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Abstract— We consider uplink multiuser multiple-input1

multiple-output (MIMO) orthogonal frequency division multi-2

plexing (OFDM) communication. The transmit (Tx) side of the3

envisaged system consists of several single-antenna users or/and4

several multiple-antenna users. At the receive side, a multiple-5

antenna access point employs compressive sensing techniques to6

estimate the channel impulse response from the preamble portion7

of the observed packets. The traditional approach is that of8

orthogonal pilot allocation: during a short training period, each9

OFDM subcarrier is assigned exclusively to a single Tx antenna.10

In this case, the channel state information can conveniently be11

acquired on a per Tx antenna basis. To the best of our knowledge,12

all related research imposes that all Tx antennas are allocated the13

same amount of pilots (which must then be tailored for the most14

extreme channel conditions). However, in the considered system,15

Tx antennas may experience totally different channel conditions.16

Under these circumstances, the use of a fixed number of pilots per17

Tx antenna results in a lot of unnecessary overhead. To tackle this18

problem, our work addresses the design of efficient algorithms19

for adaptive orthogonal pilot allocation. The following design20

principles are applied: orthogonal pilot allocation, constant-21

modulus modulation, minimum measurement matrix mutual22

coherence optimization, and the condition that the number of23

pilot subcarriers allocated to each Tx antenna is adjusted to the24

channel conditions experienced by that Tx antenna. The paper25

tackles the problem of determining the optimal number of pilot26

subcarriers as well as the optimal positions of the pilots. To facili-27

tate adaptive operation, we propose a reduced-complexity method28

to determine the optimal pilot positions. The performance of our29

Manuscript received 15 June 2021; revised 19 November 2021 and 8 March
2022; accepted 30 March 2022. Date of publication 12 April 2022; date of cur-
rent version 11 October 2022. This work was supported in part by the Belgian
Excellence of Science (EOS) Grant under Project EOS30452698; in part by
the Flemish Fund for Scientific Research (FWO); in part by the National
Natural Science Foundation of China under Grant 61801516, Grant 61701530,
Grant 61701531, and Grant 61971273; and in part by the Flemish Government
(AI Research Program). The associate editor coordinating the review of this
article and approving it for publication was M. Ding. (Corresponding author:
Taoyong Li.)

Taoyong Li is with the Information and Navigation School, Air Force
Engineering University, Xi’an 710043, China, and also with the Collaborative
Innovation Center of Information Sensing and Understanding, Xi’an 710071,
China (e-mail: litaoyong0927@163.com).

Nele Noels and Heidi Steendam are with the Telecommunications and
Information Processing Department, Ghent University/IMEC, 9000 Ghent,
Belgium.

Kamil Yavuz Kapusuz, Sam Lemey, and Hendrik Rogier are with the IDLab-
Electromagnetics Group, Department of Information Technology, Ghent
University-imec, 9052 Ghent, Belgium.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2022.3164970.

