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Abstract—We consider uplink multiuser multiple-input
multiple-output (MIMO) orthogonal frequency division multi-
plexing (OFDM) communication. The transmit (Tx) side of the
envisaged system consists of several single-antenna users or/and
several multiple-antenna users. At the receive side, a multiple-
antenna access point employs compressive sensing techniques to
estimate the channel impulse response from the preamble portion
of the observed packets. The traditional approach is that of
orthogonal pilot allocation: during a short training period, each
OFDM subcarrier is assigned exclusively to a single Tx antenna.
In this case, the channel state information can conveniently be
acquired on a per Tx antenna basis. To the best of our knowledge,
all related research imposes that all Tx antennas are allocated the
same amount of pilots (which must then be tailored for the most
extreme channel conditions). However, in the considered system,
Tx antennas may experience totally different channel conditions.
Under these circumstances, the use of a fixed number of pilots per
Tx antenna results in a lot of unnecessary overhead. To tackle this
problem, our work addresses the design of efficient algorithms
for adaptive orthogonal pilot allocation. The following design
principles are applied: orthogonal pilot allocation, constant-
modulus modulation, minimum measurement matrix mutual
coherence optimization, and the condition that the number of
pilot subcarriers allocated to each Tx antenna is adjusted to the
channel conditions experienced by that Tx antenna. The paper
tackles the problem of determining the optimal number of pilot
subcarriers as well as the optimal positions of the pilots. To facili-
tate adaptive operation, we propose a reduced-complexity method
to determine the optimal pilot positions. The performance of our
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algorithms is demonstrated by means of computer simulations,
using both theoretical channel models and results from our own
channel measurement campaign.

Index Terms— OFDM, MIMO, sparse channel estimation,
compressive sensing, pilot allocation.

I. INTRODUCTION

RTHOGONAL  frequency  division  multiplex-
Oing (ODFM) is ubiquitous in wireless communication
networks, where it is often combined with other wireless
technologies such as multiuser (MU) multiple-input multiple-
output (MIMO). In an uplink MU-MIMO-OFDM system,
multiple user nodes (UN) use the same physical resources to
transmit their data simultaneously to a multiple-antenna access
point (AP). For successful data reconstruction, it is imperative
that the AP has accurate channel state information (CSI) [1].
Enabling the AP to recover the channel prior to data detection,
it is customary for UNs to send training data in the form of a
priori known pilots. For the sake of spectral efficiency, some
MU-MIMO-OFDM systems opt for a scenario where all
active UN antennas simultaneously send pilots over the same
OFDM subcarriers [2], [3]. However, the more traditional
approach is that of orthogonal pilot allocation: during a short
training period, each OFDM subcarrier is assigned exclusively
to a single UN antenna [4]-[6]. In this case, the CSI can
conveniently be acquired on a per UN antenna basis.

Wireless communication channels often behave as linear
filters with long impulse responses with most of the energy
concentrated in a few short time intervals [7]. To limit the
amount of pilots that are needed for the accurate estimate of
such ‘sparse’ channels, compressive sensing (CS) based chan-
nel estimation can be used. The accuracy that can be achieved
with such methods depends on (i) the channel conditions,
(ii) the CS reconstruction method and (iii) the pilot alloca-
tion [8], [9]. In [10]-[12], several algorithms are proposed to
effectively reconstruct a sparse signal. Any of these algorithms
can be applied to estimate sparse channels. Further, some
CS-based channel estimation methods have been specifically
developed for the MIMO-OFDM system [13]-[15]. Accurate
channel estimates can be obtained with these methods pro-
vided that a suitable pilot allocation is adopted. However,
finding a good pilot allocation for estimating sparse OFDM
channels is not trivial. In [4]-[6], [16]-[18], the issue was

1536-1276 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Gent. Downloaded on December 08,2022 at 09:37:10 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-9045-5276
https://orcid.org/0000-0001-8741-5222
https://orcid.org/0000-0003-0414-9147
https://orcid.org/0000-0003-1366-2604
https://orcid.org/0000-0001-8139-2736
https://orcid.org/0000-0003-0667-3276

Ll et al.:

forward
channel
H

pilots

preamble
generator

ADAPTIVE PILOT ALLOCATION FOR ESTIMATING SPARSE UPLINK MU-MIMO-OFDM CHANNELS

1

1

! 1

Lo v B, |
H 1

T remove CP DFT : — — i

' Y,! b.
Lo o2 o R
s ! . . . Lt H H H

! packet
1| disassembler

8231

ZFE H demapping

feedback
channel

preamble
generator

Fig. 1. Block diagram of the considered MIMO-OFDM communication

studied for single-input single-output (SISO) OFDM systems.
A wide range of optimization procedures is proposed; many
of them are characterized by a high complexity and a slow
convergence. Also, the number of data and pilot subcarri-
ers per OFDM symbol is always fixed. The latter becomes
problematic under dynamic channel conditions, where it is
appropriate to instantaneously adjust the pilot allocation.
A low-complexity procedure to estimate the instantaneous
length and ‘sparsity’ of a SISO channel was proposed in [19],
for OFDM symbols that are entirely allocated to pilots. So far,
it has not been investigated whether the algorithm remains
useful when only a portion of OFDM subcarriers is allocated
to pilots. In addition, it has never been studied how the
number of pilots per OFDM symbol can be adapted to match
the effective channel length and sparsity. Orthogonal pilot
allocation for MIMO-OFDM was considered in [4]—[6]. In all
cases, all UN antennas in the system are assigned by default
the same number of pilot subcarriers. In distributed systems
with multiple UNs and a multi-antenna AP receiver, UNs
can exhibit substantially different channel statistics. Moreover,
if UNs can move independently, the overall coherence time
reduces. In such cases, a fixed and unified worst-case sce-
nario pilot allocation (always accommodating for the most
extreme channel conditions) can cause a lot of unnecessary
overhead. Adaptive, antenna-specific pilot allocation is then
more appropriate [20].

This paper considers adaptive antenna-specific orthogonal
pilot allocation for uplink MU-MIMO-OFDM. The main con-
tributions of this paper are:

o A novel three-step procedure to continuously update the
channel estimates and suitably adapt the pilot allocation
in the preamble, prompting the system to accommodate
the needs of mobile users.

o A novel efficient algorithm to simultaneously estimate the
channel length and sparsity of all the channel impulse
responses (CIRs). The algorithm accomodates for the
fact that each antenna is allocated only a portion of the
preamble subcarriers.

o A novel strategy to properly divide the total number of
pilot subcarriers over the different UN antennas.

o An improved pilot allocation algorithm. Smart updating
conditions are applied to accelerate the convergence.

system.

Further, the concept of the ‘shrinking potential’ is
employed, which is new in the context of orthogonal pilot
allocation.

The paper is organized as follows. Section II introduces the
system model and Section III reviews CS channel reconstruc-
tion. In Section I'V-A, we first show how a receiver can retrieve
and track the length and sparsity of all MIMO subchannels
simultaneously, in parallel. Then, in Section IV-B, we propose
a way to continuously adapt the number of pilot subcarriers
per transmit antenna. Finally, in Section IV-C, we derive a
novel orthogonal pilot allocation method. The method owes its
efficiency to the introduction of a new metric, which we refer
to as the ‘measurement matrix mutual coherence shrinking
potential’. Both theoretical channel models and results from
our own channel measurement campaign are used to demon-
strate the effectiveness of the algorithms. Section V describes
the channel measurement set-up and Section VI discusses the
numerical results. Conclusions are provided in Section VII.

Notation: Boldface italic letters denote vectors and boldface
letters denote matrices. hy, ,, and ®,, ,.  are the impulse
response and the measurement matrix of the channel between
the n;-th Tx antenna and the n,-th Rx antenna. The length
and sparsity of h,,,, are denoted as L, ,, and Ky, ,
respectively. There are N; Tx antennas and N,, Rx antennas.
N denotes the number of subcarriers. P,,, denotes the set of
pilot positions for the n;-th Tx antenna, and p,,, (s) is the s-th
element in P, . Further, IV,,, is the number of elements in P,,, .
Y (1) denotes the observations on the [-th subcarrier at all Rx
antennas, Y, denotes the observations on all subcarriers at
the n,-th Rx antenna and Y',,, ,,, denotes the observations on
all subcarriers in P, at the n,-th Rx antenna. ®,,, denotes the
relevant measurement matrix for the n;-th Tx antenna. u{®}
stands for mutual coherence of ®. I, ,, is the ‘shrinking
potential’ of p{®,,}. u{®n, min denotes Welch bound on
u{®ny,}. Pr[P,,] is the probability of selecting P,, and 0y,
is the scaling factor to adjust N,,.

