N∑
n=1

(ϕnk )
2
)
− λψ

(
M∑
m=1

N∑
n=1

(ψn
m)

2
)
.

(27)

a(p, p̂) =
N∑
n=1

log2

(
p̂nmg

n
m + N0Bc +

K∑
k=1

pnk ĥ
′n
k

)
(28)

b(p, p̂) =
N∑
n=1

log2

(
N0Bc +

K∑
k=1

pnk ĥ
′n
k

)
(29)

c(p, p̂) =
N∑
n=1

log2

(
pnkh

n
k + N0Bc +

M∑
m=1

p̂nmg
′n
m +

K∑
k ′ 6=k

ϕnk ′p
n
k ′ ĥ
′n
k ′,k

)
(30)

d(p, p̂) =
N∑
n=1

log2

(
N0Bc +

M∑
m=1

p̂nmg
′n
m +

K∑
k ′ 6=k

ϕnk ′p
n
k ′ ĥ
′n
k ′,k

)
(31)
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Algorithm 3 Proposed Method Based on D.C. Programming
1: Initialize

Set t = 0, maximum number of iterations Tmax, penalty
factors λϕ ,λψ � 1, set appropriate weighting coeffi-
cients factors and set feasible vectors p0,p̂0, ϕ0, and ψ0.

2: repeat {Main Loop}
3: Update B̃(p, p̂,ϕ,ψ) as presented in (32).
4: Solve optimization problem of (38) and store the inter-

mediate resource allocation policy p, p̂, ϕ, and ψ
5: Set t = t + 1.
6: Set pt = p, p̂t = p̂, ϕt = ϕ, and ψ t

= ψ .
7: until convergence or t = Tmax
8: Return p∗, p̂∗, ϕ∗, ψ∗

The iterative algorithm shown inAlgorithm 3 is employed
to achieve a lower bound. In fact, this iterative algorithm
can be adopted to tighten the obtained lower bound where
the solution of (38) in iteration (t) is exploited as an initial
point for the next iteration (t + 1). It should be noted that
the sub-optimal iterative algorithm reaches a locally optimal
solution of the original problem (5) with a polynomial time
complexity [17], [24]–[26], [33]–[35]. The flowchart of this
suboptimal solution is depicted in Fig. 4.

V. COMPUTATIONAL COMPLEXITY
In this section, the computational complexity of the pro-
posed algorithm is provided, which mainly is influenced
by the configuration of the objective function and the con-
straints that create the normal set. Notably, the polyblock
algorithm comprises the subsequent stages. In the first stage,
the most suitable vertex by its projection on the normal set
is determined. Subsequently, the projection of the picked
vertex is obtained. Eventually, we obtained the new vertex
set by eliminating the inappropriate vertices. In particular,
the dimension of problem, the number of iterations required
for convergence, and the number of iterations expected for
the projection of each vertex are assumed to be L1, L2 and L3,
respectively. In summary, the complexity order of monotonic
approach can be stated as O(L2(L2 × L1 + L3)) [26], [31].
For the sub-optimal solution the optimization problem (38)
includes (2NK + 2NM ) decision variables while consists of
K +M +M + K + N + N + NK + NM convex and linear
constraints. Hence, its computational complexity is the order
ofO(2NK + 2NM )3(2M + 2K + 2N +KN +NM ). It can be
concluded that the computational complexity asymptotically
is in the order ofO(NK+NM )4, which shows the polynomial
time complexity.

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
resource allocation algorithms for D2D underlaying cellular
networks in uplink OFDMA communications via extensive
simulations. There is a single macro cell in which the diame-
ter is set to 250 meters. In this cell, there are two CUs and two

FIGURE 4. Flowchart of the suboptimal solution.

DUs, i.e., M = K = 2. We also study a frequency-selective
fading channel and further assume the central carrier fre-
quency of 3 GHz. The number of subcarriers is N = 8,
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where each subcarrier’s bandwidth is equal to 180 kHz. The
power of the background noise is N0 = -120 dBm in all
simulations. We assume that each subchannel experiences
Rayleigh flat fading, which includes the path-loss model for
CUs as 128.1 + 37.6 log(d), and 148.1 + 40 log(d) DUs,
where d is the distance (in km). Moreover, considering a
line-of-sight (LoS) signal in the received signal, the small-
scale fading channel is modeled as Rician fading with Rician
factor ρ = 3 dB. These parameters for propagation modeling
and simulations obey the recommendations in 3GPP evalu-
ation methodology [40]. For the power consumption model,
a constant consumed circuit power, Pcm , equall to 23 dBm is
considered for CUs. Besides, a constant power consumption
of 20 dBm is assumed for each DU, i.e., Pck = 20 dBm. The
maximum power budgets of both DUs and CUs are assumed
to be equal, i.e., Pmax,CU = Pmax,DU = 25 dBm. The
target transmission data-rates for both CUs and DUs are set to
Rmin,k,CU = Rmin,m,DU = 1 bits/sec/Hz (bps/Hz). Note that
all figures shown in this section are obtained by calculating
the average over different realizations of path loss as well as
multi-path fading. These simulation parameters are enlisted
in Table 1 unless otherwise is specified.