Digital Object Identifier 10.1109/TWC.2022.3164970

algorithms is demonstrated by means of computer simulations, 30

using both theoretical channel models and results from our own 31

channel measurement campaign. 32

Index Terms— OFDM, MIMO, sparse channel estimation, 33

compressive sensing, pilot allocation. 34

I. INTRODUCTION 35

ORTHOGONAL frequency division multiplex- 36

ing (ODFM) is ubiquitous in wireless communication 37

networks, where it is often combined with other wireless 38

technologies such as multiuser (MU) multiple-input multiple- 39

output (MIMO). In an uplink MU-MIMO-OFDM system, 40

multiple user nodes (UN) use the same physical resources to 41

transmit their data simultaneously to a multiple-antenna access 42

point (AP). For successful data reconstruction, it is imperative 43

that the AP has accurate channel state information (CSI) [1]. 44

Enabling the AP to recover the channel prior to data detection, 45

it is customary for UNs to send training data in the form of a 46

priori known pilots. For the sake of spectral efficiency, some 47

MU-MIMO-OFDM systems opt for a scenario where all 48

active UN antennas simultaneously send pilots over the same 49

OFDM subcarriers [2], [3]. However, the more traditional 50

approach is that of orthogonal pilot allocation: during a short 51

training period, each OFDM subcarrier is assigned exclusively 52

to a single UN antenna [4]–[6]. In this case, the CSI can 53

conveniently be acquired on a per UN antenna basis. 54

Wireless communication channels often behave as linear 55

filters with long impulse responses with most of the energy 56

concentrated in a few short time intervals [7]. To limit the 57

amount of pilots that are needed for the accurate estimate of 58

such ‘sparse’ channels, compressive sensing (CS) based chan- 59

nel estimation can be used. The accuracy that can be achieved 60

with such methods depends on (i) the channel conditions, 61

(ii) the CS reconstruction method and (iii) the pilot alloca- 62

tion [8], [9]. In [10]–[12], several algorithms are proposed to 63

effectively reconstruct a sparse signal. Any of these algorithms 64

can be applied to estimate sparse channels. Further, some 65

CS-based channel estimation methods have been specifically 66

developed for the MIMO-OFDM system [13]–[15]. Accurate 67

channel estimates can be obtained with these methods pro- 68

vided that a suitable pilot allocation is adopted. However, 69

finding a good pilot allocation for estimating sparse OFDM 70

channels is not trivial. In [4]–[6], [16]–[18], the issue was 71
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Fig. 1. Block diagram of the considered MIMO-OFDM communication system.