II. GENERAL SYSTEM DESCRIPTION

An elementary block diagram of the considered system
is shown in Fig. 1. N, users with a total of N; > N,
transmit (Tx) antennas communicate with an AP that has NV,
receive (Rx) antennas. The Tx antennas are not necessarily
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Fig. 2. Packet structure of n¢-th Tx antenna.

physically co-located, and can therefore experience unequal
channel statistics. At the Rx side a joint detection strategy is
adopted. We further assume that all Tx and Rx antennas are
perfectly synchronized in time and frequency.' After initial
synchronization, the Tx antennas start sending data packets.
As shown in Fig. 2, we assume that all Tx antennas employ
the same packet structure: a payload of N; data-modulated
OFDM symbols is preceded by a short antenna-specific pream-
ble with a mixture of pilot-modulated subcarriers and zero
subcarriers. The pilots in the preamble are intended for channel
estimation, which is the main subject of this paper. For
clarity, we will limit our exposition to the case where the
preamble consists of a single OFDM symbol and the CIR is
estimated once per packet.> Each OFDM symbol consists of
N subcarriers. The information bits modulating the payload
subcarriers are mapped to a comglex valued constellation €2 =
{wi,ws, ... ,wom} with 75 Zz L(lwilly)? = 1, where lall,
denotes the p-norm of a vector a. For simplicity, the pilots are
assumed to be selected from a constant-modulus constellation
Qp = {wp,1,wp2, .., wp2ms } With [|wp ]|, = 1. Each point
in 2 (€2,,) corresponds to a unique m(m,,)-bit sequence. At the
ny-th Tx antenna, the [-th subcarrier is modulated by the
complex value X, (1), and the corresponding bit sequence is
by, (1). The transmitted waveform is constructed by taking the
inverse discrete Fourier transform (IDFT), followed by adding
a cyclic prefix (CP). At the Rx side, the CP is removed and the
resulting packet is sent to a discrete Fourier transform (DFT)
unit for demodulation. The CP is assumed longer than the CIR
of all MIMO subchannels, so that the [-th element of the DFT
output at the n,-th Rx antenna can be modeled as

-3 X

YLf—

where W, (1), forn, =1,2,...,N,andl =1,2,..., N, are
independent zero-mean complex-valued circular-symmetric
Gaussian noise variables with variance Ny, and

Hpyn, (1) + Wa, (1), (D

nf nr Z F Z k Tt N (k) I (2)
with F (I, k) the size-N DFT kernel
F(l,k) = ei2n =5 3)

'In practical systems, time and frequency synchronization can be accom-
plished by means of a closed-loop procedure.

2Extension to more general cases is relatively straightforward (see, e.g., our
previous work on SISO systems in [18]).
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and hy, ., (k), & = 1,2,..., the sample spaced CIR of
the subchannel between the n;-th Tx antenna and the n,-th
Rx antenna. The coherence time of the channel is assumed
to be several times larger than the maximum duration of
a packet, so that the channel can be modeled as constant
over the duration of a packet transmission.® It is assumed
that hy, ., (k) is zero for all k > L,,,, and the first
Ly, n, values of hy, . (k) are grouped in a vector hy, ,,, =
[P (1)s -y By (Lny o, )]T. The number of non-zero
elements in h,, ,, is denoted as K,, .. The parameters
Ly, n, and K, , are termed channel length and channel
sparsity, respectively. Collecting the observations on the [-
th subcarrier at the various Rx antennas in a single vector,
we have:

= VEH" (1)

where FE denotes the received symbol energy, X (I) =
X0 (0, Xa () X, O, Y () = a(),Ya (1),

., Yn, (]" and H (1) is the N; x N, matrix with elements
Hp, n,. (1) from (2). If H(l) is known, the receiver can
estimate X (I) from Y (I), for { = 1,2,..., N. In this work,
zero-forcing equalization (ZFE) will be employed for MIMO
data detection. From the resulting symbol estimates Xm ),
estimates IA)m (1) of the corresponding m-bit sequences can
be deduced. In practical systems, the quantities H (I) are
not a priori known at the receiver and estimated values
H (1) are used instead. The accuracy of the estimates H (1)
determines the error performance of a given MIMO detector,
at a given signal-to-noise ratio (SNR) E;/Ny. The normalized
mean squared error (NMSE) of the estimated CIRs ﬁntn =

[]A-annr (1)5 ]Alnmnr (2)7 ] iz"t,"r (L"m"r )]T7

)+ W (1), “)

N
. 1 U1y
hnt’n"'(k‘) - N Z 6J27T - 1>1\(,k - HntJZT (l) ) 5)
=1

serves as a first metric to evaluate the channel estimation

performance. It is defined as
. 2
[ =[]
2

E{l(hn . 113]

, (6)

NMSE = —— NtN Z Z

ng=1n,=1

where E [-] is the statistical expectation with respect to the
joint distribution of (H ({), W (1)) for all [. A good measure
for the overall system performance is the bit error rate (BER),

BER = E[Z Z—dH< (1) by, (1))], )

ny=11=1

with dg7 (b, b) the Hamming distance between b and b, and
where E [-] is the statistical expectation with respect to the
joint distribution of H (), W (), b,,, (1) for all [ and all n;.

3This assumption typically holds for scenarios with low-speed mobility, such
as commonly encountered in IoT-type applications [21].
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III. CHANNEL ESTIMATION

In the remainder, it is assumed that if a Tx antenna mod-
ulates a preamble subcarrier with a pilot, then all other Tx
antennas set that subcarrier to zero (orthogonal pilot alloca-
tion). For convenience, we specify the set of pilot-modulated
preamble subcarriers at the n;-th Tx antenna as P,, =
{pn, (1), pn, (2),...,0n,(Npn,)} (see Fig. 2). We have that
UMt P; = P = {1,2,...,N}, with P, N P; = & for all
i # 7, and Py, 41 the set that collects the subcarriers unused
for channel estimation (possible empty). Following (1)-(3), the
vector Y, . = Yo (P (1)), -+, Yoo (P, (N, )], collect-
ing the DFT components with index [ in P, that are observed
at the n,-th Rx antenna can be expressed as

Ynf,7nr =V Esq’nf,,nrhm,nr + Wnt,nrv )

T
where Wnt,’ﬂr [Wn7 (pnt (1)) )ty Wnr (p’ﬂt (N’ﬂt))] 4
and ®,, ,, is the N,, x L,, ,. measurement matrix with
elements

(q’m,nr)&l = Xm (pm (S)) e—j27r (9)

As ®,, . is known, the observation Y, ,. from (8) is
suitable for estimating h,, ,,.. We assume that a CS-based
estimation method is employed. Several CS-based methods can
be used to obtain an estimate flnhnr of hy, n, fromY,,
by solving some related problems. We can for example apply
orthogonal matching pursuit (OMP) [10] to find the solution
to the optimization problem
min

1Pninello

s.t. HYnmnr Y ES‘I)m,nrhm7nr||2 <e,

where ¢ is the error tolerance. Alternatively, we can use
compressive sampling matching pursuit (CoSaMP) [11] to
seek the estimate yielding minimum estimation error for a
given (maximum) sparsity level K, . > 1

min HYnt’n,,. Y ES q)’ﬂt,’ﬂrhnt:n'r'

ng, N

s.t. thhnrHO < Knyn,

(Pry ()-1)(1—1)
N

(10)

2
(11)

Moreover, expectation-maximization Gaussian-mixture
approximate message passing (EM-GM-GAMP) [12] can be
used to obtain an estimate ﬁntn by solving the following
convex optimization problem

’Alnt,’ﬂr = arg hmin {HYnt;n'r' -V ES@ntynrhntynr
ng,np
+>\||hnt7n7'

2
2

1}, (12)

where the scalar A controls the relative importance applied
to the Euclidian error and the sparseness term (the first and
second expressions, respectively, inside the brackets in (12)).

The focus of this paper is, however, not on designing the
CS-based channel recovery algorithm itself, but rather on
designing the pilot allocation and therefore on designing the
measurement matrix ®,,, , from (9). Itis well-established [8],
[9] that accurate CS-based reconstruction of h,,, ., requires
that:
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1) The matrix @, ,  can be constructed, which requires
knowledge of Py,, X, (pn,(s)), s=1,2,..., N,, and
the number L,,, ,,, of columns in ®,,, ,, ..

