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Hybrid Position and Orientation Estimation for
Visible Light Systems in the Presence of Prior

Information on the Orientation
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Abstract— Visible light communication (VLC) is seen as a
potential access option for fifth-generation (5G) wireless commu-
nication (Wang et al., 2014) and (Ayyash et al., 2016) and beyond
5G (Strinati et al., 2019). A reliable VLC system benefits from
an accurate estimate of the receiver’s position and orientation.
In many cases, the orientation of the receiver is estimated
with an external orientation estimation device. However, these
devices generally suffer from drift and misalignment, causing an
uncertainty in the orientation presented to the receiver. Hence,
the external device can only provide a probability distribution
of the orientation to the position estimator, which can be used
as prior information for the position estimation. Since the
orientation of a receiver greatly affects the performance of a
visible light system, the orientation uncertainty will degrade
the performance of standard positioning algorithms, implying it
should be taken into account when designing a robust positioning
algorithm. In this paper, we design an received signal strength
(RSS)-based hybrid position and orientation estimation algorithm
using the hybrid maximum likelihood (ML)/maximum a posteriori
(MAP) (HyMM) principle for a multiple LEDs - multiple
photodiodes (PDs) (MLMP) system to take into account the
presence of prior information on the orientation. The proposed
HyMM estimator is compared with three existing estimators, i.e.,
the simultaneous position and orientation (SPO) estimator, the
misspecified maximum likelihood (MML) estimator and the first-
order-approximation-based positioning algorithm, subject to the
orientation uncertainty. Further, in order to analytically assess
the performance of the proposed estimator, the theoretical lower
bound on the mean squared error (MSE), i.e. the hybrid Cramér-
Rao bound (HCRB) for HyMM is derived. Computer simulations
show an asymptotic tightness between the performance of the
estimator and its associated theoretical lower bound.

Index Terms— Visible light system, prior information on
the orientation, position and orientation estimation, multiple
LEDs and multiple PDs, hybrid ML/MAP estimator, hybrid
Cramér-Rao bound.
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I. INTRODUCTION

V ISIBLE light communication (VLC) is seen as a potential
access option for fifth-generation (5G) wireless com-

munication [1], [2] and beyond 5G [3]. Compared to radio
frequency (RF)-based solutions, communication systems based
on visible light have many advantages. Due to their long life
expectancy and cost effectiveness [4], LEDs are gradually
replacing traditional light sources for lighting, implying they
are becoming ubiquitously available. It also suffers less from
interference from other sources, as light is blocked by opaque
walls. VLC systems can coexist with lighting systems, and
can safely be used in situations where interference from RF
sources is harmful. The receiver of a visible light system
consists of optical sensors, e.g. an image sensor [5]–[8] or
photo diodes (PDs) [9]–[13]. As – compared to an image
sensor – PD consume less energy and can detect signals that
are modulated at higher frequencies, most recent works focus
on receivers consisting of one or more PDs. Especially the PD
array, consisting of multiple PDs, is gaining interest, as the
designer has the ability to increase the receiver’s field-of-
view (FOV) and angular diversity by tilting the PDs in the
array or using apertures [10]–[12], resulting in an improvement
of the performance. However, the visible light channel is
largely sensitive to the distance and angle with respect to
the transmitter. Therefore, a high-precision position and/or
orientation estimate benefits reliable VLC systems.

In a VLC-based positioning – or visible light positioning
(VLP) – system, most position and orientation related infor-
mation is contained in the line-of-sight (LOS) link. If not
properly addressed for, changes in the orientation may severely
affect system’s performance. Most of the early works on
VLP neglect the effect of orientation and assume that the
receiver is parallel to the ceiling [14]–[16]. Later works
considered two approaches to deal with the unknown orien-
tation. In the first approach, the estimator tries to simultane-
ously estimate the position and orientation from the observed
light signal only [17]–[20], while in the second approach,
an external device is used to determine the orientation of the
receiver [21], [22]. Both approaches have drawbacks. On the
one hand, a simultaneous position and orientation (SPO)
estimator not only requires a suitable receiver structure that
can be exploited to provide a coarse orientation estimate, but
also it neglects useful prior information about the orientation
that could be obtained from an external device. On the
other hand, in most cases, the external orientation estimation
device is a Micro-Electro-Mechanical System (MEMS)-based
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inertial measurement unit (IMU), as the cost and power con-
sumption of such devices is low. The drawback of using these
devices is their low accuracy, i.e. they suffer from severe biases
and drift problems, especially when the receiver, which is
carried by a user or attached to a carrier, experiences some ran-
dom movement. Consequently, even if the receiver determines
its orientation with an external orientation estimation device,
the estimated orientation is subject to noise and orientation
errors, meaning the instantaneous orientation is not perfectly
known. Existing positioning algorithms extracting the orien-
tation information from an external device often neglect the
uncertainty generated by the external device and assume
the orientation is perfectly estimated. In such a situation,
the maximum likelihood estimator tries to estimate the
position based on a misspecified model, i.e. in which the
orientation is considered as uncertainty-free instead of sat-
isfying some random process. In the following, we refer
to this type of estimator as the misspecified maximum
likelihood (MML) estimator [23]. For example, the algo-
rithm from [9],1 which in this paper is used to compare
with the proposed estimator, and therefore is evaluated sub-
ject to the orientation uncertainty, can be considered as a
MML estimator.

As this orientation uncertainty largely affects the positioning
performance of state-of-the-art algorithms, it should be taken
into account in the design of a positioning algorithm. To the
best of our knowledge, there are only a few works [24], [25]
on estimators taking into account the presence of prior
information on the orientation. In [24], the authors derive a
theoretical bound to analyze the performance of a receiver
with a single PD. The orientation of the PD is represented
by its normal vector. The drawback of this representation
is that it describes a rotation with two degrees of freedom
only, implying it can not reflect the heading direction and
limits the extension of the bound for the receiver with
a PD array [20]. Therefore, a more general representation of
the orientation is required, allowing to describe the orientation
with three degrees of freedom, e.g. by using the rotation
matrix description. In our previous work [25], we analyzed
the characteristics of the received signal strength subject to
the orientation uncertainty, using this rotation matrix descrip-
tion, for a receiver consisting of a single PD. Based on
a first-order approximated likelihood function, we designed
for this receiver an RSS-based position estimator using the
maximum likelihood principle. The resulting estimator out-
performs state-of-the-art position estimators not taking into
account orientation uncertainty. However, this approach cannot
be extended effectively to the receiver consisting of a PD array,
as not only the approach used in [25] is a positioning only
algorithm, i.e., it treats the orientation as a nuisance parameter,
but also applying this approach to a PD array system would
result in biased estimates due to the approach’s inconsistency.
Therefore, in this paper, we consider a different approach,
where we combine the prior information on the orientation

1Note that the estimator [9] is originally designed for a receiver with a
single PD and under the assumption that the receiver is parallel to the ceiling.
However, the extension to a receiver with multiple PDs and perfectly known
orientation is straightforward.

