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ABSTRACT In this paper, we consider wireless positioning using Received Signal Strength (RSS) finger-
printing. To obtain good accuracy, this technique requires a database containing a high density of up-to-date
fingerprints. However, as acquiring fingerprints through training is labor intensive and the indoor topology
is subject to changes, a high density fingerprint database cannot always be obtained. On the other hand,
the time to retrieve data from a database with high density can be too high for real-time positioning. To tackle
these issues, we introduce the Hierarchical Positioning Algorithm (HPA). In this algorithm, we divide
the database into a number of sub-databases with different densities, each containing a sufficiently small
number of fingerprints to reduce the data retrieval time. The algorithm starts with a coarse estimate at
the highest level, and gradually improves the accuracy in going to the lowest level. This HPA technique
requires the construction of sub-databases containing fingerprints that are properly selected to obtain the
wanted level of accuracy. This paper considers two algorithms to construct the database: the Minimum
Distance Algorithm (MDA) to select the reference points, and the Local Gaussian Process (LGP) algorithm
to determine the RSS values at the selected reference points. Simulation results show that the hierarchical
algorithm, combined with MDA and LGP to construct the sub-databases, is a fast algorithm that can achieve
high accuracy, even with a database having a variable density of fingerprints.

INDEX TERMS Indoor positioning, signal fingerprint, Gaussian process, discrete level of detail.

I. INTRODUCTION
The existence of an accurate indoor positioning system is
a prerequisite for Location Based Services (LBS), which
are implemented in an increasingly number of applications.
However no accurate large scale positioning system is avail-
able yet, due to the lack of infrastructure, the high hardware
cost, or the low accuracy of the solutions. One of the most
promising low-cost solutions is based on RSS fingerprint-
ing. In this approach, the position is estimated by compar-
ing the Received Signal Strength (RSS) with fingerprints in

The associate editor coordinating the review of this manuscript and
approving it for publication was Kashif Munir.

a database. A fingerprint indoor positioning system consists
of two phases. In the first, off-line training phase, a database
of position-fingerprints is constructed by inserting for a
number of reference points (RPs) with the received signal
strength (RSS) from different signal sources, such as WiFi
access points [1], FM [2], UWB(ultra wide band) [3] and
geomagnetic fields [4]. In the second, on-line positioning
phase, the RSS values from different sources, measured by
the user, are compared with the data in the database, and
based on the best match, the user’s position is determined.
Because of the widespread availability of different signal
sources, the deployment cost is low. Further, the algorithms
can easily be implemented in mobile devices, and result in
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a reasonable accuracy. Currently, some commercial finger-
printing implementations are available, such as Google Map
Indoor [5], WiFiSlam [6] or Rtmap [7].

Themain issue in fingerprint positioning is the requirement
of a high-density up-to-date database, as the accuracy of the
fingerprinting technique highly depends on the density and
accuracy of the fingerprints in the database. Firstly, as con-
structing and maintaining a high-density database is labor
intensive, expensive and sometimes practically impossible,
because of the complex local environments, the available
databases show diverse training data densities, and sometimes
insufficient data for accurate positioning. As point-by-point
measurements of the fingerprints is too labor intensive and
expensive, alternative solutions to construct and maintain a
high-density database were proposed in the literature. The
first solution is crowdsourcing [8]. In crowdsourcing, the user
upload their fingerprints to update the database. However,
encouraging the user to upload their data is a challenge.
The second solution is creating a virtual database using math-
ematical model, such as linear and exponential model [9],
MotleyKeenan model [10], Log-Distance Path Loss (LDPL)
model [11], Gaussian processes (GP) model [12]–[14] and
so on. The third way is ray-tracing [15]. In ray-tracing,
a detailed description of the environment is required to
build the fingerprint database. The fourth method is simul-
taneous localization and mapping (SLAM) [16]. In SLAM,
the users are equipped with a receiver and an IMU, and
the database is populated on the fly. As the developement
of deep learning, the researchers are trying to present the
use of deep neural networks (DNN) for WiFi fingerprinting
[17]–[20]. The fingerprint database is replaced by a deep
neural network. However, training the deep neural network
requires a lot of labeled data.

The second issue in fingerprint positioning is the time
required to search the database, which is related to the cen-
tralized nature of the fingerprint position algorithms. Because
of the memory required for a dense database, the database
is generally stored in a central location server. Every time
a user wants to estimate its position, the user first needs to
collect accurate measurements of the RSS and submit the
measured values to the location server. The server searches
the database to find the most likely match, from which the
user’s position is derived. As data retrieval from a large
database is time-consuming, the users might not receive their
results in real time.