2) The number N,,, of rows in ®,,, ., i.e., the number of
pilot subcarriers for the n;-th Tx antenna, is sufficiently
large. Typically, it is required that [22]

Ny, > [Km,nr log, (Lm,nr/Knt,mﬂ .

3) The matrix ®,, ,, is an almost orthogonal matrix.
A suitable measure for the orthogonality of ®,, ,  1is
the measurement matrix mutual coherence (MMMC)
w{®n, n.} [9], with

p(@) = max (60 @)/ 16l 9]0 (14

where L is the number of columns in ®, ¢, is the u-th
column of @, and () is the scalar product operation.

13)

It follows from (13) that, as opposed to conventional esti-
mation methods, the number of required pilot subcarri-
ers is (mainly) determined by K,, ,, rather than L, ,, .
Substituting (9) into (14), and taking into account that
[ X, (Pn, (5))]l5 = 1, yields

1 N, (Pry ()= (u—v)
L (P (s)=D(u—v
D, )= max E eI N
M{ nt,n,} 1<u,v<Ln; n, Nm - >
: o

5)

which, for given N,,, only depends on P,,. As far
as CS-based estimation of h,,,, is concerned, minimum
MMMC is a generally accepted criterion for designing the
pilot allocation [4]-[6], [16]-[18], [20], [23]. The best P,,, for
given N,,, is the one that minimizes the MMMC p{®,, .}
from (15). Due to the orthogonality principle, the positions of
the pilots in the various per-Tx-antenna preambles cannot be
chosen independently of each other. It follows that finding an
appropriate partition {P1, P2, ..., Pn,+1} of P is a complex
combinatorial optimization problem, which depends on the
length and the sparsity of the individual CIRs.

In Section VI, it is established that with OMP, CoSaMP and
EM-GM-GAMP based channel estimation virtually the same
overall BER performance can be achieved. Because of space
constraints we will focus on the CoSaMP approach to describe
and evaluate the proposed adaptive orthogonal pilot alloca-
tion method. Since the proposed pilot allocation procedure
is not particularly tailored to CoSaMP, similar performance
advantages can be expected when used in combination with
OMP or EM-GM-GAMP. As opposed to OMP and EM-GM-
GAMP, CoSaMP requires that the value of L,, ,, carefully
matches the effective duration of h,,, ,, and that the effective
sparsity Ky, n, of Ry, is also known. However, in the next
section, we will show that accurate instantaneous information
about L,, ,,. and K, ,, is indispensable anyway in practical
systems with adaptive per-user pilot allocation.

IV. ADAPTIVE ORTHOGONAL PILOT ALLOCATION

We derive a practical procedure to adaptively allocate the
pilot subcarriers. Using minimum NMSE as a criterion is
intractable because the true channel is a priori unknown at
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the Rx side. Using minimum BER as a criterion is also
impractical because it requires a long acquisition period each
time the pilot allocation needs updating. As an alternative,
we propose a three-step procedure with a decoupled design of
{(Lnynrs Knym)}s {Nn, } and {Py, }. The approach is ideally
suited for adaptive pilot allocation. The first step serves to
acquire and track the values of L,,, ,,, and K,, ,, , for all n;
and n,. Acquisition is required only once, at the start of the
transmission. To get the procedure started, the first packet of a
transmission uses predefined initial per-Tx-antenna preambles.
In the second step, the knowledge of {(Ly, n,, Kn, n,)}
is used to determine N,,. The criterion used in this step
is the condition imposed by (13). Step 1 and Step 2 are
further detailed in Section IV-A and Section I'V-B, respectively.
Finally, in Step 3, {P,,} is selected based on the minimum
MMMC criterion and subject to the condition that P,,, should
have cardinality N,,, for all n,. The appropriate partition
{Pn,} for given values of N,,, must be searched in large pre-
computed look-up tables (LUT), or calculated on-line. A novel
and more efficient subcarrier partitioning procedure (with a
better accuracy/complexity trade-off than the state-of-the-art
in [5]) is proposed in Section IV-C. If Step 1 does not result
in an update of {(Ly, n,,Kn,n,.)}. the receiver passes the
packet to the data detector for further processing; otherwise,
the receiver locally updates the pilot allocation and informs the
UNs at the TX side to do the same using feedback channel
signaling (see Fig. 1). Upon reception of this feedback, the
per-antenna-preambles are updated and the payload is resend
with the novel preambles. We note that the ‘LUT/on-line
processing’ and ‘preamble generator’ blocks at the Tx side
need to be present in and run by every UN. An alternative
could be that the updated pilots are only computed at the
receiver and simply fed back to the transmit side, but this
would require significantly more feedback signaling overhead.
The ‘preamble processing’ block serves to estimate L, p,
and K,, ,, of all channels (step 1) and to determine the
appropriate number of pilots per Tx antenna N, (step 2).

A. Length and Sparsity of All Subchannels

Upon reception of a novel preamble (with some
given {P,,}), we estimate the instantaneous values of
{(Ln, n,s Kn,n,.)} One option is to employ a channel recon-
struction algorithm that does not require prior knowledge of
Ly, n, and K,  ; estimates of L,,, ,, and K, , can then
be derived from the estimated CIRs. However, in this work,
we opt for CoSaMP channel reconstruction, in which case we
compute CIR estimates for different trial values of L,,, ,,, and
K., n,, and select the best option using minimum BER (in
the preamble) as a criterion. This approach was originally pro-
posed in [19] for a significantly different scenario, namely with
Ly, >N =Ny, >Kp, n,nt =N =1n, =N, =1.
In the following, it is shown that the algorithm from [19] can
not be applied directly to the situation at hand. To ensure
proper operation, important adjustments are necessary.

For given P,,, let #err,, ,,, (K, L) denote the number of
bit errors that are detected in {X,, (pn,(s)); Pn,(8) € Pn,}
after ZFE and demapping of {Y,,, (pn,(5)); Pn,(8) € Pn, }s

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 10, OCTOBER 2022

when the CoSaMP CIR reconstruction unit assumes that K
and L are the true sparsity and length of h,, . . For the
scenario considered in [19], it was observed that (at high
SNR) for any value of K larger than the true sparsity K ng
the average of #err,, , (K, L) achieves its minimum in
L = Ly, n,. Therefore, the following two-stage optimiza-
tion procedure was proposed. First, Ly, ,,. was estimated to
minimize #err,,, , (N,,, L) (taking into account that N,,, is
an upper bound on K,, ,, according to (13)). Then, K,, .,
is estimated by keeping in #err,,, ., (K, L), the value of L
fixed and equal to ﬁntn Unfortunately, straightforwardly
applying this procedure to the scenario at hand (where N >
Ly, n, > Np, > Ky, n,) does not yield satisfactory results.
This is a consequence of the fact that the objective function
#errp, o (K, L) behaves differently if [N > Ly, >
N,, > K, »,] than if [L,, ., > N = N,, > K,, ».].
Simulations show that, in the former case, a reversed two-
stage optimization procedure, where K, ,. is estimated prior
to Ly, n,, works better. The full discussion can be found in
Section VI-A. Based on these observations we propose to
estimate (K, n,., Ln, n,) from the observed preamble as

Ky, n, = argmin #err,, . (K’, LS:‘?IX)), (16)
K

[A/nt,nr = arg mjn #errm,nr (Km,,nra IN/); (17)
L

with LSLT?,’,? an upper bound on the channel length
(e.g., L™ — N)). The minima in (16)-(17) are found effi-
ciently using the dynamic window search (also used in [19])
with initial search interval [1, N,,,] for (16), and [1, L{™5Y]
for (17). Moreover, (16)-(17) can be performed simultane-
ously, in parallel, for all N; x N, subchannels. Estimating
K., n, (16) prior to Ly, . (17) significantly outperforms the
original (reverse) approach from [19] in terms of estimation
accuracy.