studied for single-input single-output (SISO) OFDM systems.72

A wide range of optimization procedures is proposed; many73

of them are characterized by a high complexity and a slow74

convergence. Also, the number of data and pilot subcarri-75

ers per OFDM symbol is always fixed. The latter becomes76

problematic under dynamic channel conditions, where it is77

appropriate to instantaneously adjust the pilot allocation.78

A low-complexity procedure to estimate the instantaneous79

length and ‘sparsity’ of a SISO channel was proposed in [19],80

for OFDM symbols that are entirely allocated to pilots. So far,81

it has not been investigated whether the algorithm remains82

useful when only a portion of OFDM subcarriers is allocated83

to pilots. In addition, it has never been studied how the84

number of pilots per OFDM symbol can be adapted to match85

the effective channel length and sparsity. Orthogonal pilot86

allocation for MIMO-OFDM was considered in [4]–[6]. In all87

cases, all UN antennas in the system are assigned by default88

the same number of pilot subcarriers. In distributed systems89

with multiple UNs and a multi-antenna AP receiver, UNs90

can exhibit substantially different channel statistics. Moreover,91

if UNs can move independently, the overall coherence time92

reduces. In such cases, a fixed and unified worst-case sce-93

nario pilot allocation (always accommodating for the most94

extreme channel conditions) can cause a lot of unnecessary95

overhead. Adaptive, antenna-specific pilot allocation is then96

more appropriate [20].97

This paper considers adaptive antenna-specific orthogonal98

pilot allocation for uplink MU-MIMO-OFDM. The main con-99

tributions of this paper are:100

• A novel three-step procedure to continuously update the101

channel estimates and suitably adapt the pilot allocation102

in the preamble, prompting the system to accommodate103

the needs of mobile users.104

• A novel efficient algorithm to simultaneously estimate the105

channel length and sparsity of all the channel impulse106

responses (CIRs). The algorithm accomodates for the107

fact that each antenna is allocated only a portion of the108

preamble subcarriers.109

• A novel strategy to properly divide the total number of110

pilot subcarriers over the different UN antennas.111

• An improved pilot allocation algorithm. Smart updating112

conditions are applied to accelerate the convergence.113

Further, the concept of the ‘shrinking potential’ is 114

employed, which is new in the context of orthogonal pilot 115

allocation. 116

The paper is organized as follows. Section II introduces the 117

system model and Section III reviews CS channel reconstruc- 118

tion. In Section IV-A, we first show how a receiver can retrieve 119

and track the length and sparsity of all MIMO subchannels 120

simultaneously, in parallel. Then, in Section IV-B, we propose 121

a way to continuously adapt the number of pilot subcarriers 122

per transmit antenna. Finally, in Section IV-C, we derive a 123

novel orthogonal pilot allocation method. The method owes its 124

efficiency to the introduction of a new metric, which we refer 125

to as the ‘measurement matrix mutual coherence shrinking 126

potential’. Both theoretical channel models and results from 127

our own channel measurement campaign are used to demon- 128

strate the effectiveness of the algorithms. Section V describes 129

the channel measurement set-up and Section VI discusses the 130

numerical results. Conclusions are provided in Section VII. 131

Notation: Boldface italic letters denote vectors and boldface 132

letters denote matrices. hnt,nr and Φnt,nr are the impulse 133

response and the measurement matrix of the channel between 134

the nt-th Tx antenna and the nr-th Rx antenna. The length 135

and sparsity of hnt,nr are denoted as Lnt,nr and Knt,nr , 136

respectively. There are Nt Tx antennas and Nr Rx antennas. 137

N denotes the number of subcarriers. Pnt denotes the set of 138

pilot positions for the nt-th Tx antenna, and pnt(s) is the s-th 139

element in Pnt . Further, Nnt is the number of elements in Pnt . 140

Y (l) denotes the observations on the l-th subcarrier at all Rx 141

antennas, Y nr denotes the observations on all subcarriers at 142

the nr-th Rx antenna and Y nt,nr denotes the observations on 143

all subcarriers in Pnt at the nr-th Rx antenna. Φnt denotes the 144

relevant measurement matrix for the nt-th Tx antenna. μ{Φ} 145

stands for mutual coherence of Φ. Epo,nt is the ‘shrinking 146

potential’ of μ{Φnt}. μ{Φnt}min denotes Welch bound on 147

μ{Φnt}. Pr[Pnt ] is the probability of selecting Pnt and δnt 148

is the scaling factor to adjust Nnt . 149

II. GENERAL SYSTEM DESCRIPTION 150

An elementary block diagram of the considered system 151

is shown in Fig. 1. Np users with a total of Nt ≥ Np 152

transmit (Tx) antennas communicate with an AP that has Nr 153

receive (Rx) antennas. The Tx antennas are not necessarily 154
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Fig. 2. Packet structure of nt-th Tx antenna.

physically co-located, and can therefore experience unequal155

channel statistics. At the Rx side a joint detection strategy is156

adopted. We further assume that all Tx and Rx antennas are157

perfectly synchronized in time and frequency.1 After initial158

synchronization, the Tx antennas start sending data packets.159

As shown in Fig. 2, we assume that all Tx antennas employ160

the same packet structure: a payload of Nd data-modulated161

OFDM symbols is preceded by a short antenna-specific pream-162

ble with a mixture of pilot-modulated subcarriers and zero163

subcarriers. The pilots in the preamble are intended for channel164

estimation, which is the main subject of this paper. For165

clarity, we will limit our exposition to the case where the166

preamble consists of a single OFDM symbol and the CIR is167

estimated once per packet.2 Each OFDM symbol consists of168

N subcarriers. The information bits modulating the payload169

subcarriers are mapped to a complex-valued constellation Ω =170

{ω1, ω2, . . . , ω2m} with 1
2m

�2m

i=1(�ωi�2)2 = 1, where �a�p171

denotes the p-norm of a vector a. For simplicity, the pilots are172

assumed to be selected from a constant-modulus constellation173

Ωp = {ωp,1, ωp,2, . . . , ωp,2mp} with �ωp,i�2 = 1. Each point174

in Ω (Ωp) corresponds to a unique m(mp)-bit sequence. At the175

nt-th Tx antenna, the l-th subcarrier is modulated by the176

complex value Xnt(l), and the corresponding bit sequence is177

bnt (l). The transmitted waveform is constructed by taking the178

inverse discrete Fourier transform (IDFT), followed by adding179

a cyclic prefix (CP). At the Rx side, the CP is removed and the180

resulting packet is sent to a discrete Fourier transform (DFT)181

unit for demodulation. The CP is assumed longer than the CIR182

of all MIMO subchannels, so that the l-th element of the DFT183

output at the nr-th Rx antenna can be modeled as184

Ynr (l) =
Nt�

nt=1

Xnt (l)Hnt,nr (l) + Wnr (l) , (1)185

where Wnr (l), for nr = 1, 2, . . . , Nr and l = 1, 2, . . . , N , are186

independent zero-mean complex-valued circular-symmetric187

Gaussian noise variables with variance N0, and188

Hnt,nr (l) =
N�

k=1

F (l, k)hnt,nr (k) , (2)189

with F (l, k) the size-N DFT kernel190

F (l, k) = e−j2π
(k−1)(l−1)

N (3)191

1In practical systems, time and frequency synchronization can be accom-
plished by means of a closed-loop procedure.

2Extension to more general cases is relatively straightforward (see, e.g., our
previous work on SISO systems in [18]).