TABLE I

COMPARISON OF STATE-OF-THE-ART ESTIMATORS

from the noisy external device with that of the received optical
signal to jointly estimate the position and orientation using
the principle of hybrid maximum likelihood (ML)/maximum
a posteriori (MAP) estimation (HyMM) [26], [27]. The per-
formance of this HyMM algorithm will be compared with
the performance of the three state-of-the-art algorithms men-
tioned above, i.e. the MML estimator, which is the estimator
from [9] evaluated in the presence of orientation uncertainty,
the simultaneous positioning and orientation (SPO) algorithm
from [20], and the first-order-approximation-based positioning
(AP1st) algorithm from [25]. These state-of-the-art algorithms
are summarized in Tab. I. Further, the performance of the
algorithms will be compared with a theoretical lower bound.
The main contributions of this paper are as follows:

1) We first generalize the system model from [25], that
includes orientation uncertainty for a single PD, to the case
with multiple PDs. The resulting system model, from which
the estimator will be derived, takes into account the received
power of the multiple LEDs - multiple PDs (MLMP) system,
as well as the estimated orientation and its uncertainty from
the external device. The aim is to jointly estimate the position
and orientation from the received light signal, and the observed
orientation and its distribution. To this end, we propose an
RSS-based hybrid position and orientation estimation algo-
rithm using the principle of HyMM estimation, where the
distribution of the orientation serves as prior information. The
resulting HyMM estimator is then converted to a non-linear
least squares (NLS) problem, which is easily solved using the
Gauss-Newton algorithm on manifolds.

2) To compare the performance of the proposed HyMM esti-
mator with the state-of-the-art algorithms MML [9], SPO [20],
and AP1st [25], we not only perform Monte-Carlo simulations
for the different algorithms, but also compare the performance
of the algorithm with a theoretical lower bound. In this paper,
we derive the hybrid Cramér-Rao bound (HCRB), which
jointly bounds errors in both the position vector and the
rotation matrix. In particular, in order to measure the error in
the estimated rotation matrix, the intrinsic CRB on SO(3) is
utilized. The tightness of the bound is evaluated in this paper.
By properly exploiting the prior information on orientation,
our proposed method outperforms these baseline methods.

The rest of the paper is organized as follows. The
channel gain model and received power are presented in
Section II. The model of orientation uncertainty from an exter-
nal device is provided in this section as well. The RSS-based
hybrid position and orientation estimation algorithm using
the hybrid ML/MAP principle is presented in Section III.
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Fig. 1. System model.

Subsequently, the expression for the theoretical bound is
derived in Section IV. Numerical results comparing the
proposed algorithm with state-of-the-art algorithms, and the
comparison with the theoretical lower bound, are given
in Section V. Finally, some concluding remarks are given
in Section VI.

Notation: Scalars are denoted in italic, e.g., x. Lower case
boldface indicates a column vector, e.g., x. Upper case bold-
face denotes a matrix or a set, e.g., X, with IN representing
an N ×N identity matrix, and 0N×M representing an N ×M
zero matrix. Matrix transpose, and inverse are indicated by
superscript T, and −1, respectively. The Euclidean norm is
denoted by ‖ · ‖, while ‖x‖2

Σ = xTΣ−1x is the squared
Mahalanobis distance of x with respect to matrix Σ. The
expectation operator is denoted by E{·}, and the set of all
real numbers is denoted by R. ∇x = ∂/∂x denotes the Del
operator, and Π(·) is the rectangular function defined as

Π(x) Δ=

{
1, |x| ≤ 1.

0, |x| > 1.
(1)

The group of all rotation matrices, i.e., the special orthogonal
group, is denoted by SO(3), and the associated Lie algebra
is denoted by so(3). The operator (·)∧ converts the vector

x = [x1, x2, x3]T into x∧ =
0 −x3 x2

x3 0 −x1

−x2 x1 0
∈ so(3), while

the operator of (·)∨ is the inverse operator of (·)∧.

II. SYSTEM DESCRIPTION

A. System Model

In this paper, we consider a system containing NL LEDs
and a VLP receiver containing NP bare PDs mounted on the

receiver, as shown in Fig. 1. We assume that the ith LED of
the system has coordinates ri ∈ R

3×1 and normal ni ∈ R
3×1,

i.e. the direction in which the LED is radiating, and that the
coordinates and normals of the LED are known by the receiver.
Since all PDs move and rotate rigidly with the receiver, i.e.
their relative distances and orientations are preserved, the
coordinates and orientations of all PDs are first defined in the
frame of the receiver and then transformed into the frame of
the system. In the frame of the receiver, shown in Fig. 1b, the
coordinates of the jth PD are specified by a relative vector dj,0

to the origin Or (the centroid of the receiver), while the normal
of the jth PD is defined by a rotation matrix RP,j ∈ SO(3)
with respect to the normal vector n0 to the receiver plane, i.e.
nP,j,0 = RP,jn0. In the frame of the system, the receiver has
coordinates r, i.e. the position of the centroid of the receiver,
and orientation R ∈ SO(3). Then the normal of the receiver
is given by n = Rn0. The position and the normal of the
jth PD are respectively expressed by rP,j = r + dj and
nP,j = RnP,j,0, where dj = Rdj,0 is the relative vector
to r.