To cope with the issues in fingerprint positioning, we
introduce the Hierarchical Positioning Algorithm (HPA),
which is based on the Discrete Level of Detail (DLOD)
algorithm [21] from computer graphics. This HPA algorithm,
however, requires the construction of a hierarchical database
for the different levels of the algorithm, containing different
densities of fingerprints. In order to have the same accuracy
over the whole area, the fingerprints in each sub-database
of the hierarchical database must have a spatial distribution
that is as uniform as possible. For constructing the hierarchi-
cal database from the variable density database, we use the

FIGURE 1. The basic idea of DLOD.

Minimum Distance Algorithm (MDA) in order to select the
best RPs and the Local Gaussian Process (LGP) algorithm
to estimate the RSS values at the selected RPs. Compared
with GP, LGP has lower complexity, at the cost of a slight
deterioration of the accuracy. The HPA starts with a coarse
estimate at the highest level, and gradually improves the accu-
racy in going to the lowest level. In this paper, we show that
the proposed HPA algorithm, with the hierarchical database
constructed using LGP and MDA, improves the accuracy
in areas with sparse training data, and reduces the time-
consumption of the position estimation in dense data areas.
To the best knowledge of the authors, this article is the first
presenting the use of DLOD for fingerprint positioning.

The rest of the paper is organized as follows. Section II
introduces the hierarchical positioning algorithm, and
reviews the MDA and LGP algorithms. Section III pro-
vides the simulation results and the conclusions are given in
Section IV.

II. THE HIERARCHICAL POSITIONING ALGORITHM
A. SYSTEM DESCRIPTION
In this paper, we concentrate on 2D positioning. Assume
the fingerprint database covers an area P of S(m2), and
contains fingerprints from a signal sources, such as FM,
WiFi, DVB and DTMB. During the training phase, we mea-
sure signal strengths at n reference points (RPs) RPi =
(xi, yi), i = 1, 2, · · · , n, and store the resulting RSS values
together with the coordinates. Based on the resulting training
database DBtr , we will estimate a user’s position during the
on-line phase.

In order to reduce the time for searching the database,
we propose the Hierarchical Positioning Algorithm (HPA).
This algorithm is based on the Discrete Level of
Detail (DLOD) algorithm used in computer vision to decrease
the complexity of representation of a 3D object when it moves
away from the viewer [22]. Figure 1 illustrates the basic idea
of DLOD.

In Fig. 1, if we are far from the object, we just need to
render level 1, which contains fewer details. When we move
closer, then we render one of the four tiles in Level 2 that
contains more details according to our view. UsingDLOD is a
way of decrease the complexity of a 3D object representation.
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FIGURE 2. A hierarchical database with two levels.

In the HPA algorithm, we use a hierarchical database con-
taining different levels. In a high-level sub-database, the area
P is sparsely covered with a low density of fingerprints,
resulting in a coarse estimate. At a low-level sub-database,
the data is dense and results in a fine estimate. Figure 2 illus-
trates a hierarchical database with two levels. Let us denote
the database at level k as DB(k). We assume database DB(k)

contains n(k) reference points RP(k)i , i = 1, . . . , n(k) with
coordinates (x(k)i , y(k)i ) and RSS values {(RSS(k)i,j , δ

(k)
i,j )|j =

1, 2, · · · , ai}, where ai is the number of signal sources within
RP(k)i ’s visibility, RSS(k)i,j is the measured signal strength cor-

responding to signal source j and δ(k)i,j is the uncertainty on
the RSS value. In order to obtain the wanted accuracy over
the whole area P, the RPs at each level have to be spatially
uniformly distributed. However, the database constructed in
the training phase will in practice have variable density, such
that extracting the hierarchical database from the training
database is not straightforward. In order to build the hier-
archical database, we consider the minimum distance algo-
rithm (MDA) to select the RPs as uniformly as possible over
the area, and the local Gaussian process (LGP) algorithm to
estimate the RSS values for the selected RPs. After the hierar-
chical database is constructed, we propose an altered version
of the K-weighted nearest neighbors (KWNN) algorithm to
extract the user’s position from the hierarchical database.

B. MINIMUM DISTANCE ALGORITHM
The hierarchical fingerprint database consists of several
sub-databases with different densities of fingerprints.
As stated earlier, the fingerprints in each sub-database should
be selected as uniformly as possible over the area P. Define
n(k) as the number of reference points to be selected for the
databaseDB(k) at level k . However, for general values of n(k),
it is not straightforward to uniformly distribute the RPs over
the area. Therefore, we propose a low-complexity algorithm
to select the positions of the RPs: the Minimum Distance
Algorithm (MDA). In this algorithm, the selection of the
positions of the RPs of the sub-database at level k is based
on a virtual sample database DB(k)v , which is constructed by
placing a square grid in the area P with grid size λ(k), where
the positions of the virtual RPs are selected as the corners of

the squares in the grid. Assuming the room has size xmax ×

ymax, the number of virtual positions equals b xmax
λ(k)

, c · b ymax
λ(k)
c.