B. Number of Pilot Subcarriers Per Antenna

In distributed MIMO systems, K, 5, and L, , can vary
significantly with (n:,n,). This implies that the required
number of pilot subcarriers to estimate the subchannel h,,, »,.
also varies significantly with (ns,n,). For each n; €
{1,2,..., N}, the condition (13) imposes N, different con-
straints on V,,, ,,, (one per Rx antenna). However, subchannels
hy,m,.,ne =1,2,..., N, share the same P,,,. To ensure accu-
rate estimation of Ay, ., n, = 1,2,..., N,, the number NN,,,
of elements in P, must comply with (13) for that particular
value of n, and every possible value of n,. We therefore
propose to set IV, as

Nnt = II}ZE%X ’Vént : Knt,n,,. 10g2 (Lnt,nr/Knt,n,,.)—‘ ) (18)
with (K, n,, L, n,) an estimate of (K,,n,,Ln,n,) and
On, > 1 a scaling factor that can be adapted to meet the
system requirements (total number of pilots, desired accuracy
for certain channels, etc.). Starting from an initial pilot alloca-
tion, estimates (K, n,, L, n,) can be obtained by applying
the approach outlined in Section IV-A. These estimates can

then be used to compute the appropriate number of pilot
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subcarriers per Tx antenna in (18). Subsequently, a new pilot
allocation with the appropriate subset sizes can be selected.
In its turn, this new pilot allocation can be used to re-
estimate (K, n,, Ln,.n,). If the novel (Ky, ., Ln,n,) do
not (significantly) differ from the previous values, the system
can continue to use the current pilot allocation. Otherwise,
the procedure of updating {NV,,} and selecting a novel pilot
allocation needs to be run again. A numerical example of this
iterative updating procedure is provided in Section VI.

C. Orthogonal Pilot Allocation

We describe an efficient orthogonal pilot allocation proce-
dure, termed ‘extended simulated annealing’ or ESA. As a
smaller MMMC results in a more accurate estimate of the
channel [4]-[6], [16]-[18], the MMMC will be adopted as the
cost function. The ultimate goal is to find a good approximate
solution to the following complex multi-objective optimization

problem. Find a partition of P into subsets Pi,...,PnN,+1
with respective cardinality Ny, ..., Ny,+1, so that
. ny = 1, ey Nt

Pp, = argmin pu{ P, n, }, ny=1.... N, (19)

From (15), it follows that pu{®,, ,,} depends on P,, and
Ly, n,. For given P,,, it is easily derived that u{®,, ,,} <
{ P, e} if Ly, n, < Ly, . Hence, (19) simplifies as
follows:

Pn, = argmin u{®p, }, 1y =1,..., Ny, (20)
where ®,, = ®,,, ¢(p,), With
fln) =arg — max = L, g, 1)
n

T4y Lyee e Ve

In the literature, various researchers proposed ways to fur-
ther simplify (20) by transforming it into a single-objective
optimization problem. In [2], [6], for example, the per-Tx-
antenna pilot allocations are assumed to be shifted versions of
each other. In that case, solving (20) for all n; boils down to
solving (20) for n; = 1 only, which significantly reduces the
complexity of the problem. However, the restriction that the
per-Tx-antenna pilot allocations need to be shifted versions
of each other limits the performance that can be achieved.
Moreover, this approach does not allow to allocate a different
number of subcarriers to different Tx antennas, which may
be suboptimal in distributed MIMO scenarios. In this work,
we will rather follow the approach taken in [S] and use the
minimum sum MMMC criterion, i.e., find a partition of the set
of subcarriers P into subsets Py, ..., Pn,+1, With respective
cardinality Ni,..., Ny,+1, so that

{P17P27"')PNt} :argminu{q)}v (22)
with p{®} the sum MMMC, given by
Ny
w{( @)= D p{®n}. (23)
ny=1

Similar to in [18] for SISO systems, simulated annealing (SA)
can be used to efficiently find an approximate solution of (22).

8235

Algorithm 1 ESA
I: Input: N and {N,,,, u{®n, }min; ne =1,2,..., N}
2: Set Tinit, Trates Tstop’ Titer. Set T' = Tz
3: Randomly choose a pilot allocation and calculate p1{®,, },
ntzl,...,Nt.
4: while T' > T, do
for | =1: T;., do

: Using (24) and (26)-(27), compute mn,x and

{Pr[Pn,], nt # Nmax}-

7: Randomly select an index n;’ # myay; the probabil-
ity that n;’ is selected is Pr[P,].

8: Uniformly select a value s from {1,2,...,N, . }
and a value s from {1,2,..., Ny }.

9: Exchange p,,.._(s) and p,,,(s") to form new partition
{P5 P, PR )

10: Calculate the corresponding p{®; _}, p{®; .},
and the sum p{®*};

it (@, ) — @) < 0) and (u{ @7} —

{@n, } < 0)) or ((exp(— ({7, } = 1{ P, })/T) >
rand()) and (exp(—(u{{);;} — u{ @, })/T) > rand())
and (u{®*} < u{P})) then

12: {P1,P2,...,PNt+1}H{Pf,P;,...,P;{;ﬁ_’_l};

13: M Pt = { P15 1{ Py} — p{ P}
p{ P} — p{P®*};

14: end if

15: end for
16: T—T- Trate;
17: end while

18: Output: {P1,P2,..., Pn,41}-

To further speed up convergence, we propose a smart imple-
mentation of the SA updating rules. The resulting ESA algo-
rithm is outlined in Algorithm 1; the main novelties are the
following.

a) Updating probability: The probability that a subset
Pn, gets updated, depends on the shrinking potential of its
MMMC. For n, = 1,..., N, the shrinking potential £, ,,
of u{®,,} is defined as the difference between p{®,,} and
its lower Welch bound p{®,,, }min:

Epo,m = N{(I)m} - N{(I)"t }min’ 24
where [24]
(L, f(ne) — Nn,)
/j‘{@nt}min = — - ’ (25)
\/(Nm (Lm,f(”t) - 1)

with f(n;) from (21) and N,, from (18). The shrinking
potential p{®n,+1} is set as the average potential of the other
subsets. The subset corresponding to the largest potential, i.e.,
P with

Mmax?

(26)

Nmax = ar max
max gn,,=1,2,...,N,,+1

Epo,nt

is always one of the two updated subsets. The other updated
subset is randomly selected, with the probability Pr[P,,,] of
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selecting P,,, with 1y # nmax proportional to Fpq p,, i.€.,

Net1

Pr[Py,] = Epon./ Z (Epo,n = Epo,nmax)- (27
n=1

b) Updating conditions: For updating the partition, ESA
looks at the individual MMMC of the subsets that were
selected for updating, rather than at the sum MMMC only. The
old partition is replaced by the new one, only if (i) at least one
of the individual MMMCs decreases and (ii) the sum MMMC
decreases. If both MMMCs decrease, the new partition is
always accepted. If only one of the MMMCs decreases and
the sum MMMC also decreases, the new partition is accepted
with a (small) probability that depends on the annealing
temperature 7.

The use of the shrinking potential to rationalize the SA
updating probabilities and the updating conditions are innov-
ative. They constitute essential parts of the design and they
are decisive to boost the accuracy/complexity trade-off of
the procedure in a MIMO scenario. Let us now analyze the
complexity of ESA. Evaluating a single u{®,,} requires
NORwmmmc(nt) = 2Ny, (L, £(n,)— 1) elementary operations
on real quantities (NOR), with f(n;) defined in (21). Because
ESA is a non-deterministic method, the total NOR performed
with ESA (NORgga ) is a random variable and a comprehensi-
ble closed-form expression is hard to derive. As an alternative,
a simple upper bound NORgga up can be computed:

NORESA S NORESA,up

= 2Tjter logr, ., (Tstop/ Tinit) NORMMMC, max
(28)
with NORMMMC,max = Maxp,—12,....N, NORMMmmc(ne).

The computational complexity of ESA is mainly determined
by the MMMC evaluations in line 10 of Algorithm 1. In (28),
Titer longte(%Z‘;’: ) indicates the total number of iterations.
At most two Tx antennas need to recalculate their MMMCs
during each iteration. It is interesting to contrast (28) to
the computational complexity associated with the SSS algo-
rithm from [5], where in each iteration p{®,,} is evaluated
2(N — N;)N; times for all n; (for more details see
Section VI-D). The total NOR performed after Tggg SSS

iterations is

Ny
NORgss = 2Tsss »_ NORynic(ne)(N = Ny, )Ny,
ny=1
Ny
< 2T5ssNORMMMC, max Z (N — Nyu, )Ny, (29)
ne=1

It can be concluded that for large N, SSS is significantly
more complex per iteration than ESA. Moreover, previous
work shows that SA converges faster than SSS [18]. It can be
expected that the same holds for ESA. In the numerical results
section the complexity of ESA will be discussed in more
detail and further contrasted to other existing pilot allocation
algorithms.
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Fig. 3. (a) Floor plan of the environment, in which the channel sounding
experiment was performed. (b) Integrated three-element UWB SIW cavity-
backed slot antenna arrays at transmitter and receiver sides, were deployed
approximately 3.1 m and 0.55 m above ground level, respectively. Measure-
ment environment: (c) photograph of one side, (d) photograph of the other
side.