and hnt,nr (k), k = 1, 2, . . ., the sample spaced CIR of 192

the subchannel between the nt-th Tx antenna and the nr-th 193

Rx antenna. The coherence time of the channel is assumed 194

to be several times larger than the maximum duration of 195

a packet, so that the channel can be modeled as constant 196

over the duration of a packet transmission.3 It is assumed 197

that hnt,nr (k) is zero for all k > Lnt,nr and the first 198

Lnt,nr values of hnt,nr (k) are grouped in a vector hnt,nr = 199

[hnt,nr (1), . . . , hnt,nr(Lnt,nr )]T . The number of non-zero 200

elements in hnt,nr is denoted as Knt,nr . The parameters 201

Lnt,nr and Knt,nr are termed channel length and channel 202

sparsity, respectively. Collecting the observations on the l- 203

th subcarrier at the various Rx antennas in a single vector, 204

we have: 205

Y (l) =
�

EsHT (l)X (l) + W (l) , (4) 206

where Es denotes the received symbol energy, X (l) = 207

[X1 (l) , X2 (l) , . . . , XNt (l)]T , Y (l) = [Y1 (l) , Y2 (l) , 208

. . . , YNr (l)]T and H (l) is the Nt × Nr matrix with elements 209

Hnt,nr (l) from (2). If H (l) is known, the receiver can 210

estimate X (l) from Y (l), for l = 1, 2, . . . , N . In this work, 211

zero-forcing equalization (ZFE) will be employed for MIMO 212

data detection. From the resulting symbol estimates X̂nt (l), 213

estimates b̂nt (l) of the corresponding m-bit sequences can 214

be deduced. In practical systems, the quantities H (l) are 215

not a priori known at the receiver and estimated values 216

Ĥ (l) are used instead. The accuracy of the estimates Ĥ (l) 217

determines the error performance of a given MIMO detector, 218

at a given signal-to-noise ratio (SNR) Es/N0. The normalized 219

mean squared error (NMSE) of the estimated CIRs ĥnt,nr = 220

[ĥnt,nr (1), ĥnt,nr(2), . . . , ĥnt,nr (Lnt,nr )]T , 221

ĥnt,nr (k) =
1
N

N�
l=1

ej2π
(l−1)(k−1)

N Ĥnt,nr (l) , (5) 222

serves as a first metric to evaluate the channel estimation 223

performance. It is defined as 224

NMSE =
1

NtNr

Nt�
nt=1

Nr�
nr=1

E

�����
ĥnt,nr − hnt,nr

����2

2

	

E



�(hnt,nr)�22

� , (6) 225

where E [·] is the statistical expectation with respect to the 226

joint distribution of (H (l) , W (l)) for all l. A good measure 227

for the overall system performance is the bit error rate (BER), 228

BER = E

�
Nt�

nt=1

N�
l=1

1
mN

dH

�
b̂nt (l) , bnt (l)

�

, (7) 229

with dH(b, ḃ) the Hamming distance between b and ḃ, and 230

where E [·] is the statistical expectation with respect to the 231

joint distribution of H (l), W (l), bnt (l) for all l and all nt. 232

3This assumption typically holds for scenarios with low-speed mobility, such
as commonly encountered in IoT-type applications [21].
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III. CHANNEL ESTIMATION233

In the remainder, it is assumed that if a Tx antenna mod-234

ulates a preamble subcarrier with a pilot, then all other Tx235

antennas set that subcarrier to zero (orthogonal pilot alloca-236

tion). For convenience, we specify the set of pilot-modulated237

preamble subcarriers at the nt-th Tx antenna as Pnt =238

{pnt(1), pnt(2), . . . , pnt(Nnt)} (see Fig. 2). We have that239

∪Nt+1
j=1 Pj = P = {1, 2, . . . , N}, with Pi ∩ Pj = ∅ for all240

i �= j, and PNt+1 the set that collects the subcarriers unused241

for channel estimation (possible empty). Following (1)-(3), the242

vector Y nt,nr = [Ynr (pnt(1)), . . . , Ynr (pnt(Nnt))]T , collect-243

ing the DFT components with index l in Pnt that are observed244

at the nr-th Rx antenna can be expressed as245

Y nt,nr =
�

EsΦnt,nrhnt,nr + W nt,nr , (8)246

where W nt,nr = [Wnr (pnt (1)) , . . . , Wnr (pnt (Nnt))]
T ,247

and Φnt,nr is the Nnt × Lnt,nr measurement matrix with248

elements249

(Φnt,nr)s,l = Xnt (pnt(s)) e−j2π
(pnt (s)−1)(l−1)