The n(k) positions of the RPs for sub-database k are selected
out of the virtual sample database DB(k)v . We initialize the
algorithm by randomly choosing one virtual position RPc
from DB(k)v : DB(k) = {RPc}. The other n(k) − 1 positions are
picked from the virtual database DB(k)v based on the measure
function

Mi =
∑
j

1
(xi − xj)2 + (yi − yj)2

(1)

where (xi, yi) is the coordinate of the candidate position ∈
DB(k)v and (xj, yj) are the coordinates of the RP positions
already present in the sub-database DB(k). The virtual posi-
tion that minimizes Mi is selected and added to the database
DB(k). Because the measure function Mi is inversely propor-
tional to the Euclidean distances between the candidate RF
and the RPs in the database DB(k), candidate positions that
are far from the already selected RP positions are favored,
while candidate positions near already selected RP positions
are filtered out. As a result, the distances between the RPs
will be maximized and the RPs in DB(k) will be distributed
uniformly and expand to the very edges of the area P.
The algorithm is shown in Algorithm 1.

Algorithm 1MDA

Require: the area P, the distance λ(k) between neighbor
virtual RPs in DB(k)v , the number n(k) of RPs we want to
select.

Ensure: select RPs every λ(k) meters in P to build DB(k)v ,
Ensure: randomly select RPc from DB(k)v , DB(k) = {RPc}
while |DB(k)| 6= n(k) do
for all RPi ⊂ DB(k)v do
CalculateMi (1)

end for
RP = arg min

RPi∈DB
(k)
v

Mi

DB(k)← RP
end while

To illustrateMDA,we consider an areaP of 16.5m×48.5m,
and λ(k) = 0.5m. Figure 3 shows the positions of the RPs
in DB(k) when n(k) = 20 and 40 RPs are selected out of the
virtual databaseDB(k)v . Further, the figure shows the positions
of the RPs when the RPs are selected randomly from DB(k)v .
As can be observed, the proposed algorithm is able to select
the RPs spatially uniform over the area P.

After the positions of the RPs in database DB(k) are
selected with MDA, the RSS values for these RPs need to be
determined. To this end, we compare the positions of the RPs
in DB(k) with those in the training database DBtr . Whenever
one or more RPs in DBtr are within a distance ε(k) of a
RP RPi in DB(k), we will replace the position of the RP in
DB(k) with the position of the nearest RP in DBtr , together
with its RSS values and the uncertainty on the measured
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FIGURE 3. Positions of the RPs (a) MDA, n(k) = 20 (b) MDA, n(k) = 40
(c) randomly, n(k) = 20 (d) randomly, n(k) = 40.

RSS values. If no RPs in DBtr are within a distance ε(k) of a
RPRPi inDB(k), the Local Gaussian Process (LGP) algorithm
will be used to estimate the RSS values and their uncertainty
in RPi.

The resulting sub-database DB(k) is determined by three
parameters: the number n(k) of RPs, the distance λ(k) between
RPs in the virtual sample database and the radius ε(k) within
which is looked for nearby training RPs. The number n(k)

of RPs is defined by the accuracy that is targeted at level k
of the hierarchical positioning algorithm. The distance λ(k)

determines not only the spatial uniformity of the resulting
RPs, but also the complexity of the algorithm: by reducing
λ(k), the RPs will be placed more uniformly over the area
P, but the complexity of MDA increases as the number of
virtual RPs to be searched increases in an inverse proportion
to the quadrate of λ(k). Finally, the radius ε(k) will have an
influence on the performance of the HPA. When the radius is
small, the resulting database DB(k) will have a more uniform
placement of the RPs, but the probability of finding a nearby
training RP decreases, such that the RSS of more RPs need to
be determined using the LGP algorithm. On the other hand,
when the radius is selected large, the resulting databaseDB(k)

will be less spatially uniform, but more training RPs will be
present in DB(k). In the numerical results, we will evaluate
the effect of the parameters λ(k) and ε(k) on the performance
of the positioning.

C. THE LOCAL GAUSSIAN PROCESS ALGORITHM
The Local Gaussian Process (LGP) algorithm is used to
reduce the computational complexity of the Gaussian Pro-
cess (GP) algorithm, which is used to predict unknown RSS
values at positions that are not in the training database.
In [12], various GP sparsification methods are introduced.
LGP is proposed from physical point of view, while various
GP sparsification methods in [12] are introduced from a
mathematical point of view.