B. Channel Gain and Received Power

Defining the vector vi = r−ri as the vector between the ith

LED and the receiver centroid, the incidence vector between
the ith LED and the jth PD of the receiver can be written
as vi,j = vi + dj as shown in Fig. 1c. Using this definition,
we find the distance vi,j between the ith LED and the jth PD,
the radiation angle φi,j , i.e. the angle between vi,j and the
normal ni of the LED, and the incidence angle θi,j , i.e. the
angle between vi,j and the normal n of the receiver:

vi,j = ‖vi,j‖ , (2)
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cos (φi,j) =
nT

i vi,j

‖vi,j‖ =
nT

i (vi + dj)
‖vi + dj‖ , (3)

cos (θi,j) = −nTvi,j

‖vi,j‖ = −nT (vi + dj)
‖vi + dj‖ . (4)

The channel gain corresponding to the LOS component of
the ith LED and jth PD is given by [28]:

hi,j =
(γ + 1) Aj

2πv2
i,j

cosγ (φi,j) cos (θi,j)Π

×
(

θi,j

θFOV

)
Π

(
φi,j

φFOV

)
, (5)

where Aj is area of the jth PD (in m2), θFOV is the FOV
of the PD, the Lambertian order of the LEDs equals γ. The
factor Π(θi,j/θFOV )Π (φi,j/θFOV ) in (5) implies that a PD
can detect the light only when the LED is within its FOV,
and the PD itself is within the FOV of the LED, i.e. when
0 ≤ θi,j ≤ θFOV and 0 ≤ φi,j ≤ φFOV .

Taking into account (2)–(4), (5) can be rewritten as [20]

hi,j = Ci,j

(
nT

i (vi + Rdj,0)
)γ

‖vi + Rdj,0‖γ+3 (RnP,j,0)
T (vi + Rdj,0) ,

(6)

where Ci,j =
−
(
γ+1

)
AjΠi,j

2π and Πi,j = Π
(
θi,j/θFOV

)
Π

(
φi,j/φFOV

)
.

We assume a proper multiplexing protocol is used, e.g.
frequency-division multiplexing (FDM) [12], time-division
multiplexing (TDM) [29] or color-division multiplexing
(CDM) [30], so that each PD is able to separate the signals
from the different LEDs. Then the total observation consists
of the RSS values from every PD-LED pair. Let us define
the NLNP × 1 vector y =

[
yT

1 , . . . ,yT
NP

]T
as the vector of

observations, with yj = [y1,j , . . . , yNL,j ]
T, we obtain

y = h + w, (7)

where the NLNP × 1 vector h is defined as h =[
hT

1 , . . . ,hT
NP

]T
with hj =Rp,j [Pt,1h1,j , . . . , Pt,NLhNL,j ]

T,
Pt,i is the power transmitted by the ith LED and Rp,j is the
responsivity of the jth PD. The NLNP × 1 vector w models
the shot and thermal noise [28], [31]. Although the shot noise
is impulsive in nature, for sufficiently high intensity ambient
light, the shot noise can be approximated by a Gaussian
random variable thanks to the central limit theorem. Further,
considering that the thermal noise is Gaussian distributed,
the noise w can be represented by a zero-mean multivariate
Gaussian random variable [28], [31]–[33] with covariance
matrix Σw = σ2

wINLNP .

C. Model of Orientation Uncertainty

In this section, we will discuss the model that will be
used for the orientation uncertainty. The estimate R̃ ∈ SO(3)
of the rotation matrix R, obtained with the external device,
is modeled by R̃ = Rε ·R, where Rε ∈ SO(3) represents the
random error component contained in the estimation. Accord-
ing to Euler’s rotation theorem [34], the random rotation can
be expressed as [35]–[38]

Rε = exp (ε∧) (8)

Fig. 2. Distribution of nb = Rεna.

where the skew-symmetric matrix ε∧ is constructed from the
vector ε = [εx εy εz]

T using the operator (·)∧. Physically,
ε is the axis-angle representation of Rε and equation (8) is
equivalent to Rodrigues’ rotation formula that converts the
axis-angle representation to the rotation matrix representation.
Consequently, Rε realizes the rotation that rotates the rigid
object around the unit axis of ε/‖ε‖ by an angle ‖ε‖. The
distribution of Rε is specified by the rotation vector ε, which
is assumed to be zero-mean Gaussian [25]. To illustrate the
effect of a random rotation Rε, Fig. 2 shows the impact of
Rε on a unit vector nb = Rεna, where na is constant. The
sampled nb (magenta dots) are concentrated around na (the
blue dot) and distributed on the unit sphere (the cyan mesh).
The contours show the first 3 standard deviations of ε mapped
to nb.

By left multiplying R̃ with RT
ε , we have R = RT

ε R̃, which
induces the PDF of R conditioned on R̃, i.e., p(R|R̃). This
PDF gives the probability distribution of true orientation R
given an estimate R̃, and RT

ε models the uncertainty in the
orientation estimate R̃. Therefore, p(R|R̃) will serve as prior
information about the orientation in the position estimator that
uses the light signal. It can be seen that p(R|R̃) is specified
by p(RT

ε ), which is coupled with p(Rε) and determined by
the PDF p(ε) as well, since RT

ε = exp ((−ε)∧).
Based on the observation (7), the proposed estimator will

estimate the position vector r and the rotation matrix R from
the incoming light in the optical receiver, assuming R̃ and
p (Rε) are known.

III. RSS-BASED HYBRID ML/MAP ESTIMATION

In this section, we propose the HyMM estimator, which
takes into account the prior information on the orientation
p(R|R̃), for the receiver with a PD array, and compare it
with two state-of-the-art estimators.

In our previous work [20], we introduced a SPO algorithm
that estimates the position and orientation of the receiver using
the received light signal only, i.e. no prior information is
available on the orientation. In this paper, we assume prior
information is available on the orientation, as described
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in the previous section. Prior information on a parameter
to be estimated can be included by considering the MAP
principle, using the joint PDF p(y,Θ), where Θ = {r,R}
consisting of the position vector r and the rotation matrix R,
is the parameter set to be estimated. However, only for the
orientation R, prior information is available, implying the
MAP principle cannot be applied on the position estimation.
Another approach to include the orientation uncertainty is to
consider the orientation as a nuisance parameter and use the
ML principle to estimate the position only, using the likelihood
function p(y|R̃; r) =

∫
R

p(y,R|R̃; r)dR. However, although
the distribution of ε is Gaussian, the rotation matrix Rε is not
Gaussian distributed, as it is a non-linear transformation of ε.
As a consequence,

∫
R

p(y,R|R̃; r)dR becomes analytically
intractable. To overcome the issues in the above mentioned
approaches, we use as alternative the HyMM principle [26],
[27], [39] to jointly estimate the position and orientation of the
receiver. In a hybrid ML/MAP estimator, the parameter set to
be estimated is a combination of parameters with and without
prior information. In this paper, the hybrid parameter set Θ is
defined as Θ = {r,R}, where r is the position vector without
prior information and R is the rotation matrix with prior
information. The HyMM estimator then jointly estimates r
and R based on the joint PDF:

p(y,R|R̃; r) = p(y|R; r)p(R|R̃)
= p(y|Θ)p(ε)