V. MEASUREMENT SETUP

Measurements were conducted in an indoor laboratory
environment at UGent. Fig. 3(a) depicts the laboratory plan
with brick walls and reinforced concrete floors. The labo-
ratory is approximately 19.2 m by 11.2 m. It contains two
electromagnetically shielded rooms. The larger room is a
rectangle of size 9.1 m by 4.2 m whereas the smaller room,
is approximately 5 m long and 3.9 m wide. The rest of the
laboratory is mostly equipped with metallic cabinets, desks,
and hardware equipment (see Fig. 3(c) and Fig. 3(d)). The
indoor radio channel with respect to a fixed transmitter was
measured at 20 spatially distinct receiver positions. The Tx and
Rx positions are outlined in the floor plan of Fig. 3(a). Half of
the Rx positions (R21-R10) can be considered as line-of-sight
(LoS) scenarios. A quarter of the Rx positions (R11-R15) can
be considered as obstructed-LoS (OLoS) scenarios, where the
free-space path from the transmitter to the receiver undergoes
a reflection and/or a diffraction (walls). The last 5 Rx positions
(R16-R20) can be considered as non-LoS (NLoS) scenarios,
where the path from the transmitter to the receiver undergoes
a transmission through a medium (wall, door). During the
measurements, the door was kept closed and the hallway was
empty.

Ultra wideband (UWB) channel sounding measurements
were carried out at each of the 20 Rx positions. UWB
cavity-backed slot antenna arrays in substrate integrated
waveguide (SIW) technology [25] were employed at both ends
of the measurement system. This type of antenna technology
offers the benefit that the antenna does not suffer from mutual
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coupling, which would otherwise distort the radio channel
measurements. Each antenna array consists of three identical
antenna elements, arranged in such a way that the array
exhibits threefold rotational symmetry, resulting in an angle
of 60° between subsequent antenna elements. The Tx and
Rx antennas were placed approximately 3.1 m and 0.55 m
above ground level, respectively. The measurement scenario
with the receiver in position Rg is pictured as an example
in Fig. 3(b). A performance network analyzer (PNA) of
type Agilent E8364B was used to probe the indoor radio
channel ranging from 4 GHz to 7 GHz, this being the UWB
frequency band. The PNA was used to measure the complex
gain between each Tx antenna-element and each Rx antenna-
element, individually. The feeder cables for the Tx and the
Rx antennas were included in the PNA calibration in order to
exclude them from the measurement data. All measurements
were performed outside regular working hours.

VI. NUMERICAL RESULTS

In this section, simulations are conducted to demonstrate the
effectiveness of the proposed algorithms. A QPSK scheme is
adopted for both data and pilots. The number of subcarriers
per OFDM symbol is N = 1024 and a bandwidth of 528 MHz
is assumed, yielding a sample period of 1.89 nanoseconds. For
the channel, two scenarios are considered:

1) A random scenario, where each of the MIMO subchan-
nels is modeled in correspondence to one of the four
communication environments and propagation scenarios
proposed for the IEEE 803.15.3a WPAN standard. The
corresponding channel models (CMs) are referred to as
CM1, CM2, CM3 and CM4. CM1 and CM2 model the
LoS and NLoS channel environments, for ranges smaller
than 4 m. For larger ranges, the NLoS models CM3
and CM4 are used, with emphasis on a strong delay
dispersion in the case of CM4 [7]. In our simulations, the
channel length L and sparsity K are obtained as follows:
(a) generate a channel realization according to a specific
CM using the code provided by the IEEE 802.15.3a
standard group, with a sampling period of 1/6 nsec;
(b) resample the obtained CIR to obtain the sample
spaced CIR; (c) find the amount of channel samples that
suffice to cover 90% of the total power (this yields L);
(d) count how many of these L channel samples have
an amplitude larger than 10~* (this yields K). Hence,
the channel length and sparsity are determined to be
L = 180,200,350,506 and K = 42,56,77,121 for
CMI1 to CM4, respectively.

2) A deterministic scenario, where the channels are taken
from our measurements, performed in an indoor labora-
tory environment at UGent, Belgium.

Two metrics are used for performance evaluation: the
NMSE (6) and the BER (7). These metrics are measured at a
set of equidistant SNR points and determined by Monte-Carlo
simulation. We average over 500 packets, with each packet
consisting of a 1 OFDM symbol preamble and a 500 OFDM
symbols payload. In the case of a random channel, a different
channel realization is employed for each packet.
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A. Priority of the Parameters Ly, . and K,, .

This subsection analyzes the effect of L,,, ,,, and K, ,,.
on the pilot BER, i.e.,

BER(pilOt) (Km SN i’m sMr )

#errm RO (Km R Lm ,nr)

=E
my - Np,

, (30)

where m, = 2 (QPSK), #err,, . (K,L) is defined in
Section IV-A, and E [-] denotes averaging over the noise, the
channel, and the preamble of the n,-th Tx antenna.

Fig. 4 shows the pilot BER (30) obtained for CM1 from [7],
Ny, = 128 and random pilot allocation, as a function of
K, n, and Lnt’n, In contrast to what was the case in [19],
we observe from Fig. 4(b) that the pilot BER is relatively
independent of Lnt n, for values of K, ., that significantly
deviate from the actual channel sparsity K, ,,, = 42. There-
fore, it is almost impossible to estimate L, ,, prior to the
estimation of K, . On the other hand, Fig. 4(a) reveals
that the pilot BER achieves a minimum at the optimum
K’nt’n, = Ky, n, found in Fig. 4(b), independent of the
value of thn, , provided that L,,, ,,, is larger than or equal
to the true L, ,, (see the value of thm, achieving the
minimum pilot BER in Fig. 4(b) when K’nhm, = 42 or 60).
Hence, we propose to reverse the estimation order as compared
o [19]. First, an estimate K’mn of K, n, is generated by
keeping f/nt,n,,, fixed and equal to some large value L%TZX)
with, e.g., LW = N4 Then, Ly, .. is estimated, by min-
(Knt,nraLnt,n,,.) with Knt Ny — knt,n,,.

If #errp, n, (Kmmr, b ?,XT)) is minimum for more than one

imizing #erry,, n,

trial value K. ny,m,.» W€ choose K ne,n,. €qual to the smallest one.
Similarly, if #erry,, . (Kmmr, Ly, nr) is minimum for more

than one value Lnt n,.» we choose Lnt n,. equal to the small-

est one. Since the evaluation of #err,,, ., (f(nhnr,thnr)
involves the reconstruction of h,,, ., the described procedure
not only estimates the duration and sparsity of the CIR, but
also produces an estimate ﬁntn of the CIR itself. It should
be noted, however, that this ’Alm,,nr is not necessarily a reliable
estimate of h,, ,,; this is usually only the case if (13) holds
and the MMMC (14) is sufficiently small for K, ., L, n,
and the considered pilot allocation. The above results can be
summarized as follows. In the MU-MIMO-OFDM system, the
optimal estimate of the channel sparsity in terms of minimum
BER does neither depend on assumed channel length nor
on the SNR provided that the assumed channel length is
sufficiently large. On the other hand, no accurate estimate of
the channel length can be obtained if the assumed channel
sparsity is not close to the true channel sparsity. Therefore,
the channel sparsity should be estimated prior to the channel
length.