In this section, we first review the GP algorithm. This
algorithm starts from the property that RSS values at sur-
rounding positions are correlated. Because of this correlation,
it is possible to describe the RSS at positions where the RSS is
not known as function of the RSS at positions where the RSS
value ismeasured. TheGP algorithm uses theGaussian kernel
to describe this correlation. As a result, the correlation matrix

between the noisy RSS values RSSi at positions ci = {xi, yi},
i = 1, . . . , n, measured during the training phase, can be
written as:

covρ = Q+ S (2)

where ρ(i) = RSSi, Qi,j = k(ci, cj), and S = diag{σ 2
i } is the

diagonal matrix of the variances of the measured RSS values
RSSi [13]. Further, k(ci, cj) is the Gaussian kernel function:

k(ci, cj) = σ 2
f exp(−

1
2l2
||ci − cj||2) (3)

where σ 2
f and l are the signal variance and length scale,

respectively, determining the correlation with the RSS values
at surrounding positions. The parameters σ 2

f , and l can be esti-
mated using hyper-parameter estimation [13]. This covari-
ance matrix can be used to predict the RSS value RSS∗ at an
arbitrary position c∗ = {x∗, y∗}. The posterior distribution
of the RSS value at any position is modeled as a Gaussian
random variable, i.e. (RSS∗|c∗) = N (RSS∗;µ∗, σ 2

∗ ), where
µ∗ and σ 2

∗ are given by:

µ∗ = kT∗ (Q+ S)−1ρ (4)

σ 2
∗ = k(c∗, c∗)− kT∗ (Q+ S)−1k∗ + σ 2

n (5)

where σ 2
n is the measurement variance, and k∗(i) = k(c∗, ci),

i = 1, . . . , n. The estimate of the RSS value at position
c∗ = {x∗, y∗} equals RSS∗ = µ∗ and the uncertainty on the
estimated RSS is σ 2

∗ .
For a large area containing several hundreds of RPs,

computing the RSS values with equation (4) and (5) are com-
putationally demanding because of the inversion of the large
covariance matrix (2). However, in an indoor environment,
we may assume that RPs at a large distance from the position
where we want to estimate the RSS value, are blocked by
several walls and other objects. Hence, the covariance k(·, ·)
between the RSS value of those far away RPs and the RSS
value at the considered position will be approximately zero.
As a result, it is a reasonable assumption that only train-
ing RPs close to the considered position will contribute to
the RSS value at considered position. The LGP algorithm
restricts the training RPs that contribute to the RSS value
at position c∗ to a training set TS∗, setting k(x∗, xi) = 0 if
xi 6∈ TS∗. Assuming the number of RPs in TS∗ equals L,
the LGP algorithm simplifies equation (4) and (5) by only
considering the k nearest RPs. i.e. k∗ and ρ reduce to a L× 1
vector, and covρ (2) to a L × L matrix. Compared to the
complexityO(n3) when all n RPs in the training database are
used, the LGP algorithm has complexityO(nL) to select the L
nearest RPs and O(L3) to invert the reduced-size covariance
matrix (2).

To illustrate the LGP algorithm, we consider the RSS radio
map of a WiFi access point in an indoor environment. The
true radio map is created using the WinProp tool from AWE
Communications [23]. The area is a 19.5m×48.5m rectangle,
containing 18 rooms in the same floor. Figure 4 shows the true
radio maps, including all n = 3318 RPs.
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FIGURE 4. True radio map created by WinProp.

FIGURE 5. The uncertainty on the RSS value(a) radio map using LGP
(b) LGP RSS uncertainty (c) radio map using GP, K = 4 (d) GP RSS
uncertainty (e) radio map using LDPL. (b) LDPL RSS uncertainty.

Figure 5 shows the radio maps created by GP, LGP and
LDPL, respectively. In this simulation, we randomly select
80 nodes from the database as training data. And use different
algorithms to estimate the other nodes’ RSS values. The
parameters of the GP are estimated based on the training data,
considering all n = 80 RPs. In LGP algorithm, L is set to 4.
And the Log-Distance Path Model (LDPL) [24], where the
parameters of the LDPL model are estimated based on the
training data. The uncertainty of RP i is defined as follows:

Diffi = (RSSi − R̂SS i)2 (6)

where R̂SS i,j and RSSi,j are estimated and true RSS values at
RP j, respectively.
As can be observed, the radio maps for GP and LGP

are similar to the true radio map. The LDPL model, which
is known to fail at positions far from the signal source,
resembles less the true radio map.

We also compute the average uncertainty over all positions.
The average uncertainty is defined as:

Diff =

∑m
i=1Diffi
m

(7)

GP has the lowest average uncertainty, which is about
8.00, followed by LGP with an average of 9.42. The highest
average comes from LDPL, which is 34.86.

For more accurate result, we use σ̂r , RMSEr and time
to evaluate these three algorithms, σ̂r and RMSEr are

FIGURE 6. The σ̂r of GP and LGP.