∣∣ det (∇Rε)
∣∣ (9)

where p (y|Θ) is Gaussian distributed with y|Θ ∼
N (h (Θ) ,Σw), and the conditional PDF p(R|R̃) giving the
prior information about R is specified by p(RT

ε ). In (9),
the distribution of RT

ε is represented in terms of ε, which is
Gaussian, using the relation ε = log (Rε)

∨ ∼ N (0,Σε), the
last factor in the last equality of (9) comes from the change
of variables, and the expressions of the Jacobian ∇Rε and∣∣ det (∇Rε)

∣∣ are given in Appendix B.
Based on (9), the HyMM principle yields the estimate Θ̂ =

{r̂, R̂ε} that maximizes the hybrid log-likelihood function:

Θ̂ = argmax
Θ

LH(Θ;y, R̃), (10)

and

LH(Θ;y, R̃) = ln p (y|Θ) + ln p (ε) + ln
∣∣det (∇Rε)

∣∣
≈ const−1

2
‖y − h‖2

Σw
− 1

2
‖ε‖2

Σε
. (11)

In (11), we neglected the effect of the determinant (36),
because in most practical situations ε is small so that∣∣ det (∇Rε)

∣∣ approaches 1 (see Appendix B), and neglecting
this factor will result in an estimator with lower computational
complexity. Next, we introduce two expanded vectors,

y̆ =
[
yT 01×3

]T ∈ R
(NLNP +3)×1, (12)

h̆ =
[
hT σwεTΣ− 1

2
ε

]T

∈ R
(NLNP +3)×1, (13)

with Σ− 1
2

ε the matrix square root of Σ−1
ε , and combine the

last two terms in (11) to obtain

LH(Θ;y, R̃) = const− 1
2σ2

w

(
y̆ − h̆

)T (
y̆ − h̆

)
. (14)

In this way, (10) is turned into a constrained non-linear least
squares (NLS) problem given by

Θ̂ = arg min
Θ

(
‖y̆ − h̆‖2

)
s.t. RTR = RRT = I3,

det (R) = +1, (15)

where the constraints impose that R must be a member
of SO (3). However, this constrained optimization problem has
no closed-form solution and is non-convex, implying we need
to resort to constrained non-linear optimization algorithms,
which are complex, time consuming and non-robust. As an
alternative, since SO(3) is an embedded submanifold of R

3×3,
we can estimate R using the Gauss-Newton algorithm on the
manifold SO(3) [20]. In this algorithm, we iteratively update
the estimates of Θ = {r,R} using

rt+1 = rt + Δr and Rt+1 = exp
(
(ΔR)∧

)
Rt (16)

where the incremental step ΔΘ =
[
ΔT

r ,ΔT
R

]T
is calculated

by

ΔΘ = −η
(
∇Θh̆

)† (
h̆− y̆

)
, (17)

with η the step size, (·)† the Moore-Penrose pseudoinverse,
and

∇Θh̆ =

[
∇Θh

03×3 σwΣ− 1
2

ε ∇Rε

]
∈ R

(NLNP +3)×6 (18)

the expanded Jacobian matrix with respect to Θ. The Jaco-
bian matrix of h with respect to Θ is the NLNP ×
6 matrix ∇Θh = [∇Θh1, . . . ,∇ΘhNP ]T with ∇Θhj =
Rp,j [Pt,1∇Θh1,j, . . . , Pt,NL∇ΘhNL,j ]

T, where the expres-
sion for ∇Θhi,j can be found in Appendix B.

In this paper, we compare the performance of the proposed
HyMM estimator with the performance of the SPO, MML
and AP1st estimators. To better understand the results for
these three state-of-the-art algorithms, we briefly review the
objective functions used by these algorithms. In the SPO
estimator, the algorithm fully distrusts the available orientation
estimate R̃ from the external device and assumes that no
reliable information about p (Rε) is available, implying it has
to estimate Θ from the observed vector y only. Consequently,
the log-likelihood equals L (Θ;y) = ln p (y|Θ) [20]. In the
MML estimator, the algorithm fully trusts the estimate of
the orientation R̃ and neglects the orientation uncertainty, i.e.
the estimator misspecifies Rε = I3 as a constant, implying the
distribution of the vector of observed light signals is modeled
as y|r; R̃ ∼ N

(
h(r, R̃),Σw

)
. From the resulting misspeci-

fied distribution pm(y|r; R̃), the MML estimator obtains the
estimate through the maximization of the likelihood function
LM (r;y) = ln pm(y|r; R̃). Finally, the AP1st algorithm
approximates the likelihood function of r with the PDF
pa(y|r; R̃) corresponding to y|r ∼ N

(
h(r, R̃),Σy

)
, where

Σy =
(∇R

∣∣
R̃
h
)
Σε

(∇R

∣∣
R̃
h
)T + Σw with the Jacobian

matrix ∇R

∣∣
R̃
h of h with respect to R evaluated at R̃.

Based on the approximated distribution pa(y|r; R̃), the AP1st
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algorithm obtains the estimate through the maximization of
the likelihood function LA (r;y) = ln pa(y|r; R̃) [25]. Notice
that the AP1st algorithm does not estimate the orientation, i.e.,
it is a positioning algorithm.

Besides the performance of the algorithms, which will
be discussed in Section V, we are also interested in their
complexity. All algorithms except AP1st can be converted
into a NLS problem, which can be solved with the Gauss-
Newton method. In the Gauss-Newton method, the complexity
during each iteration is dominated by the computation of the
Moore-Penrose pseudoinverse. As a consequence, the HyMM,
SPO and MML algorithm, respectively, have a complexity of
O(6(NLNP + 3)2), O(6(NLNP )2) and O(3(NLNP )2) flops
per iteration. On the other hand, the complexity of the AP1st
algorithm is dominated by the matrix inversion of Σy required
to obtain the gradient in each inner iteration. Therefore, the
AP1st algorithm has a complexity of O((NLNP )3) flops per
iteration. Hence, it is clear that the complexity of the HyMM
algorithm is lower than that of the AP1st algorithm but roughly
equivalent to the complexity of the other algorithms.

IV. THEORETICAL LOWER BOUND

In the numerical results section, we will use the mean
squared error (MSE) to compare the performance of the
proposed HyMM estimator with the performance of the SPO
estimator and MML estimator. As no closed-form solution is
available for the estimators, we will determine the performance
through simulations. To obtain insight into the optimality of
the proposed estimator, in this section, we derive the hybrid
Cramér-Rao lower bound (HCRB), which is the theoretical
lower bound on the MSE for the HyMM estimator.