“4Indeed, it is a valid assumption that the true value of L is smaller than N
since it is assumed to be smaller than the size of the CP.
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Fig. 4. Pilot BER for (N, Nn,, Kny ny» Lng n,.) = (1024, 128,42, 180),
QPSK and E, /Ng € {20 dB, 30 dB}; (a) as function of the assumed sparsity
K. ne,n,» tor different values of the assumed channel length I:nt,nr, and (b) as
a function of I:nt,nr, for different values of K ng,my -

B. Channel Length and Sparsity Estimation

We now assess the performance of CoSaMP when the true
sparsity K, . and the true length L,, ,,. of all the channels is
replaced by estimates obtained using (16)-(17). We evaluate
the NMSE and the BER that results from a ZFE receiver.
We benchmark these performance metrics against those of a
system with (1) a ZFE receiver with CoSaMP CIR recon-
struction without prior knowledge of the channel statistics and
assuming L, », = N and K,,, ,, = Ny, forall (n,n,), (2)a
ZFE receiver with OMP CIR reconstruction [10], (3) a ZFE
receiver with EM-GM-GAMP CIR reconstruction [12] and
(4) a ZFE receiver with perfect channel knowledge. By means
of example, a 4 x 4 uplink MU-MIMO system is considered
with a 4 antenna AP and 4 single antenna UNs. A random
channel is assumed, with CM1 for h; ,,., CM2 for hg,,,
CM3 for hs,, and CM4 for hy,, , and n, = 1,2,3,4.
Further, a random orthogonal pilot allocation is assumed,
with N7 = 128, N» = 160, N3 = 288 and N, = 448.
All subcarriers are allocated so N5 = 0. Each Monte Carlo
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simulation, a new orthogonal pilot allocation {P;,...,P5}
with the mentioned subset sizes is randomly generated. Note
that, for each (n, n,) pair, the amount of pilots allocated to the
n-th Tx antenna is smaller than the number of channel taps
By n, (k) that has to be estimated: Ny = 128 < Ly, = 180,
Ny =160 < Ly, = 200, N3 = 288 < L3, = 350,
Ny = 448 < Ly,, = 506 (see CM specification at the
beginning of this section). Fig. 5 (a) and (b) show that a
CoSaMP channel estimator that assumes L., ,, = N and
K, n, = Ny, underperforms. The NMSE is extremely high
and the BER is close to 50%. This is because the CoSaMP
algorithm is unable to converge if the assumed channel sparsity
and/or the assumed channel length is significantly larger than
the true value [26]. In contrast, it can be observed that if we
first estimate Ky, 5., then estimate L,, .., and subsequently
reconstruct the CIR using these estimates, the system achieves
a prominent NMSE and BER improvement. CoSaMP with
estimated L,, . and K,,,, achieves virtually the same
performance as OMP and EM-GM-GAMP. For the considered
system set-up, the residual BER performance degradation with
respect to the case that the channel is perfectly known at
the receiver, is limited to a loss of about 2.5 dB in SNR.
We note that this loss can be attributed to the random selection
of the pilot allocation. In the following sections, we will
show that this gap can be reduced further by optimizing the
pilot allocation. Fig. 5 (a) and (b) also show the NMSE and
BER that results when conventional LS or MMSE channel
estimation (as opposed to CS-based channel estimation) is
employed. In this case, the receiver first produces LS or
MMSE estimates of the frequency-domain channel response
samples at the pilot subcarriers, and then spline interpolation
is performed to reconstruct the intermediate samples. The
interpolation step is known to cause an error floor at high SNR.
The MMS}E}Fstimator is assumed to follow a LS estimator and
uses hrsh;q instead of the true channel covariance matrix,
with A s the LS estimator output. We observe that, in the SNR
range of interest, the CS-based CoSaMP algorithm performs
more than an order of magnitude better than the conventional
LS and MMSE channel estimation methods, both in terms
of NMSE and BER. In general, proper operation of any
conventional channel estimation method requires a number of
pilots that is larger than or equal to the length of the unknown
channel, while in the considered scenario this is not the case.
Finally, we wish to note that the use of CS techniques (while
reducing the required number of pilots) does not come at
the expense of increased complexity. Our previous work [19]
shows that the complexity of the procedure to estimate L, ..,
K, n, and h,, ,, using CoSaMP is not significantly larger
than that of reconstructing h,, ,,. using frequency-domain
MMSE estimation followed by spline interpolation. If N,
is small, the two approaches have a comparable complexity,
whereas for large N,,,, the CoSaMP approach even becomes
the least complex. From the above results, we conclude that (in
the considered MIMO context) a CoSaMP channel estimator,
using previously obtained estimates of the channel length and
sparsity, performs similar to other CS-based methods that do
not require prior knowledge of L, ,, and K,, ,, . For the
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Fig. 5. Parallel estimation of length and sparsity of 4 x 4 MIMO channels,
with all channels from the i-th Tx antenna modeled using CMsi, i=1,2,3,4.
Performance comparison in terms of (a) NMSE and (b) BER.

considered scenario where L, ,, is larger than N,,, (number
of pilot subcarriers available for estimation), CS-based meth-
ods significantly outperform the conventional LS or MMSE
techniques.

C. Number of Pilots Per Tx Antenna

We now demonstrate how a receiver can acquire (and
track) the appropriate values for the number of pilots N,
in each per-Tx-antenna preamble. For illustration purposes,
we consider an 8 x 8 uplink MU-MIMO system with random
channels; for all n, = 1,2,...,8, we assume CM1 for h; ,,,
hy,, and hs, , CM2 for hy,,, hs,, and hg,_ , CM3
for h7,,, and CM4 for hg, . The minimum number of
pilot subcarriers N, that should be allocated to Tx antenna
ng = 172a"'a8’ is Nl,min = NQ,min N3,min = 89,
N4,min = N5,min = Nﬁ,min = 103, N7,min = 169, and
Ng min = 250, respectively (see (13) and the CM specification
at the start of this section). Summing all these values yields
995, which indicates that it should indeed be possible to
accurately estimate all 8 x 8 MIMO channels using a single
OFDM symbol preamble with 1024 subcarriers.

8239

In practice, the true channel lengths and sparsities are
not a priori known. In that case, the values NV,, can be
derived by following the iterative procedure described in
Section IV-B. In Table I, we show how the appropriate values
of Ny, Na,...,Ng can be acquired in two iterations, for
the considered MIMO system, when operating at an SNR of
30 dB.

e Initialization: No information about the channels is avail-
able, so we assign all Tx antennas the same number of
pilot subcarriers (Nl(o) = NQ(O) =...= Néo) = 128) and
randomly select an orthogonal pilot allocation with these
equal subset sizes.

o [teration 1: We estimate the sparsity K,,, ,, and channel
duration L, ,,. for each Tx-Rx pair based on the initial
preamble. From these estimates, the minimum number of
required pilots is determined based on (18) with 4,,, = 1.
This results in N\ = NV = N{" = 89, NV =
NV = N =103, NV = 182 and N{" = 266. Note
that the sum Nl(l) + N2(1) +...+ Nél) = 1024 implies
that all subcarriers are allocated.

o lteration 2: We use the novel pilot allocation to
re-estimate the sparsity and channel length for the differ-
ent Tx-Rx antenna pairs. The estimated sparsity and chan-
nel length of Tx antennas 1-6 does not change. This was
to be expected as, in Iteration 1, Nl(l), NQI)7 .. .,Nél)
are smaller than 128, indicating that the sparsity and
channel length of the channels from Tx antennas 1-6 can
be estimated properly with the 128 pilot carriers per Tx
antenna that were available in the initial preamble used
in Iteration 1. However, as N7(1) and NV, él) are both larger
than 128, the length and sparsity of the channels from
Tx antennas 7-8 could not be estimated accurately in
Iteration 1. Using the new estimates of Ky, ,,, and Ly, .
to compute N7(2) and Néz) with (18) and §,,, = 1, yields
169 and 250, respectively. Note that these values agree
with the predicted minimum number of pilots, given in
the first paragraph of this section. As 3-89+43-1034169+
250 = 995, there are 29 excess carriers left to judiciously
distribute over the different Tx antennas. This can be done
by choosing appropriate scaling factors d,,,, with a value
larger than 1. Because antennas 7 and 8 correspond to
the largest channel lengths and sparsities, these antennas
are assigned a slightly larger scaling factor. We obtain
NP = NP = NP = 90, N = N = N = 104,
N = 176 and N{¥ = 266 (summing up to 1024).
A novel random orthogonal pilot allocation with these
novel subset sizes needs to be selected. Since for all Tx
antennas, Ny(ﬁ)nr is smaller than or equal to NT(LP, it is
expected that the sparsity and channel length estimates
obtained in Iteration 2 are accurate and further iterations
are not required as long as the true channel length and
sparsity values remain the same. Results not presented
here confirm this presumption.