FIGURE 7. RMSEr and Time complexity vary with different ρtr . (a) is
RMSEr and (b) is the time spend in creating the virtual database using
different algorithms.

defined as:

σ̂ 2
r =

∑
i

σ 2
i /m (8)

RMSEr =

√∑
i Diffi
m

(9)

where m is the number of virtual RPs.
time refers to the time for calculating all the RPs’ RSS

values in the database.
And we also define a parameter ρ∗ to indicate the density

of the database:

ρ∗ = n∗/S (10)

where n∗ is the number of RPs in the database. ρtr and
ρv refers the density of the training database and virtual
database, respectively.

In the following simulation, we set ρtr varies from
0.02 to 1, the training RPs are selected randomly. For
each ρtr , we simulate 2000 times with ρv = 1, σ 2

n = 0 and
L = 4. Fig.6 is the result.

In Fig.6, We can see that GP has a smaller σ̂r than LGP,
but the differences between them is slightly small. We com-
pare GP, LGP and LDPL in RMSE and the time complexity
in Fig.7.

In Fig.7(a), GP performs the best, followed by LGP, and
LDPL performs the worst. But the differences between GP
and LGP is small. In Fig.7(b), LDPL has the lowest time
complexity, followed by LGP, and GP. In summary, LGP
keeps a good balance between RMSE and time complexity.
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D. THE WEIGHTED K NEAREST NEIGHBORS ALGORITHM
Using the two previous algorithms, we are able to generate
the hierarchical database required for our HPA positioning
algorithm. With this hierarchical database, we will succes-
sively estimate the position at the different levels, starting
at the highest level. At each level, we use the weighted K
nearest neighbors (WKNN) algorithm, which searches in the
database for the K RPs with RSS values closest to the user,
and takes a weighted sum of the positions of these nearest
RPs to estimate the position. However, as the uncertainty on
the RSS value of some RPs in the database can be high,
the accuracy of the standard WKNN algorithm can be low.
In order to improve the accuracy, we change the algorithm
to take into account the uncertainty on the RSS values in the
database.

Let us assume we measure the RSS values N times.
Assume the user measures the RSS values {RSS`,t |` =
1, . . . , a} during the t th measurement, where a is the number
of signal sources. The signal distance to RP j in the database
at level k is defined as

dj,t =
a∑
`=1

δ
(k)
j,` |RSS`,t − RSS

(k)
j,` | (11)

where RSS(k)j,` is the RSS value at RP j for signal source `,

and δ(k)j,` is the uncertainty on that RSS value. This distance

measure favors more reliable RPs having a small δ(k)j,` , ` =

1, . . . , a and will disfavor unreliable RPs with high uncer-
tainty δ(k)j,` . Taking into account that in general the uncertainty
of a training RP will be lower than that of a virtual RP,
the training data is more likely to be selected with this altered
algorithm, improving the accuracy.

After the selection of the nearest neighbors, the WKNN
algorithm estimates the coordinates of the user by weighting
the coordinates of the K selected RPs:

(x̂t , ŷt ) = (
K∑
j=0

w̃j,tx
(k)
j ,

K∑
j=1

w̃j,ty
(k)
j ) (12)

where (x(k)j , y(k)j ) are the coordinates of RP j, and w̃j,t is the
normalized weight:

w̃j,t =
1/dpj,t∑K
i=0 1/d

p
i,t

. (13)

The variance σ is defined as follows:

σ =

N∑
t=1

∑K
i=1 w̃i[(x

(k)
i − x̂t )

2
+ (y(k)i − ŷt )

2]

1−
∑K

i=1 w̃
2
i

(14)

If we want more accurate result, we can continue our
estimation using lower level sub-database DB(k+1), which
contains more RPs. For reducing the time for searching in
database to find the most likely match RPs. We can use the
previous result to reduce the searching space.

In the previous estimation, we calculate the location based
onK nearest RPs inDB(k+1). We put theseK RPs in set TS(k).

FIGURE 8. Creating S based on TS.

FIGURE 9. Floor plan of the office corridor and the position of the APs.

Based on TS(k), we can estimate the user’s most possible
located area denoted by S(k)t :

S(k)t = {(x, y)|x ⊂ [min{x(k)j },max{x
(k)
j }],

y ⊂ [min{y(k)j },max{y
(k)
j }]}, (x

(k)
j , y(k)j ) ⊂ TS(k) (15)

Fig. 8 shows how the area S(k)t is created, where K is set
to 3:

The area St is the user’smost likely located place.We select
all the node in S(k)t fromDB(k+1) for fine estimation using the
algorithm illustrated in this section.