Using this HCRB, we can evaluate the estimation errors
on the position, which is expressed by the Euclidean distance
between r̂ and r, i.e. re = r̂− r, and on the axis-angle vector
between R̂ and R, i.e. ue = log(R̂RT)∨ [20]. In order
to obtain the HCRB, first we need to calculate the hybrid
information matrix (HIM) JH , which is given by [26]

JH = −Ey,R|R̃,r

{
∇Θ∇T

Θ ln p(y,R|R̃, r)
}

= JD + JP . (19)

where Ex {f} is the expectation of f with respect to the PDF
of x, and JD = −Ey,R|R̃,r

{∇Θ∇T
Θ ln p (y|Θ)

}
represents

the contribution of the data (observed light signal), JP =
−ER|R̃

{
∇Θ∇T

Θ ln p(R|R̃)
}

represents the contribution of

the prior information on the orientation:

JD = ER|R̃ {JF (Θ)} , (20)

JP =
[

0 0
0 JR

]
. (21)

Since y|Θ is multivariate Gaussian with its covariance being
independent of Θ, the associated Fisher information matrix
(FIM) JF (Θ), i.e., the operand of the expectation in (20), can
be calculated as [40]:

JF (Θ) =
1

σ2
w

(∇Θh)T (∇Θh) . (22)

Fig. 3. Simulation setup. The three orthonormal vectors in three different
colors (the red, green and blue vector represent the x-axis, y-axis and z-axis,
respectively) at each sample on the path represent the frame of the receiver.
The pink arrows represent the LEDs (only a fraction of them are shown)
on the ceiling. θr indicates the traveled angle along the dotted ellipse in the
XY plane.

Further, the non-zero submatrix of (21) equals
JR = ER|R̃

{
(∇R ln p(R|R̃))T(∇R ln p(R|R̃))

}
, with

∇R ln p(R|R̃) given in Appendix B. Due to the complexity
of p(R|R̃), the expectations for computing (20) and (21)
are analytically intractable. Therefore, we calculate them
numerically via Monte Carlo integration [41]:

JD ≈ 1
NM

NM∑
n=1

JF ({r,Rn}) , (23)

and

JR ≈ 1
NM

NM∑
n=1

(∇R ln p(R|R̃))T(∇R ln p(R|R̃))
∣∣∣
Rn

, (24)

where Rn, n = 1, · · · , NM are i.i.d. samples generated from
p(R|R̃). To get the lower bound on the error covariance
matrices of re and ue, we first rewrite the HIM JH as a
partitioned matrix,

JH =
[
JH,r,r JH,r,R

JH,R,r q JH,R,R

]
. (25)

Consequently,

E{rerT
e } �

[
JH,r,r − JH,r,RJ−1

H,R,RJH,R,r

]−1

(26)

and

E{ueuT
e } �

[
JH,R,R − JH,R,rJ−1

H,r,rJH,r,R

]−1

. (27)

V. NUMERICAL RESULTS

In the evaluation of the hybrid ML/MAP estimator and the
theoretical lower bound in the presence of prior information
on the orientation through computer simulations, we consider
an 8 m×6 m×3 m area in which NL = 24 LEDs are
mounted at the ceiling of the area, as shown in Fig. 3.
We define the boundary vector b = [8, 6, 3]T, the number of
LED columns in the X direction NL,X = 6 and Y direction
NL,Y = 4, and the positions of the LEDs are given by[

[b]1(2i−1)

2NL,X
,

[b]2(2j−1)

2NL,Y
, [b]3

]T

, with i ∈ {1, . . . , NL,X} and
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Fig. 4. Angular diversity receiver with NP,s = 4.

j ∈ {1, . . . , NL,Y }, where [b]i denotes the ith component
of b. In the following, it is assumed that all LEDs have a
same transmit power, a normal ni = [0, 0,−1]T (pointing
downwards), and a Lambertian order γ = 1, i ∈ {1, . . . , NL}
implying a half-intensity beam angle of π/3, and a FOV angle
φFOV = π/2.

To evaluate the performance of the proposed estimators,
we consider a path with an elliptical pattern in the XY plane
and a sinusoidal pattern in the Z direction, as shown in Fig. 3.
The semi-major axis and the semi-minor axis of the ellipse
are 2.5 m and 1.5 m, respectively, and the amplitude of the
sinusoidal pattern is 0.5 m. The ellipse (the dotted ellipse) is
centered at [4.0, 3.0, 1.5]T m, i.e. the center of the considered
area. Starting at the coordinates [4.0, 4.5, 1.5]T m (the black
arrow), the path oscillates sinusoidally in the Z direction and
completes the path in three periods. The receiver follows the
path clockwise, and at each sample point the orientation of
the receiver is chosen such that the frame of the receiver
is tangent to the path, more specifically, the rotation matrix
R representing the orientation of the receiver is given by
R = [nR,x,nR,y,nR,z], where nR,y is the unit tangent vector
of the path at the sample point, nR,x the unit vector in the
XY plane satisfying nT

R,xnR,y = 0 and nR,z = nR,x ×nR,y ,
with × the vector product and [nR,z]3 > 0. The frame of the
receiver (the column vectors of R) at each sample on the path
is illustrated in Fig. 3 by three orthonormal vectors in three
different colors. We use the parameter θr to specify the sample
point, where θr is the traveled angle along the ellipse in the
XY plane.

We consider the called angular diversity receiver
from [42]–[44]. Before situating the receiver in the system
frame with its orientation R and position r, we first describe
the receiver layout in the receiver frame. The receiver
consists of NP = 5 PDs, where NP,s = 4 PDs are
placed symmetrically around the center of the receiver,
and are tilted away from the center of the receiver by
θP = π/4, as shown in Fig. 4. The normal of the jth PD,
j ∈ {1, . . . , NP,s} is given by nP,j,0 = exp

(
(θP zP,j)

∧)
n0,

where zP,j = [cos(j2π/NP,s), sin(j2π/NP,s), 0]T and the
reference vector n0 = [0, 0, 1]T. The last PD is placed right
above the center of the receiver and thus has normal n0. The
relative distance vector dj,0 that specifies the position of the
jth PD, j ∈ {1, . . . , NP }, to the center of the receiver is
given by dj,0 = djnP,j,0, with dj = 0.02 m. All PDs are
assumed to have a FOV angle θFOV = 4π/9, an average

responsivity Rp = 0.3 A/W and an area AR = πr2
P with

radius rP = 1 × 10−3 m. In the following, we assume
the receiver is subject to an orientation uncertainty with
covariance matrix Σε = σ2