N . (9)250

As Φnt,nr is known, the observation Y nt,nr from (8) is251

suitable for estimating hnt,nr . We assume that a CS-based252

estimation method is employed. Several CS-based methods can253

be used to obtain an estimate ĥnt,nr of hnt,nr from Y nt,nr254

by solving some related problems. We can for example apply255

orthogonal matching pursuit (OMP) [10] to find the solution256

to the optimization problem257

min
hnt,nr

�hnt,nr�0258

s.t. �Y nt,nr −
�

EsΦnt,nrhnt,nr�2 ≤ �, (10)259

where � is the error tolerance. Alternatively, we can use260

compressive sampling matching pursuit (CoSaMP) [11] to261

seek the estimate yielding minimum estimation error for a262

given (maximum) sparsity level Knt,nr ≥ 1263

min
hnt,nr

�Y nt,nr −
�

Es Φnt,nrhnt,nr�2264

s.t. �hnt,nr�0 ≤ Knt,nr . (11)265

Moreover, expectation-maximization Gaussian-mixture266

approximate message passing (EM-GM-GAMP) [12] can be267

used to obtain an estimate ĥnt,nr by solving the following268

convex optimization problem269

ĥnt,nr = arg min
hnt,nr

{�Y nt,nr −
�

EsΦnt,nrhnt,nr�22270

+λ�hnt,nr�1}, (12)271

where the scalar λ controls the relative importance applied272

to the Euclidian error and the sparseness term (the first and273

second expressions, respectively, inside the brackets in (12)).274

The focus of this paper is, however, not on designing the275

CS-based channel recovery algorithm itself, but rather on276

designing the pilot allocation and therefore on designing the277

measurement matrix Φnt,nr from (9). It is well-established [8],278

[9] that accurate CS-based reconstruction of hnt,nr requires279

that:280

1) The matrix Φnt,nr can be constructed, which requires 281

knowledge of Pnt , Xnt (pnt(s)), s = 1, 2, . . . , Nnt and 282

the number Lnt,nr of columns in Φnt,nr . 283

2) The number Nnt of rows in Φnt,nr , i.e., the number of 284

pilot subcarriers for the nt-th Tx antenna, is sufficiently 285

large. Typically, it is required that [22] 286

Nnt ≥ �Knt,nr log2 (Lnt,nr/Knt,nr)	 . (13) 287

3) The matrix Φnt,nr is an almost orthogonal matrix. 288

A suitable measure for the orthogonality of Φnt,nr is 289

the measurement matrix mutual coherence (MMMC) 290

μ {Φnt,nr} [9], with 291

μ{Φ} = max
1≤u,v≤L

|
φu, φv�| / �φu�2 �φv�2 , (14) 292

where L is the number of columns in Φ, φu is the u-th 293

column of Φ, and 
·� is the scalar product operation. 294

It follows from (13) that, as opposed to conventional esti- 295

mation methods, the number of required pilot subcarri- 296

ers is (mainly) determined by Knt,nr rather than Lnt,nr . 297

Substituting (9) into (14), and taking into account that 298

�Xnt(pnt(s))�2 = 1, yields 299

μ{Φnt,nr} = max
1≤u,v≤Lnt,nr

1
Nnt

������
Nnt�
s=1

e−j2π
(pnt (s)−1)(u−v)

N

������ , 300

(15) 301

which, for given Nnt , only depends on Pnt . As far 302

as CS-based estimation of hnt,nr is concerned, minimum 303

MMMC is a generally accepted criterion for designing the 304

pilot allocation [4]–[6], [16]–[18], [20], [23]. The best Pnt , for 305

given Nnt , is the one that minimizes the MMMC μ{Φnt,nr} 306

from (15). Due to the orthogonality principle, the positions of 307

the pilots in the various per-Tx-antenna preambles cannot be 308

chosen independently of each other. It follows that finding an 309

appropriate partition {P1,P2, . . . ,PNt+1} of P is a complex 310

combinatorial optimization problem, which depends on the 311

length and the sparsity of the individual CIRs. 312

In Section VI, it is established that with OMP, CoSaMP and 313

EM-GM-GAMP based channel estimation virtually the same 314

overall BER performance can be achieved. Because of space 315

constraints we will focus on the CoSaMP approach to describe 316

and evaluate the proposed adaptive orthogonal pilot alloca- 317

tion method. Since the proposed pilot allocation procedure 318

is not particularly tailored to CoSaMP, similar performance 319

advantages can be expected when used in combination with 320

OMP or EM-GM-GAMP. As opposed to OMP and EM-GM- 321

GAMP, CoSaMP requires that the value of Lnt,nr carefully 322

matches the effective duration of hnt,nr and that the effective 323

sparsity Knt,nr of hnt,nr is also known. However, in the next 324

section, we will show that accurate instantaneous information 325

about Lnt,nr and Knt,nr is indispensable anyway in practical 326

systems with adaptive per-user pilot allocation. 327

IV. ADAPTIVE ORTHOGONAL PILOT ALLOCATION 328

We derive a practical procedure to adaptively allocate the 329

pilot subcarriers. Using minimum NMSE as a criterion is 330

intractable because the true channel is a priori unknown at 331
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the Rx side. Using minimum BER as a criterion is also332