III. NUMERICAL RESULTS
In this experiments, we apply the WiFi fingerprint to test our
algorithm. We first compare our proposed virtual database
creation algorithm LGP with GP and the widely used Log-
Distance Path Loss model. We also evaluate our positioning
algorithm with both high and low density training database.

A. SET-UP OF INDOOR EXPERIMENT
Our test environment consists of 18 room in one floor, with
the area of 800m2. And 8APs are placed in this area. The floor
plan of the corridor and the position of the APs are shown
in Fig. 9.

We build aWiFi fingerprint radio map for our environment
by means of 3D ray tracing. We use WinProp from AWE
communications to create the signal fingerprint database. The
database contains 3318 RPs, denoted as DB. We consider
the radio map as the ground truth. In the following simula-
tion, we only use 800 random distributed RPs for training.
The others are used for testing.
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FIGURE 10. CDF and Mean error vary with different λ(k). The training
curve means using the training database for positioning, and random
means using 80 randomly selected RPs for positioning.

For evaluating different algorithms, we define tc and
RMSE . RMSE is defined as:

RMSE =

√∑N
i=1 [(xt − x̂t )2 + (yt − ŷt )2]

N
(16)

where (xt , yt ), (x̂t , x̂t ) are the true and estimated coordinates,
respectively. N is the number of positioning instance.
tc refers to the mean time for locating one single RP.

B. EVALUATING THE PARAMETERS
There are some parameters in HPA, including λ(k) in MDA,
K in WKNN, ε(k) and L in LGP. All of these parameters
determines the complexity and positioning accuracy of HPA.
Wefirst evaluate these parameters to get the optimized values.

1) λ(k)

λ(k) determines the density ofDB(k)v . DifferentDB(k)v result in
different DB(k), as a result, the positioning accuracy might be
affected.

In this simulation, we test different λ(k). We apply the
LGP for estimating the virtual RPs’ RSS values. The stardand
WKNN algorithm is applied for positioning. The other
parameters are set as follows: ε = 0, K = 4, L = 4,nk = 80;
σ 2
f , σ

2
n and l are estimated using hyper-parameter estima-

tion. We build different DB(k) based on different DB(k)v for
positioning. Results comes from 20000 positioning instance.

Fig. 10 is the positioning result from different λ(k):
In this simulation, λ(k) is set to 0.25, 0.5, 0.75, 1, 1.25,

1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, and 3.25, respectively. We also
use the training database, containing 800 training RPs, and
randomly selected 80 RPs for positioning. Fig.10(a) only
contains the result when λ(k) is set to 0.25, 1.25, 2.25,
and 3.25. In Fig.10, positioning using the training database
performs the best, while the random database worst. The
difference between variant λ(k) is slightly small. In Fig.10(b),
λ(k) has almost no effect on the performance. But building the
database with different λ(k) cost different time. Fig.11 gives
the time for constructing the virtual database with
different λ(k):
Fig.11 shows that the time decrease when λ(k) increase.

The result from Fig.10 and Fig.11 tell us that we can use as

FIGURE 11. Time for building the virtual database.

FIGURE 12. percentage of training data in DB(k) varies with ε(k).

large λ(k) as possible to reduce the time for constructing the
database.

2) ε(k)

ε(k) determines the distance that we can use the training data
directly. A big ε(k) might break the distribution of the RPs,
but will introduce more reliable RSS values. In this section,
we will evaluate the performance with different ε(k).
Similar with the previous setting, we apply the LGP for

estimating the virtual RPs’ RSS values, and the traditional
WKNN algorithm for positioning. The other parameters are
set as follows: λ(k) = 1.25, K = 4, L = 4,nk = 80;
σ 2
f , σ

2
n and l are estimated using hyper-parameter estimation.

We build DB(k) with different ε(k) based on DB(k)v for posi-
tioning.

We first look at the percentage of training data in DB(k).
A large ε(k) result in more training data be used. Fig.12 shows
the result. Results comes from 20000 positioning instance.

The result in Fig.12 shows what we expected. The
percentage increase as the grows of ε(k).
More training data introduces more reliable data, but the

breaks the distribution of the RPs in DB(k). We explore
the positioning performance with different ε(k). Fig.13 gives
the result.
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FIGURE 13. CDF and Mean error vary with different ε(k). The training
curve means using the training database for positioning, and random
means using 80 randomly selected RPs for positioning.

FIGURE 14. CDF and Mean error vary with different L. The training curve
means using the training database for positioning, and random means
using 80 randomly selected RPs for positioning.