εI3×3. Unless specified otherwise,
we assume σ2

ε = 1 × 10−2 rad2. Finally, the SNR2 is

defined as SNR �
(

(γ+1)ARPtRp

2πσw

)2

. We assume the shot

noise has power spectral density N0 = 5.25 × 10−23A2/Hz,
which corresponds to a background spectral irradiance
pn = 5.8×10−6 W/(cm2 ·nm) with a visible light bandwidth
Δλ = 360 nm [12], and assume an amplifier noise density
Ia = 5 × 10−12 A/

√
Hz [45] and an electrical bandwidth

B = 1 MHz [46], then the noise variance σ2
w can be calculated

as σ2
w = (N0 + I2

a)B [45]. Considering an optical transmit
power Pt = 1 W, this results in an SNR = 34.5 dB. In our
simulations, we will use the range SNR ∈ [0, 70] dB to take
into account variations of the system parameters.

As the algorithms considered in this paper require an itera-
tive procedure, they need an initial estimate of the position and
the orientation. For the HyMM, MML and AP1st estimators,
the initial estimate of the orientation comes from the external
device, while for the position, we take as initial point the
center of the area, i.e. Θ̂0 = {b/2, R̃}. Similarly, the SPO
algorithm considers as initial estimate of the position the
center of the area. However, the SPO algorithm has no prior
knowledge on the orientation. Therefore, we assume we have
a coarse orientation estimator that estimates the orientation
from the optical signal as e.g. described in [20]. To have
a fair comparison with the HyMM and MML estimators,
we assume this coarse estimator delivers a coarse estimate
of the orientation that is Gaussian distributed around the true
value of the orientation with variance σ2

0 = σ2
ε , i.e., the

SPO algorithm is initialized with Θ̂0 = {b/2, R̂0} with
log(R̂0RT)∨ ∼ N (

0, σ2
0I3

)
.

A. Performance of the Hybrid ML/MAP Estimator

In Fig. 5, we show the root of the mean squared error
(RMSE) of the position and orientation estimates of the
proposed HyMM estimator as a function of the position θr

of the receiver in the elliptical path for SNR = 15 dB
and SNR = 35 dB, respectively, and compare the resulting
RMSE with the RMSE of the simultaneous position and
orientation estimator (SPO), the misspecified maximum like-
lihood estimator (MML) and the first-order-approximation-
based positioning algorithm (AP1st). Further, we show in the
figure the root of the theoretical lower bound (HMMB) from
Section IV, and the root of the theoretical lower bounds for the
SPO and MML estimators,3 denoted by SPOB and MMLB,

2Since the received SNR depends on the receiver’s position and orientation,
fixing the received SNR in the simulation will set a confinement on the para-
meter space of receiver’s position and orientation. To solve this complication,
we instead use the SNR defined above, which discards the position- and
orientation-related dependency in the received power. Taking into account
the definition of the channel gain hi,j (5), it follows that the received SNR

is proportional to the above defined SNR by a factor
�

2πhi,j

(γ+1)AR

�2
. In other

words, the used SNR is equal to the received SNR for a PD, right below a
LED and pointing to that LED, i.e. θi,j = φi,j = 0 rad, at a distance of
vi,j = 1 m.

3The theoretical lower bound for the SPO estimator is found in [20], while
the bound for the MML estimator is discussed in Appendix A.
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Fig. 5. RMSE of the estimator as a function of the traveled angle θr along the elliptical path for σ2
ε = 1 × 10−2 rad2.

respectively. Let us first take a closer look at the behavior of
the estimators and bounds as function of the traveled angle θr

along the elliptical path. The path we consider has a sinusoidal
pattern in the Z direction, implying the distance between the
receiver and the LED is relatively larger in the valleys of the
path. At the same time, the path has an elliptical pattern in the
XY plane. Taking into account the uniform distribution of the
LEDs in the area, it is clear that the average distance between
the LEDs and the receiver is the largest in the vertices. Hence,
the largest average distance will occur at the vertex lying in a
valley, i.e. for θr = π/2. Because the channel gain is inversely
proportional to the distance between the receiver and the
LEDs, a higher RMSE is expected at those points in the path
that have a larger (average) distance between the receiver and
the LEDs. This can be observed in Fig. 5, where the RMSE
performance along the path shows a sinusoid-like pattern with
three peaks and valleys, corresponding to the valleys and peaks
in the path. As expected, the largest RMSE is obtained around

θr = π/2, which corresponds to the vertex in the valley. Next,
we look at the performance of position estimation, as shown
in Figs. 5a and 5c. As can be observed, for SNR = 15 dB, the
MML, AP1st and HyMM algorithms have similar positioning
performance, while the SPO algorithm has a noticeable larger
RMSE. On the other hand, when SNR = 35 dB, the HyMM,
AP1st and SPO algorithms have similar performance, and the
MML algorithm has a noticeably larger RMSE. This can be
explained as follows. On the one hand, when the SNR is
low, it will be hard to extract reliable information about the
position and orientation from the optical signal. A relatively
accurate external estimate of the orientation, as available in
the HyMM, MML and AP1st estimators, can help to improve
the position estimate. On the other hand, for larger SNR,
reliable information about the position and orientation can be
extracted from the optical signal, implying the performance
will be less determined by the presence of a noisy prior
estimate of the orientation. As the MML algorithm neither
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takes into account the orientation uncertainty and nor updates
the orientation estimate using the optical signal, the effect of
the misspecification of the orientation on the position estimate
cannot be completely compensated by the reliable optical
signal. In contrast, the SPO algorithm and HyMM algorithm
estimate the orientation both from the reliable optical signal,
while the AP1st algorithm takes into account the orientation
uncertainty. This explains the similar positioning performance
of the three latter algorithms. Comparing the RMSE perfor-
mance of the algorithms with their respective lower bounds,
we see for SNR = 15 dB a gap between the RMSE and the
lower bound, while for SNR = 35 dB, the RMSE is close to
the lower bound. The reason for this is the asymptotic tightness
of the CRB, i.e. the lower bound is tight when the SNR or the
number of observations is sufficiently large. Finally, we look
at the performance of the orientation estimation, shown in
Figs. 5b and 5d. As the performance of the external orientation
estimator is independent of the position of the receiver and the
optical signal, the RMSE of the MML and AP1st estimators
will be constant over the whole path and independent of the
SNR of the optical signal, i.e. the level of the RMSEs of MML
and AP1st are the same for both Figs. 5b and 5d. Similarly as
for the position estimate, the RMSE of the HyMM estimator
is similar to that of the MML estimator for SNR = 15 dB and
similar to that of the SPO estimator for SNR = 35 dB. For
low SNR, the SPO estimator is not able to extract a reliable
orientation estimate from the optical signal, yielding a worse
RMSE than the others’, while for larger SNR, the reliable
optical signal allows the HyMM and SPO estimator to obtain
a more accurate orientation estimate than available with the
external device, implying the MML and AP1st algorithms will
have worse performance. Again, the explanation can be found
in the reliability of the optical signal and the relative effect of
the noisy prior estimate of the orientation at low and high SNR,
similarly as for the position estimate. Also for the orientation
estimate, the lower bound is tight for sufficiently high SNR.
As a conclusion, the proposed HyMM estimator combines the
best of both worlds: for low SNR as well as for high SNR, the
RMSE of the proposed HyMM estimator for both the position
and orientation is at least as good or better than for the state-
of-the-art algorithms, and operates close to optimal.