impractical because it requires a long acquisition period each333

time the pilot allocation needs updating. As an alternative,334

we propose a three-step procedure with a decoupled design of335

{(Lnt,nr , Knt,nr )}, {Nnt} and {Pnt}. The approach is ideally336

suited for adaptive pilot allocation. The first step serves to337

acquire and track the values of Lnt,nr and Knt,nr , for all nt338

and nr. Acquisition is required only once, at the start of the339

transmission. To get the procedure started, the first packet of a340

transmission uses predefined initial per-Tx-antenna preambles.341

In the second step, the knowledge of {(Lnt,nr , Knt,nr)}342

is used to determine Nnt . The criterion used in this step343

is the condition imposed by (13). Step 1 and Step 2 are344

further detailed in Section IV-A and Section IV-B, respectively.345

Finally, in Step 3, {Pnt} is selected based on the minimum346

MMMC criterion and subject to the condition that Pnt should347

have cardinality Nnt , for all nt. The appropriate partition348

{Pnt} for given values of Nnt must be searched in large pre-349

computed look-up tables (LUT), or calculated on-line. A novel350

and more efficient subcarrier partitioning procedure (with a351

better accuracy/complexity trade-off than the state-of-the-art352

in [5]) is proposed in Section IV-C. If Step 1 does not result353

in an update of {(Lnt,nr , Knt,nr )}, the receiver passes the354

packet to the data detector for further processing; otherwise,355

the receiver locally updates the pilot allocation and informs the356

UNs at the TX side to do the same using feedback channel357

signaling (see Fig. 1). Upon reception of this feedback, the358

per-antenna-preambles are updated and the payload is resend359

with the novel preambles. We note that the ‘LUT/on-line360

processing’ and ‘preamble generator’ blocks at the Tx side361

need to be present in and run by every UN. An alternative362

could be that the updated pilots are only computed at the363

receiver and simply fed back to the transmit side, but this364

would require significantly more feedback signaling overhead.365

The ‘preamble processing’ block serves to estimate Lnt,nr366

and Knt,nr of all channels (step 1) and to determine the367

appropriate number of pilots per Tx antenna Nnt (step 2).368

A. Length and Sparsity of All Subchannels369

Upon reception of a novel preamble (with some370

given {Pnt}), we estimate the instantaneous values of371

{(Lnt,nr , Knt,nr )}. One option is to employ a channel recon-372

struction algorithm that does not require prior knowledge of373

Lnt,nr and Knt,nr ; estimates of Lnt,nr and Knt,nr can then374

be derived from the estimated CIRs. However, in this work,375

we opt for CoSaMP channel reconstruction, in which case we376

compute CIR estimates for different trial values of Lnt,nr and377

Knt,nr , and select the best option using minimum BER (in378

the preamble) as a criterion. This approach was originally pro-379

posed in [19] for a significantly different scenario, namely with380

Lnt,nr > N = Nnt > Knt,nr , nt = Nt = 1, nr = Nr = 1.381

In the following, it is shown that the algorithm from [19] can382

not be applied directly to the situation at hand. To ensure383

proper operation, important adjustments are necessary.384

For given Pnt , let #errnt,nr(K̃, L̃) denote the number of385

bit errors that are detected in {Xnt(pnt(s)); pnt(s) ∈ Pnt}386

after ZFE and demapping of {Ynr (pnt(s)) ; pnt(s) ∈ Pnt},387

when the CoSaMP CIR reconstruction unit assumes that K̃ 388

and L̃ are the true sparsity and length of hnt,nr . For the 389

scenario considered in [19], it was observed that (at high 390

SNR) for any value of K̃ larger than the true sparsity Knt,nr 391

the average of #errnt,nr (K̃, L̃) achieves its minimum in 392

L̃ = Lnt,nr . Therefore, the following two-stage optimiza- 393

tion procedure was proposed. First, Lnt,nr was estimated to 394

minimize #errnt,nr(Nnt , L̃) (taking into account that Nnt is 395

an upper bound on Knt,nr according to (13)). Then, Knt,nr 396

is estimated by keeping in #errnt,nr (K̃, L̃), the value of L̃ 397

fixed and equal to L̂nt,nr . Unfortunately, straightforwardly 398

applying this procedure to the scenario at hand (where N > 399

Lnt,nr > Nnt > Knt,nr ) does not yield satisfactory results. 400

This is a consequence of the fact that the objective function 401

#errnt,nr (K̃, L̃) behaves differently if [N > Lnt,nr > 402

Nnt > Knt,nr ] than if [Lnt,nr > N = Nnt > Knt,nr ]. 403

Simulations show that, in the former case, a reversed two- 404

stage optimization procedure, where Knt,nr is estimated prior 405

to Lnt,nr , works better. The full discussion can be found in 406

Section VI-A. Based on these observations we propose to 407

estimate (Knt,nr , Lnt,nr ) from the observed preamble as 408

K̂nt,nr = argmin
K̃

#errnt,nr (K̃, L(max)
nt,nr

), (16) 409

L̂nt,nr = argmin
L̃

#errnt,nr (K̂nt,nr , L̃), (17) 410

with L
(max)