In this simulation, ε(k) is set to 0, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, and 1, respectively. We also use the training database,
containing 800 training RPs, and a randomly selected 80 RPs
for positioning. Fig.13(a)only contains the result when ε(k)

is set to 0, 0.25, 0.5, 0.75, and 1. In Fig.13, positioning
using the training database performs the best, different ε(k)

doesn’t result in significant difference in performance. When
ε(k) = 1, which means all the RPs are training nodes,
the performance is not the best. When ε(k) = 0, which means
the least training RPs are included, the performance is not the
worst. Fig.13(b) shows that the best result is achieved when
the ε(k) is set to a middle value.

3) L
L is the number of training RPs used for estimating the RSS
values for a given virtual nodes in LGP. A large L introduces
more training data, and more accurate result obtained. But
the time for estimating the RSS values will be increased.
In this section, we explore to find a good balance between
the accuracy and time for building the virtual database.

Similar with the previous setting, we apply the LGP for
estimating the virtual RPs’ RSS values, and the traditional
WKNN algorithm for positioning. The other parameters are
set as follows: λ(k) = 1.25, K = 4, nk = 80, ε(k) = 0.5;
σ 2
f , σ

2
n and l are estimated using hyper-parameter estima-

tion. We build DB(k) based on DB(k)v with different L for
positioning. Results comes from 20000 positioning instance.

Fig.14 shows the result.
In this simulation, L is set from 2 to 15. Positioning

using training database and randomly selected database

FIGURE 15. CDF and Mean error vary with different K .

are included. In Fig. 14(a), we can see that different L ′s CDF
curve looks similar to each other. When L = 2, we find that
the positioning accuracy is not as good as others. Fig.14(b)
proves our observation. The reason is that using a small L
means fewer training data used for estimating the virtual RP’s
RSS values. As a result, the positioning result is not as good as
using more training data. But a large L does not leads to better
performance. This result proves assumption 1. We needn’t to
using all the training data for estimation.

4) K
K is the number of nodes used for positioning. In this simu-
lation, we want to find the best K for estimation. We apply
the traditional WKNN algorithm for positioning based on the
training database. We set K increase from 1 to 10. Results
comes from 20000 positioning instance.

Fig.15 shows the result.
The result from Fig.15(a) shows that a smaller or larger K

is not good choice. Fig.15(b) tells us that using 3 nodes for
positioning performs the best.

C. EVALUATING THE IMPROVED WKNN ALGORITHM
The difference between standard WKNN and improved
WKNN algorithm is the distance definition. In this sim-
ulation, we want to evaluate the improved WKNN algo-
rithm both in sparse and dense database. We create two
virtual databases using MDA and LGP based on 40 ran-
domly selected RPs. One is sparse virtual database, con-
taining 40 virtual points denoted as DB(1), while the other
one contains 400 virtual points, denoted as DB(2). In MDA
algorithm, λ(1) = λ(2) = 1.25. In LGP algorithm, L = 5,
ε(1) = ε(2) = 0.5. In standard and improved WKNN
algorithm, K = 3.

Fig.16 shows the CDF and Mean Error for these two
algorithms using different databases.

From Fig.16, we can see that the improved algorithm
perform better when we use the sparse database. In sparse
database, the average distance from the testing node to the
nearby RPs is large than that in dense nodes. But the number
of training RPs is limited, and we set ε(1) = ε(2) = 0.5. As a
result, we have more possibility to select the more reliable
data in sparse database.

When we use the sparse database for positioning, the mean
error for the standard algorithm is 2.2479m, while the
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FIGURE 16. Evaluating improved WKNN using different database. (a) is
using a database containing 40 virtual RPs. (b) is using a database
containing 400 virtual RPs.

FIGURE 17. RMSE of WKNN and HPA using sparse training database.

improved algorithm is 2.1471m. The positioning accuracy
has been improved by the proposed algorithm. When we use
the dense database, the positioning accuracy drops down as
illustrated in Fig. 16(b).

D. EVALUATING HPA
1) USING SPARSE TRAINING DATABASE
Training and updating a low density of training database is
much easier than a dense one. Here we evaluate HPA using
the low density of training database.

In the Simulation, we set ρtr increases from 0.01(8 RPs
in 800 m2 area) to 0.1(80 RPs in 800 m2 area), and the
RPs in ρtr are selected randomly from DB. In HPA, we cre-
ate the database with only two levels using GP, LGP and
LDPL, respectivily. ρ(1) = 0.05, ρ(2) = 0.5, λ(1) =
λ(2) = 1.25, ε(1) = ε(2) = 0.5. In LGP, L = 5.
In the standard WKNN, we use DBtr for positioning. And
we set K = 3 both in standard and improved WKNN. For
each ρtr , we simulate 800 times. In each simulation, we test
2000 positioning instances. In each positioning instances,
we useDB to generate signal strengthmeasurement by adding
Gaussian noise N (0, 5). We compare their RMSE, which
defined in Equation (16), and average positioning time for
one node.