Next, we look at the effect of the variance σ2
ε of the

orientation uncertainty. Fig. 6 shows the RMSE, averaged over
the entire path, as a function of 1/σ2

ε for SNR = 35 dB.
As the SPO algorithm does not use an orientation estimate
from an external device, the performance of the SPO estimator
is independent of σ2

ε , in contrast to the performance of the
other estimators. The SPO performance only depends on the
accuracy of the coarse orientation estimate, i.e., σ2

0 . As can
be observed in the figure, for large σ2

0 , the SPO algorithm
is not able to reach the theoretical lower bound. Due to the
inaccuracy of the coarse estimate, the iterative algorithm in the
SPO estimator is not able to converge properly to the correct
position and orientation. From our simulations, we observed
that the SPO algorithm converges correctly for a value of σ2

0 up
to 0.1 rad2. Let us now look closer at the dependency of the
other estimators on the variance σ2

ε . First note that the MML
and AP1st estimators do not estimate the orientation based on

Fig. 6. RMSE versus 1/σ2
ε for SNR = 35 dB.

the optical signal. Hence, the RMSE of the orientation estimate
is determined by the variance σ2

ε of the external orientation
estimate. When the variance σ2

ε is large, i.e. 1/σ2
ε is small, the

external orientation estimate is inaccurate. This will strongly
reduce the positioning performance of the MML estimator,
while the AP1st achieves a better positioning performance due
to taking into account the orientation uncertainty. However, the
inaccuracy of the first-order approximation leads the AP1st
to perform worse than HyMM, and it even underperforms
MML when σ2

ε becomes too large, implying the approximation
becomes inaccurate and results in an incorrect position esti-
mate. Comparing the lower bounds on the performance of the
SPO and HyMM algorithm, we observe that the theoretical
performance of both estimators is similar. This could be
expected as due to the unreliable external orientation estimate,
the performance of the HyMM estimator will be determined
by the quality of the optical signal, similarly as for the SPO
algorithm. On the other hand, when the variance σ2

ε is small,
i.e. 1/σ2

ε is large, the external orientation estimate is accurate.
In this case, the performance of the orientation estimate
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Fig. 7. RMSE of position and orientation estimates versus SNR and NL.

is mainly determined by the external estimator, implying
the HyMM, MML and AP1st estimators will have similar
performance. The SPO algorithm is not able to achieve the
same accuracy for the orientation based on the information
contained in the optical signal, implying the performance of
the SPO algorithm is degraded compared to other.

B. Asymptotic Tightness

In this section, we show that the proposed estimator is
asymptotically tight with its lower bound for sufficiently large
SNR or number of LEDs. In our simulations, we use the same
path for the receiver as shown in Fig. 3, and the RMSE and
associated root of the theoretical bound are averaged over the
path. First, in Figs. 7a and 7c, we show the averaged RMSE
for the position and orientation, respectively, as a function
of the SNR for NL = 24 LEDs. The results show that the
proposed HyMM estimator is indeed asymptotically tight for
large SNR. A similar asymptotic tightness is obtained with
the SPO and MML estimators to their respective lower bounds.

We observe that both the MML and AP1st estimators show an
error floor for large SNR but due to different causes. The error
floor of MML is due to the presence of the bias mentioned
in Appendix A, caused by the inaccurate external orientation
estimate, while that of AP1st is due to the inaccuracy of the
first-order approximation. On the other hand, the RMSE of
the position and orientation errors for the SPO and HyMM
algorithms do not show an error floor. There, the RMSE
for both types of errors reduces in inverse proportion to the
SNR, i.e. the algorithms are able to estimate the position and
orientation with high accuracy from the received optical signal.
Next, we show in Figs. 7b and 7d the RMSE for positioning
and orientation as a function of the number NL of LEDs, for
SNR = 35 dB. Also here, we see an asymptotic tightness
between the RMSEs and their respective lower bounds. For a
large number of LEDs, the RMSE and lower bound of the
MML algorithm show an error floor, for the same reason
as mentioned above. The results shown in Fig. 7 confirm
that for large SNR or large NL, the presence of the external
estimate has no impact on the performance when the optical
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Fig. 8. The root of theoretical lower bound as a function of the position of the receiver.

signal contains sufficient information to accurately estimate
the position and orientation from the optical signal, i.e. SPO
and HyMM perform equally well. The improvement compared
to the SPO algorithm is found when the optical signal is not
sufficient to reliably estimate the orientation as well as the
position, i.e. when there are not enough light sources to cover
the whole area, or when the SNR is too small.

C. Impact of Location of the Receiver

In this section, we investigate the performance of the
proposed receiver as a function of the position of the receiver.
We consider the same room setup as illustrated in Fig. 3.
Further, we assume the receiver is pointing upwards, the
variance 1/σ2

ε = 1 × 102 rad−2 and SNR = 35 dB. In the
first simulation, we assume the height of the receiver is fixed
at z = 1.5 m, i.e. at a vertical distance of 1.5 m from the
floor, and compute the HCRB as a function of the position
of the receiver in the XY plane. Figs. 8a and 8c show the

root of the HCRB, denoted as HMMB, for the position error
and the orientation error, respectively. The HMMB has an
inverted dome shape, where in the largest part of the area
the HMMB is low and only shows some small fluctuations,
and at the edges of the area, the HMMB is strongly degraded.
This effect is due to the limited FOV of the receiver, as the
closer the receiver is to the side boundary, the less LEDs it will
sense. Next, we consider the effect of the vertical distance Z
between the floor and the receiver. The root of the HRCB, i.e.
HMMB, averaged over the XY plane, is shown as function of
the vertical distance Z in Figs. 8b and 8d. As can be observed,
when the height Z increases, the HMMB improves as the
distance between the LEDs and the receiver reduces. However,
because the incidence angles become relatively larger when the
vertical distance between the LEDs and the receiver reduces,
the incident angles may grow too large, implying the LEDs
will starting to fall out of the FOV of the receiver. This
explains the strong increase of the HMMB when the height
approaches the maximum height of 3 m, although the effect
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on the orientation HMMB is smaller, especially when more
reliable prior information on the orientation is avaliable.