Fig. 6 illustrates the importance of allocating an appropriate
number of pilots to each Tx antenna by comparing the BER
performance of the considered 8 x 8 MIMO system when
the receiver (1) has perfect channel knowledge, (2) uses
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TABLE I

PROCEDURE TO DETERMINE THE APPROPRIATE NUMBER OF PILOT SUBCARRIERS IN EACH PER-ANTENNA PREAMBLE FOR AN 8 X 8 MIMO
SYSTEM, OPERATING AT AN SNR OF 30 dB AND INITIALIZED WITH AN ARBITRARY INITIAL

SUBCARRIER PARTITION WITH Nl(o) = NQ(O) = = Néo) = N/8 =128
ne | e | N© | min NS (B mg Engony) | N&Y Bn) | mine N2 (R imge nginy) | N2 (8n,)
1to3 1to8 128 89 (42,180) 89 (1) 89 (42,180) 90 (1.01)
4t06 | 1to8 128 103 (56,200) 103 (1) 103 (56,200) 104 (1.01)
T 177 (30,368) 169 (77,350)
2 176 (79,367) 169 (77,350)
3 182 (83,379) 169 (77,350)
; q 128 180 (81,375) 182 (1) 169 (77,350) 176 (1.045)
5 169 (77,352) 169 (77,350)
6 167 (76,348) 169 (77,350)
7 172 (79,356) 169 (77,350)
8 179 (82,372) 169 (77,350)
1 253 (123,511) 250 (121,506)
2 244 (118,494) 250 (121,506)
3 266 (129,538) 250 (121,506)
4 128 252 (122,509) 266 (1) 250 (121,506) 266 (1.065)
8 5 250 (121,506) 250 (121,506)
6 249 (120,505) 250 (121,506)
7 258 (125,521) 250 (121,506)
8 250 (120,506) 250 (121,506)
CoSaMP channel reconstruction and a random preamble with ) ‘ ‘
Ny = Ny = ... = Ng = 128 (Iteration 0), (3) uses D W
CoSaMP channel reconstruction and a random preamble with
Ny = Ny = N3 = 89, Ny = N5 = Ng = 103, N; =
182 and Ng = 266 (Iteration 1), or (4) uses CoSaMP channel 10 i
reconstruction and a random preamble with N = Ny = N3 = .
90, N4 = N5 = N6 = 104, N7 = 176 and Ng = 266 Hd
(Tteration 2). The preamble with an equal number of pilots
for every Tx antenna results in a very high BER. This is
mainly because accurate estimates of subchannels of type CM3 % known channel
and CM4 cannot be obtained in this case. In contrast, the —A—jteration 0
preamble redesigned after Iteration 1 ensures accurate channel iteration 1
. . . 2 —e—iteration 2
estimation for all subchannels and therefore results in a much 10 5 ” - %0

lower BER. Although the pilot distribution in the preamble
is further optimized in Iteration 2, we observe that the BER
performance is comparable to that of Iteration 1. This is
no surprise since in both iterations, the obtained number of
pilot carriers to be assigned to each Tx antenna exceeds the
minimum number of pilot subcarriers required to accurately
estimate the channel.

Our results demonstrate that the strategy proposed in sub-
section IV-B is effective in appropriately distributing the
pilot subcarriers over the TX antennas. At the start of the
transmission, the amount of pilot subcarriers that is allocated
to each Tx antenna does not yet optimally match that the
channel conditions as seen by the different antennas. This
has a negative impact on the system performance. During
the acquisition period, the BER gradually decreases. After a
few packets, a steady state is achieved. The corresponding
BER is still significanty larger than in the case where the
channel is perfectly known. The reason for this is that only
the amount of subcarriers per TX antenna is optimized, not
the actual allocation (which subcarriers can be used by which
Tx antenna).

D. Joint Pilot Position Allocation for All Antenna Preambles

In this subsection, we discuss the complexity, the con-
vergence and the performance of the ESA procedure

SNR (dB)

Fig. 6. The measured channel between transmitter and Rg receiver with tap
spacing of t =1 ns.

from Section IV-C to partition the available preamble
subcarriers into per-Tx-antenna subsets P,, = {pn,(1),
Pn,(2),...,pn, (Ny,)} of appropriate sizes N,,,. The obtained
results will be contrasted to those of the stochastic sequential
search (SSS) procedure from [5], with one outer and Tgss
inner iterations. In each SSS inner iteration, each item py,, (s)
with ny, =1,2,...,N; and s = 1,2,..., N, is successively
swapped with each item of P\ P,,,. The MMMCs of the parti-
tions obtained after every swap are recorded, and the partition
with the smallest sum MMMC is selected as the updated
partition. Given the large number of MMMC evaluations
involved in one iteration, it is clear that the complexity of SSS
is very significant. For simplicity, the complexity of ESA and
SSS is compared based on the upper bound expressions (28)
and (29) derived at the end of Section IV-C, or equivalently
on the maximum amount of MMMC evaluations performed,
(ﬁ—) for ESA and Nggg —

2Tsss Zf:i":l Np,(N — N,,) for SSS. It is important to
note that both ESA and SSS will ultimately converge to the

ie, Ngsa = 275, logy

rate
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TABLE 11
PERFORMANCE COMPARISONS OF SSS AND ESA FOR N = 1024 AND Nt = 8

Type D Complexity | p{®} | [p{®1}, p{Po}, p{®3}, p{Pa}, p{®s}, p{P6}, p{ 7}, u{Ps}l
initial PA PO N 17731 [0.2182, 0.2265, 0.2465, 0.2184, 0.2578, 0.2485, 0.1676, 0.1896]
Tsss = 5 SSS-1 | 8801060 | 1.1357 [0.1505, 0.1578, 0.1479, 0.1459, 0.1596, 0.1452, 0.1238, 0.1050]
SSS [ Thss =10 | SSS2 | 17782120 | 1.1004 [0.1483, 0.1555, 0.1616, 0.1374, 0.1419, 0.1446, 0.1151, 0.0960]
Tass = 20 | SSS3 | 35564240 | 1.0892 [0.1569, 0.1480, 0.1414, 0.1390, 0.1451, 0.1479, 0.1147, 0.0963]
Trate = 0.95 | ESA-T 27000 1.1073 [0.1467, 0.1518, 0.1450, 0.1437, 0.1434, 0.1446, 0.1249, 0.1073]
ESA [ Trate = 0.08 | ESA2 68400 1.0831 [0.1497, 0.1494, 0.1499, 0.1380, 0.1397, 0.1392, 0.1186, 0.0987]
Trate = 0.99 | ESA3 137500 1.0396 [0.1368, 0.1454, 0.1427, 0.1298, 0.1324, 0.1348, 0.1177, 0.1001]

optimum pilot allocation (as will for example also a simple
but stupid random search algorithm). As a consequence, what
we are aiming for is not so much to show that ESA can
outperform SSS in terms of BER, but rather to show that ESA
is capable of achieving a slightly better BER performance with
a significantly lower computational effort.

A first set of results is obtained by considering the same
8 x 8 random MIMO channel as in the previous subsection.
For this channel, it is appropriate to allocate N3 = Ny =
N3 = 90, N4 = N5 = NG = 104, N7 = 176 and
Ng = 266 pilot subcarriers to Tx antennas 1-3, 4-6, 7 and 8,
respectively. Table II provides a comparison of SSS and
ESA in terms of complexity (maximum number of MMMC
evaluations performed) and performance (minimum value of
sum MMMC and per-Tx-antenna MMMCs achieved). For a
fair comparison, SSS and ESA are bootstrapped with the same
initial randomly generated subcarrier partition PO. The sum
MMMC and the per-Tx-antenna MMMCs of PO are provided
in the first row of Table II. For SSS, results are presented
after Tssg equal to 5, 10 and 20 iterations. For ESA, the
design parameters Tjpi;, Tsiop and Ty, are fixed to 102,
10~8 and 50, respectively; for the design parameter T}.o¢. the
values 0.95, 0.98 and 0.99 are employed.

We make the following observations from Table II:

e As could be expected, the performance of SSS and
ESA improves when more potential subcarrier partitions
are tested. It can be observed that, when 7Tggg of SSS
increases from 5 to 20, or T, of ESA increases
from 0.95 to 0.99, the number of MMMC evaluations
(complexity in Table II) also increases, resulting in a
smaller value of sum MMMC p{®}.

o In general, SSS converges much slower than ESA. With
SSS, the smallest MMMC achieved after more than
3. 107 MMMC evaluations is 1.0892; with ESA, the
smallest MMMC achieved after less than 1.5-10°> MMMC
evaluations is already as small as 1.0396.

o As opposed to SSS, ESA not only concentrates on
decreasing the sum MMMC, but also tries to make the
per-Tx-antenna MMMC as small as possible.

Fig. 7 shows the BER performance of a ZFE receiver using
preamble-based CoSaMP channel reconstruction when the
preamble is the one with ID PO, SSS-3 or ESA-3 in Table II.
The BER of a ZFE receiver with perfect channel knowledge
is also shown. We observe that the BER follows the MMMC,
i.e., the smaller the MMMC, the smaller the BER.