Fig. 17 gives the simulation results.
In Fig. 17, there are four curves. WKNN means using

the standard WKNN algorithm, and the database is the

FIGURE 18. Time of WKNN and HPA using sparse training database.

training database. The average RMSE is 4.59. HPA(GP),
HPA(LGP), and HPA(LDPL) mean using the HPA algorithm
for positioning, and the virtual databases are built using GP,
LGP, and LDPL algorithm, respectively. As we can observed
from this Figure, HPA(LDPL) performs the worst. The aver-
age RMSE is 7.05. HPA(GP) and HPA(LGP) perform nearly
the same, the average RMSE is 3.49 and 3.48, respectively.
Compared with standard WKNN, the proposed algorithm
improves the RMSE for about 24.2%. Fig.18 gives the time
for locating one node.

In Fig.18, we find that WKNN cost least time, this is
because there are less RPs for positioning. HPA(LDPL)
cost the most time, this is because in the first stage,
the possible region is very large. As a result, in the sec-
ond stage, the algorithm has to search in a large database.
HPA(GP) and HPA(LGP) cost nearly the same. When the
training database’s density is about 0.1, WKNN, HPA(GP)
and HPA(LGP) cost the same time. But in Fig.17, we can
see that HPA(GP) and HPA(LDPL) have less RMSE. And
in Fig.7(b), we see that GP cost far more time for build-
ing the virtual database. These result means the proposed
algorithm performs the best when the training database is
sparse.

2) USING DENSE TRAINING DATABASE
Assuming we have a dense training database DBtr . For
comparing WKNN and HPA, we assumes ρtr varies from
0.1 to 1. The RPs in the training database are selected
randomly from DB. All the other parameters are set the
same as the previous section. Fig. 19 gives the simulation
results.

In Fig. 19, all the four curves mean the same with Fig.17,
but here we use more dense training database. As illus-
trated in Fig.19, HPA(LDPL) performs the worst, the average
RMSE is 4.68. Followed by the standard WKNN algorithm,
while the average RMSE is 3.22. HPA(GP) and HPA(LGP)
performs nearly the same, the average RMSE is 2.874 and
2.873, respectively. The performance has been improved for
about 10.8%. Fig.20 is the time for locating one node.
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FIGURE 19. RMSE of WKNN and HPA using dense training database.

FIGURE 20. Time of WKNN and HPA using dense training database.

In Fig.20, the time for WKNN increase with ρtr , this is
because the algorithm has to search in a increasing scale
database. But the time for HPA(LDPL) decrease with ρtr , this
is because more training RPs are introduced as the increase of
ρtr , where Fig.12 gives the result. HPA(GP) and HPA(LGP)
cost the same. But Fig.7(b) tells us that GP cost far more time
for building the virtual database than LGP. These result also
means the proposed algorithm performs the best when the
training database is dense.

In this subsection, we prove that the proposed algorithm
performs better both using sparse and dense training
database.

IV. CONCLUSION AND FUTURE WORKS
Wireless fingerprint technique has the advantage of low
deployment cost, supply for reasonable accuracy and easily
to be applied to mobile devices. As a result, fingerprinting
has attracted a lot of attentions. The positioning accuracy
of fingerprint technique is highly dependent on the density
of RPs in the fingerprint database. However, constructing a
fingerprint database, with high density fingerprint samples,
is labor-intensive or impossible in some cases. And even if
it was possible to get a high density of fingerprint database,

data retrieve from the large database is time consuming, and
the database has to be updated as the environment changes.

For these problems in fingerprinting, we introduce the
DLOD(Discrete Level of Detail) from computer graphics to
the fingerprint localization problem to propose HPA. This
algorithm can be applied to the both high and low density
of training database.

In HPA, we first propose MDA to transform the differ-
ent density of training database into uniformly distributed
databases, which contain different density of sub-databases.
And then, we propose LGP to estimate the RSS values for
all the virtual RPs. The higher level built with low den-
sity of fingerprints gives coarse estimation, while the lower
level contains dense data to provide fine estimation. There
are two advantages in HPA. Firstly, the time for position-
ing is reduced. This is because, in HPA, we only search
the matched reference points in a small database, instead
of a large database. Secondly, the positioning accuracy is
increased. This is because LGP will supply more reference
points for positioning.

Simulation results show that whenwe have a dense training
database, the positioning accuracy can be improved for about
10.8%. And when the training database contains low density
fingerprints, the positioning accurate can be improved for
about 24.2%. The results also imply us that we can select the
RPs for training database based on MDA.

This algorithm can be applied to both high and low density
training database, need no more specialized hardware, and
can reuse the existing Wi-Fi infrastructure and fingerprint
database, implying it’s robust for daily used.

Our future work is concentrate on building a larger experi-
ment environment to test our algorithm, and more levels will
be tested.
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