TABLE 1. Simulation parameters.

A. AVERAGE SUM RATE VS. WEIGHT
Fig. 5 shows the sum rates of cellular and D2D networks
for different (fixed) values for γ and δ with γ + δ = 0.2
when α is changing from 0 to 0.8 (equivalently β is varied
from 0.8 − α to 0). From this figure, we observe that as α
increases, the sum rate of D2D links increases while the sum
rate of the cellular links starts to decline. This is becausewhen
α increases, the importance of the maximization of the D2D
rate increases, which results in an increase of the sum rate of
the DUs. Moreover, this figure illustrates the maximum sum
rate for different values of γ and δ. It is observed that when
the weight γ for power minimization of the DUs increases,
the sum rate of the DUs tends to increase. However, the value
of α for which the maximum sum rate is obtained, varies
from one case to another. Furthermore, Fig. 5 shows that the

proposed suboptimal scheme closely approaches the optimal
solution.

Fig. 6 compares the total rate of both DUs and CUs versus
α for the MOOP in (10a), when α changes from 0 to 1
(equivalently β varies from 1 − α to 0) with fixed values of
γ = δ = 0, and the rate for the algorithm proposed in [2],
when α = 1 with fixed values of β = γ = δ = 0. From
Fig. 6, it can be concluded that the total rate of both DUs
and CUs obtained with the MOOP (10a) is higher than the
total rate of both DUs and CUs in [2] for 0 < α < 0.9,
which shows the efficacy of the proposed formulation. This
is because the algorithm from [2], which only maximizes
the total rate of the DUs, does not use the capability of the
whole network. Another important observation in Fig. 6 is the
superiority of the proposed algorithm for certain values of α,
in our setting 0.4 ≤ α ≤ 0.7, compared to the SOOP with the
objective function RDU+RCU. Note that as α gets closer to its
optimal value (in peaks), the total system throughput achieved
using MOOP becomes higher than SOOP. This is due to the
fact that via the MOOP approach, more degrees of freedom
can be exploited to enhance the data-rate of the network.
Outside the interval 0.4 < α < 0.7, the weighting factor
makes either RDU or RCU dominant in the expression (13),
making the other rate subordinated to the other, implying
the dominated rate will be negligibly small, while the other
rate only slightly increases. On the contrary, in the SOOP
formulation, the weights for RDU and RCU are equal, leading
to an identical resource allocation policy for both DUs and
CUs. Finally, Fig. 6 also proves that the proposed suboptimal
scheme closely follows the optimal solution.

FIGURE 5. Maximum sum rate of D2D and cellular networks vs. α.

B. RATE-POWER REGION
Fig. 7 and Fig. 8 investigate the total power consumption ver-
sus the minimum data rate requirement and total data-rate of
the system, respectively, for both the optimal and suboptimal
algorithms. In order to plot these rate-power region figures,
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FIGURE 6. Comparing MOOP with SOOP.

FIGURE 7. Minimum total power vs minimum data-rate of both CUs and
DUs.

we define the following optimization problem:

max
{p,p̂,ϕ,ψ}

Rtot = RDU + RCU, (39a)

min
{p,p̂,ϕ,ψ}

Ptot = PDU + PCU, (39b)

s.t. C1(5e)− C7(5k). (39c)

Using a similar method as in (6), (39) can be stated as:

max
{p,p̂,ϕ,ψ}

α̂

ωα̂
Rtot −

β̂

ω
β̂

Ptot (40a)

s.t. C1(5e)− C7(5k), (40b)

where, α̂ + β̂ = 1. In particular, we set α + β = α̂ and
δ + γ = β̂ in (6).
For plotting Fig. 7, we set the value of α̂ equal to zero, and

view the power consumption versus the minimum data rate of
users. The tradeoff between the total minimum power and the
maximum data rate is shown in Fig. 7 for a different number
of CUs and DUs. We can also observe that by increasing the
number of users in the network, the total minimum power

FIGURE 8. Rate-power region.

FIGURE 9. Maximum sum data-rate vs. EE.

increases for a given minimum user data-rate. Moreover,
when the value of the minimum data rate increases, a min-
imum power value increases as well. This is because more
transmit power is required to meet the minimum data rate,
which leads to an increase of the transmit power.