A second set of results is obtained for a deterministic 3 X
3 MIMO channel realization, for which we use measurements

—+>—known channel
PO
g —&—888S-3
ESA-3
107
o
w
m
1072

15

SNR (dB)

Fig. 7. Impact of pilot allocation procedure on BER performance.

from the channel sounding experiment described in Section V.
We consider a set-up whereby the Tx antennas are sparsely
distributed in space while the Rx antennas are co-located. The
channel between Tx antennas 1, 2 and 3, and the 3-antenna
receiver is modeled using measurements from one of the
antenna-elements at positions Rg, R1; and R;s, respectively
(see Fig. 3(a) in Section V). The true length and sparsity of the
employed channels are listed in Table III (as a reference); these
values were determined using the method described in [27].
While the channel length is more or less the same for all Tx
antennas, the (LoS) channel from Tx antenna 1 is significantly
more sparse than the (OLoS) channel from Tx antenna 2,
which in turn is more sparse than the (NLoS) channel from
Tx antenna 3.

Table III also shows the computation of {Nq, N2, N3}
and lists the measured length and sparsity for each sub-
channel. Initial estimates of Ly, ,, and K,, ,, are obtained
using an initial preamble with a random partition of the
available subcarriers into three sets of almost equal size
(N1 = 342, N = 341 and N3 = 341). From these
estimates, it is found that at least 165, 181 and 195 pilots
have to be allocated to Tx antennas 1, 2 and 3, respectively.
Since these values are significantly smaller than the values
employed to estimate Ly, ,, and K, ,,, it can be assumed
that convergence is achieved immediately, after only one
iteration. To show the impact of the number of pilots on
the overall system performance, BER results are computed
not only for (N7, No, N3, Ny) = (165,181,195,483), but also
for (N1, N2, N3, Ny) = (198,217,234,375), (247,271,292,214)
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TABLE III

PARAMETER ESTIMATION AND NUMBER OF PILOT SUBCARRIERS PER TX ANTENNA FOR A 3 X 3 MIMO SYSTEM WITH
SPATIALLY DISTRIBUTED TX ANTENNAS AND MEASURED CHANNELS

ne | ne | Ky Lo it. 0 it. 1
o o Np, | min. Npyn, (Engynes Bngne) | Nng(One) | Nng(0n) | Nng(Ong) | Nng(On,)
1 64 339 154 (339,64)
1 2 65 376 342 165 (376,64) 165 (1) 198 (1.2) 247 (1.5) 312 (1.9)
3 62 365 159 (365,62)
1 82 366 177 (366,82)
2 2 79 359 341 173 (359,79) 181 (1) 217 (1.2) 271 (1.5) 343 (1.9)
3 87 366 181 (366,87)
1 111 371 194 (371,111)
3 [ 2 110 374 341 195 (374,110) 195 (1) 234 (12) | 292 (15) | 369 (1.9)
3 107 366 190 (366,107)

and (312,343,369,0), where Ny is the number of pilot subcarri-
ers unused for channel estimation. Each of these corresponds
to choosing a different value of J,, in (18), as specified in
Table III. For each of the §,,, values, an initial preamble with
a random partition of the available subcarriers into sets of
size N1, N2 and N3, respectively, is further optimized using
ESA with Ty = 1072, Tgop = 1078, Trpre = 0.99,
and Ty, = 50. For §,, = 1, 1.2, 1.5 and 1.9, the sum
MMMC of the initial preamble is 0.5397, 0.4909, 0.4266 and
0.3697, respectively; after ESA this reduces to 0.3251, 0.2928,
0.2478 and 0.2140, respectively. Using the obtained preamble,
CoSaMP channel reconstruction and ZFE is applied. The
resulting BER is shown in Fig. 8(a). With ¢,, = 1, a BER
below 0.2 cannot be achieved for SNR values below 30 dB.
The BER performance improves significantly if d,,, increases
from 1 to 1.2 and further above 1.5, the BER performance
remains more or less constant. Compared to a scenario where
the channel is perfectly known at the receiver, the BER
degradation with 6,, = 1.5 or 1.9 is about 1 dB in SNR,
which is very acceptable in practice.

So far, we have shown that the proposed three-step pro-
cedure for adaptive pilot allocation is much more effective
in finding an appropriate orthogonal pilot allocation than the
state-of-the-art approach from [5] and that this results in a
good overall BER performance. For the sake of completeness,
we further compare the ESA algorithm with the determin-
istic pilot design (DPD) algorithm from [2] and the genetic
algorithm (GA) from [6]. For this comparison, we use the
same measured 3 x 3 MIMO channel as in Fig. 8(a) and the
parameters of ESA and SSS are again set as Tj,;; = 1072,
Tstop = 1078, Trate = 0.99, Titer = 50 and Tsss = 20.
DPD basically employs a modified version of SSS for the
SISO case, adding My outer iterations. In our simulations,
we take My = 100. For GA, we use the design parameter
values employed in [6]. All algorithms are initialized with
the same preamble. As opposed to ESA and SSS, DPD
and GA always allocate an equal amount of pilot subcarriers
to each Tx antenna. As explained in the introduction, this
is not optimum in scenarios where some Tx antennas have
much better channel state conditions than others. The per-
TX-antenna preambles designed by DPD or GA are, in fact,
shifted versions of each other; in particular, p,,, (i +ny — 1) =
p1(i), for ny = 2,3,...,N;. The orthogonality condition
then implies that the subcarriers in P; are spaced by at least
Ny. Further, because equidistant pilot allocation is known to

100
G
107
o
]
o
102 ¢
—p—known channel
—o—3, =10
by, =12
O =15
——3,, =19
103 | | }
0 5 10 15 20 25 30
SNR (dB)
(@
10°
107!
o
w
o
102 F
—+—known channel
—&—DPD
—+—GA
SSS
5[ ¢ —ESA ‘ ‘
107
0 5 10 15 20 25 30
SNR (dB)
(b)
Fig. 8. A virtual 3 x 3 MIMO system, with 3 LoS, 3 OLoS and 3 NLoS

measured subchannels: (a) BER performance with ESA preamble design if a
varying fraction of the 1024 available preamble subcarriers are employed for
CoSaMP channel reconstruction (N4 = 483, 375, 214 and O for 6,, = 1,
1.2, 1.5 and 1.9, respectively), (b) BER performance comparison of DPD,
GA, SSS and ESA when (N1, N2, N3, N4) = (250, 250, 250, 274).

yield a very high MMMC, meaningful DPD and GA designs
are only possible if a significant amount of pilot subcarriers
remain unused. In our simulation, we have imposed that
every Tx antenna is allocated 250 pilot subcarriers, while
274 subcarriers remain unused. As can be observed from the
BER comparison results shown in Fig. 8(b), ESA has a better
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BER performance than DPD, GA and SSS. At a BER of
4-1073, the gain of ESA in terms of SNR is about 2 dB with
respect to DPD and GA, and about 1 dB with respect to SSS.
The sum MMMCs achieved with DPD, GA, SSS and ESA are
0.3561, 0.3336, 0.2834 and 0.2735, respectively. In terms of
complexity ESA also outperforms the other algorithms. The
maximum number of MMMC evaluations involved in ESA and
SSS is Ngga = 1.4 - 10° and Nggs = 3.6 - 107, respectively
(Table II). The maximum amount of MMMC calculations
in DPD is NDPD = Mdesle(N - 3N1) = 14" 108.
Finally, GA produces 90 new pilot allocations per iteration and
performs 5000 iterations, making a total of Nga = 4.5 - 10°
MMMC evaluations. We conclude that the proposed ESA
algorithm, not only is better suited for scenarios where some
Tx antennas have much better channel state conditions than
others, but also provides a better performance complexity
trade-off than DPD and GA.

VII. CONCLUSION

In this paper, we proposed an algorithm to accurately
estimate the channel length and sparsity of all channels in
a distributed MIMO-OFDM spatial-multiplexing system. Due
to the distributed nature of the system, the channel length
and sparsity of the diverse channels may vary significantly.
As a result, the number of pilot subcarriers needed for the
estimation of each channel is different. Therefore, we also
proposed a method to determine the number of pilot subcarri-
ers in each per-Tx-antenna preamble. Finally, we developed a
novel low-complexity algorithm to select appropriate positions
for these pilot subcarriers while adhering to the orthogonal-
ity principle. Numerical performance results were presented
for both theoretical channel models and measured channels
and show that compared to the state-of-the-art method, our
approach not only demonstrates much faster converge, but also
improves the system performance in terms of NMSE and BER.
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