nt,nr an upper bound on the channel length 411

(e.g., L
(max)
nt,nr = N ). The minima in (16)-(17) are found effi- 412

ciently using the dynamic window search (also used in [19]) 413

with initial search interval [1, Nnt ] for (16), and [1, L
(max)
nt,nr ] 414

for (17). Moreover, (16)-(17) can be performed simultane- 415

ously, in parallel, for all Nt × Nr subchannels. Estimating 416

Knt,nr (16) prior to Lnt,nr (17) significantly outperforms the 417

original (reverse) approach from [19] in terms of estimation 418

accuracy. 419

B. Number of Pilot Subcarriers Per Antenna 420

In distributed MIMO systems, Knt,nr and Lnt,nr can vary 421

significantly with (nt, nr). This implies that the required 422

number of pilot subcarriers to estimate the subchannel hnt,nr 423

also varies significantly with (nt, nr). For each nt ∈ 424

{1, 2, . . . , Nt}, the condition (13) imposes Nr different con- 425

straints on Nnt,nr (one per Rx antenna). However, subchannels 426

hnt,nr , nr = 1, 2, . . . , Nr share the same Pnt . To ensure accu- 427

rate estimation of hnt,nr , nr = 1, 2, . . . , Nr, the number Nnt 428

of elements in Pnt must comply with (13) for that particular 429

value of nt and every possible value of nr. We therefore 430

propose to set Nnt as 431

Nnt = max
nr

�
δnt · K̂nt,nr log2

�
L̂nt,nr/K̂nt,nr

��
, (18) 432

with (K̂nt,nr , L̂nt,nr) an estimate of (Knt,nr , Lnt,nr ) and 433

δnt ≥ 1 a scaling factor that can be adapted to meet the 434

system requirements (total number of pilots, desired accuracy 435

for certain channels, etc.). Starting from an initial pilot alloca- 436

tion, estimates (K̂nt,nr , L̂nt,nr) can be obtained by applying 437

the approach outlined in Section IV-A. These estimates can 438

then be used to compute the appropriate number of pilot 439
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subcarriers per Tx antenna in (18). Subsequently, a new pilot440

allocation with the appropriate subset sizes can be selected.441

In its turn, this new pilot allocation can be used to re-442

estimate (Knt,nr , Lnt,nr). If the novel (K̂nt,nr , L̂nt,nr) do443

not (significantly) differ from the previous values, the system444

can continue to use the current pilot allocation. Otherwise,445

the procedure of updating {Nnt} and selecting a novel pilot446

allocation needs to be run again. A numerical example of this447

iterative updating procedure is provided in Section VI.448

C. Orthogonal Pilot Allocation449

We describe an efficient orthogonal pilot allocation proce-450

dure, termed ‘extended simulated annealing’ or ESA. As a451

smaller MMMC results in a more accurate estimate of the452

channel [4]–[6], [16]–[18], the MMMC will be adopted as the453

cost function. The ultimate goal is to find a good approximate454

solution to the following complex multi-objective optimization455

problem. Find a partition of P into subsets P1, . . . ,PNt+1456

with respective cardinality N1, . . . , NNt+1, so that457

Pnt = argmin μ{Φnt,nr}, nt = 1, . . . , Nt

nr = 1, . . . , Nr.
(19)458

From (15), it follows that μ{Φnt,nr} depends on Pnt and459

Lnt,nr . For given Pnt , it is easily derived that μ{Φnt,nr} ≤460

μ{Φnt,n�
r
} if Lnt,nr ≤ Lnt,n�

r
. Hence, (19) simplifies as461

follows:462

Pnt = argmin μ{Φnt}, nt = 1, . . . , Nt, (20)463

where Φnt = Φnt,f(nt), with464

f(nt) = arg max
nr=1,2,...,Nr

Lnt,nr . (21)465

In the literature, various researchers proposed ways to fur-466

ther simplify (20) by transforming it into a single-objective467

optimization problem. In [2], [6], for example, the per-Tx-468

antenna pilot allocations are assumed to be shifted versions of469

each other. In that case, solving (20) for all nt boils down to470

solving (20) for nt = 1 only, which significantly reduces the471

complexity of the problem. However, the restriction that the472

per-Tx-antenna pilot allocations need to be shifted versions473

of each other limits the performance that can be achieved.474

Moreover, this approach does not allow to allocate a different475

number of subcarriers to different Tx antennas, which may476

be suboptimal in distributed MIMO scenarios. In this work,477

we will rather follow the approach taken in [5] and use the478

minimum sum MMMC criterion, i.e., find a partition of the set479

of subcarriers P into subsets P1, . . . ,PNt+1, with respective480

cardinality N1, . . . , NNt+1, so that481

{P1,P2, . . . ,PNt} = arg min μ{Φ}, (22)482

with μ{Φ} the sum MMMC, given by483

μ{Φ} =
Nt�

nt=1

μ{Φnt}. (23)484

Similar to in [18] for SISO systems, simulated annealing (SA)485

can be used to efficiently find an approximate solution of (22).486

Algorithm 1 ESA

1: Input: N and {Nnt , μ{Φnt}min; nt = 1, 2, . . . , Nt}
2: Set Tinit, Trate, Tstop, Titer. Set T = Tinit.
3: Randomly choose a pilot allocation and calculate μ{Φnt},

nt = 1, . . . , Nt.
4: while T > Tstop do
5: for l = 1 : Titer do
6: Using (24) and (26)-(27), compute nmax and
{Pr[Pnt ], nt �= nmax}.