VI. CONCLUSION

In this paper, we investigated RSS-based hybrid position
and orientation estimation for a visible light system with
multiple LEDs and multiple PDs in the presence of possi-
bly unreliable prior information on the orientation. We first
constructed the channel gain model of the multiple LEDs –
multiple PDs system and the discussed the model used for
the orientation uncertainty. We designed a RSS-based position
and orientation estimation algorithm based on the hybrid
ML/MAP principle, converted the optimization problem into
a NLS problem and solved it with an iterative algorithm based
on the Gauss-Newton method on manifolds. To investigate
the optimality of the proposed estimator, we derived the
theoretical lower bound for the hybrid ML/MAP estimator.
We verified that the RMSE of the proposed estimator asymp-
totically approaches this theoretical bound for sufficiently large
SNR and number of LEDs. Further, we also compared the
performance of the proposed estimator with three state-of-the-
art estimators, i.e., the SPO, the MML and the AP1st estimator,
and found that, by properly exploiting the prior information
on orientation, the proposed estimator performs well over the
whole range of the orientation uncertainty, in contrast to the
other estimators.

APPENDIX A
THEORETICAL LOWER BOUND FOR MML ESTIMATOR

In this appendix, we derive the theoretical lower bound
for the MML estimator, which will be used in the numerical
results section for comparison. Taking into account that the
MML algorithm considers the external orientation estimate R̃
as the correct orientation, and ignores the orientation uncer-
tainty, it considers a misspecified log-likelihood function to
estimate the position. As a consequence, the RMSE for the
resulting position estimate (for a given external orientation
estimate R̃) can be lower bounded by the misspecified CRB
(MCRB) [23], which is given by

MCRB(r; R̃) = (M1 (̊r))−1 M2 (̊r) (M1 (̊r))−1

+Bias (̊r, r) , (28)

where the position estimate is defined as

r̊ = argmin
r

(
D

(
p (y|Θ) ||pm(y|r; R̃)

))
. (29)

In (29), p (y|Θ) is the true PDF of y where the condition-
ing is done on the correct position r and orientation R,
pm(y|r; R̃) is the misspecified PDF of y conditioned on
the true position r and parameterized by the (noisy) external
orientation estimate R̃, and D

(
p (y|Θ) ||pm(y|r; R̃)

)
is the

Kullback-Leibler divergence (KLD) between the true and the
misspecified PDFs. The matrices M1, M2, and Bias (̊r, r) are
respectively given by

M1 (̊r) = Ey|Θ
{
∇r∇T

r ln pm(y|̊r; R̃)
}

(30)

M2 (̊r) = Ey|Θ
{
∇r ln pm(y|̊r; R̃)∇T

r ln pm(y|̊r; R̃)
}

(31)

Bias (̊r, r) = (r − r̊) (r− r̊)T . (32)

As in general, p (y|Θ) 
= pm(y|r; R̃), the matrices M1 and
M2 are in general not equal [23]. The lower bound (28) still
depends on the random variable R̃. To obtain the lower bound
on the RMSE of the position estimate, we therefore need to
average (28) over the distribution of R̃:

E{rerT
e } � ER̃|R{MCRB(r; R̃)}. (33)

Note that the MML estimator does not estimate the orientation
based on the optical signal. As a consequence, the mean
squared error on the orientation is determined by the statistics
of the prior distribution, i.e. E{ueuT

e } = Σε.

APPENDIX B
FORMULAE

The Jacobian ∇Rε is derived by [20], [35], [47] introducing
an infinitesimal perturbation of exp(u∧) to R in the equality
of ε = − log(RR̃T)∨ and calculating the limit with respect
to u, that is,

∇Rε � ∂

∂u

∣∣∣
u=0

{
− log(exp(u∧)RR̃T)∨

}

=
∂

∂u

∣∣∣
u=0

{
− J−1(−ε)u + ε

}
= −J−1(−ε) (34)

where the penultimate equality holds because of the properties
of the Baker-Campbell-Hausdorff (BCH) formula [35], and
J−1(ε), referring to [35], is

J−1(ε)=
‖ε‖
2

cot
‖ε‖
2

I3 +
(

1 − ‖ε‖
2

cot
‖ε‖
2

)
εεT

‖ε‖2
− ε∧

2
.

(35)

Then we have
∣∣det (∇Rε)

∣∣ =
∣∣ det (J(−ε))

∣∣−1
, which is

given by [35]

∣∣ det (∇Rε)
∣∣ =

‖ε‖2

2(1 − cos ‖ε‖) (36)

=
1

1 − ‖ε‖2

4!/2 + ‖ε‖4

6!/2 − ‖ε‖6

8!/2 + . . .
.

The Taylor expansion in the last equality shows that the limit
of | det(∇Rε)| for ε → 0 is equal to 1.

The expression of ∇Θhi,j is found in [20], and for com-
pleteness, it is included in this paper, which is

∇Θhi,j = Ci,j

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ
(
nT

i vi,j

)γ−1 (
nT

P,jvi,j

)
‖vi,j‖γ+3(
nT

i vi,j

)γ

‖vi,j‖γ+3

− (γ + 3)
(
nT

i vi,j

)γ (
nT

P,jvi,j

)
‖vi,j‖γ+5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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·

⎡
⎢⎣ nT

i , nT
i

(
d∧

j

)T

nT
P,j , vT

i (n∧)T

vT
i,j , vT

i

(
d∧

j

)T

⎤
⎥⎦ . (37)

The expression of ∇R ln p(R|R̃) is

∇R ln p(R|R̃)

= −εT

(‖ε‖ sin ‖ε‖ − 2(1 − cos ‖ε‖)
‖ε‖2(1 − cos ‖ε‖) I3 + Σ−1

ε

)
∇Rε.

(38)
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