Fig. 8 illustrates the region of the total minimumpower ver-
sus the total rate for the different value of Rmin. The tradeoff
region in this figure is obtained by solving the problem (40)
via changing the values of 0 ≤ α̂ ≤ 1, with a step size 0.1.
It can be seen that the total minimum power is a monotoni-
cally increasing function with respect to the maximum sum
data-rate. This result confirms that total power minimization
and total rate maximization are conflicting system design
objectives in general. The figure also shows that for a lower
value of Rmin, less minimum power can be expected. Lastly,
as can be observed, the suboptimal low-complexity solution
tends to be closely following the optimal solution.

C. RATE-ENERGY TRADEOFF
Fig. 9 shows the tradeoff between EE and Rtot for different
values of Pc and Rmin. This figure is achieved by changing
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the weighting coefficient. Note that EE is defined as EE =
Rtot∑

k∈K Pck+
∑

m∈M Pcm+Ptot
. Consequently, the EE optimization

problem is formulated as follows:

EE =
Rtot∑

k∈K Pck +
∑

m∈M Pcm + Ptot
(41)

s.t. C1(5e)− C7(5k). (42)

In order to solve the EE , we define a newMOOP. In the new
MOOP, the total data rate is maximized while the aggregated
power consumption is minimized as follows:

max
{p,p̂,ϕ,ψ}

Rtot = RDU + RCU, (43a)

min
{p,p̂,ϕ,ψ}

Ptot = PDU + PCU, (43b)

s.t. C1(5e)− C7(5k). (43c)

Lemma 1: The solution of the MOOP (43) includes the
solution of the SOOP EE-maximization (41).

Proof: Please see Appendix A.
For different values of Rmin and Pck = Pcm = Pc = 20

dBm, a bell-shaped curve is observed. The reason behind this
is as follows. By increasing Rtot, the EE first increases to
reach a maximum and then tends to decline. To have higher
values of Rtot, the users need to transmit more power. While
increasing the power, the gain of Rtot in the EE’s numerator is
smaller than the increase of the power in the EE denominator.
This results in a reduction of the EE. For Pck = Pcm =
Pc = 10 dBm, EE decreases by increasing Rtot. This is
because Pc is the dominant term. Furthermore, the EE is the
ratio of total data rate to the total power, and the price to be
paid for augments the total data rate is by far greater than
the gain we attain because of the power consumed in the
network.

VII. CONCLUSION
In this paper, to show the tradeoff between DUs and CUs in
uplink OFDMA-based D2D communications, we presented a
MOOP formulation that adjusts the power allocation strategy
and subchannel assignment. The MOOP is converted to a
SOOP using a weighted sum method and then solved via
monotonic optimization to obtain an optimal solution. Fur-
thermore, a suboptimal solution was proposed based on D.C.
programming to compromise complexity and performance
gain. While unveiling an interesting tradeoff region between
total data-rate and total power consumption, the numerical
results demonstrated the superiority of our proposed algo-
rithm as compared to existing work addressed in the lit-
erature. Moreover, simulation results illustrated that more
performance gain in the whole system could be achieved by
the MOOP in which there is a cooperation between DUs and
CUs. This leads to achieving the most appropriate allocated
resources regarding different importance levels of networks.
These observations are valid so far as the weights do not
restrict the performance gain.

APPENDIX
PROOF OF LEMMA 1
To prove Lemma 1, we consider a general fractional program-
ming formulated as follows:

min
x

φ(x) =
f (x)
g(x)
: x ∈ X , (44)

where X is a nonempty compact set belonging to Rn. f (x)
and g(x) denote continuous real-valued functions of x ∈ X
and g(x) > 0, for all x ∈ X . While addressing the optimal
solution, let us define

0(ϕ) = min
{
f (x)− ϕ∗g(x) : x ∈ X

}
, (45)

as the minimum value of f (x) − ϕg(x) for each fixed ϕ∗.
According to Dinklebach’s approach, it easily can be shown
that

ϕ∗ =
f (x∗)
g(x∗)

= min
x

{
f (x)
g(x)
: x ∈ X

}
, (46)

if and only if

0(ϕ∗) = 0(ϕ∗, x∗)

= min
{
f (x)− ϕ∗g(x) : x ∈ X

}
= 0. (47)

Hence, using (46) and (47), it is resulted that the optimal
solution x∗ of (44) is the optimal solution of (45) when ϕ∗ =
ϕ, where ϕ∗ is the minimum value of (44).

Now, by formulating a generalMOOP including two objec-
tives we have

min f (x) (48a)

max g(x) (48b)

s.t. x > 0

where f (x) and g(x) can represent the numerator and denom-
inator of fractional optimization problem in (44), respec-
tively. We combine the competing objective functions (48a)
and (48b) into a single objective function linearly through
weighted-method, so theMOOP in (49) can be converted into
a SOOP as:

min αf (x)− βg(x)

s.t. x > 0, (49a)

where α and β are the weighting coefficients indicating
the importance of the objectives. While comparing (49a)
and (45), it can verify that optimal set of (49a) is inclusive
of the solution for (45). �
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