7: Randomly select an index nt
� �= nmax; the probabil-

ity that nt
� is selected is Pr[Pn�

t
].

8: Uniformly select a value s from {1, 2, . . . , Nnmax}
and a value s� from {1, 2, . . . , Nn�

t
}.

9: Exchange pnmax(s) and pnt
�(s�) to form new partition

{P∗
1 ,P∗

2 , . . . ,P∗
Nt+1}.

10: Calculate the corresponding μ{Φ∗
nmax
}, μ{Φ∗

nt
�},

and the sum μ{Φ∗};
11: if ((μ{Φ∗

nmax
} − μ{Φnmax} < 0) and (μ{Φ∗

nt
�} −

μ{Φnt
�} < 0)) or ((exp(−(μ{Φ∗

nmax
}−μ{Φnmax})/T ) >

rand()) and (exp(−(μ{Φ∗
n�

t
} − μ{Φn�

t
})/T ) > rand())

and (μ{Φ∗} < μ{Φ})) then
12: {P1,P2, . . . ,PNt+1} ← {P∗

1 ,P∗
2 , . . . ,P∗

Nt+1};
13: μ{Φnmax} ← μ{Φ∗

nmax
}; μ{Φnt

�} ← μ{Φ∗
nt

�};
μ{Φ} ← μ{Φ∗};

14: end if
15: end for
16: T ← T · Trate;
17: end while
18: Output: {P1,P2, . . . ,PNt+1}.

To further speed up convergence, we propose a smart imple- 487

mentation of the SA updating rules. The resulting ESA algo- 488

rithm is outlined in Algorithm 1; the main novelties are the 489

following. 490

a) Updating probability: The probability that a subset 491

Pnt gets updated, depends on the shrinking potential of its 492

MMMC. For nt = 1, . . . , Nt, the shrinking potential Epo,nt 493

of μ{Φnt} is defined as the difference between μ{Φnt} and 494

its lower Welch bound μ{Φnt}min: 495

Epo,nt = μ{Φnt} − μ{Φnt}min, (24) 496

where [24] 497

μ{Φnt}min =

�
(Lnt,f(nt) −Nnt)

(Nnt(Lnt,f(nt) − 1))
, (25) 498

with f(nt) from (21) and Nnt from (18). The shrinking 499

potential μ{ΦNt+1} is set as the average potential of the other 500

subsets. The subset corresponding to the largest potential, i.e., 501

Pnmax , with 502

nmax = arg max
nt=1,2,...,Nt+1

Epo,nt (26) 503

is always one of the two updated subsets. The other updated 504

subset is randomly selected, with the probability Pr[Pnt ] of 505
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selecting Pnt with nt �= nmax proportional to Epo,nt , i.e.,506

Pr[Pnt ] = Epo,nt/

Nt+1�
n=1

(Epo,n − Epo,nmax). (27)507

b) Updating conditions: For updating the partition, ESA508

looks at the individual MMMC of the subsets that were509

selected for updating, rather than at the sum MMMC only. The510

old partition is replaced by the new one, only if (i) at least one511

of the individual MMMCs decreases and (ii) the sum MMMC512

decreases. If both MMMCs decrease, the new partition is513

always accepted. If only one of the MMMCs decreases and514

the sum MMMC also decreases, the new partition is accepted515

with a (small) probability that depends on the annealing516

temperature T .517

The use of the shrinking potential to rationalize the SA518

updating probabilities and the updating conditions are innov-519

ative. They constitute essential parts of the design and they520

are decisive to boost the accuracy/complexity trade-off of521

the procedure in a MIMO scenario. Let us now analyze the522

complexity of ESA. Evaluating a single μ{Φnt} requires523

NORMMMC(nt) = 2Nnt(Lnt,f(nt)−1) elementary operations524

on real quantities (NOR), with f(nt) defined in (21). Because525

ESA is a non-deterministic method, the total NOR performed526

with ESA (NORESA) is a random variable and a comprehensi-527

ble closed-form expression is hard to derive. As an alternative,528

a simple upper bound NORESA,up can be computed:529

NORESA ≤ NORESA,up530

= 2Titer logTrate
(Tstop/Tinit)NORMMMC,max531

(28)532

with NORMMMC,max = maxnt=1,2,...,Nt NORMMMC(nt).533

The computational complexity of ESA is mainly determined534

by the MMMC evaluations in line 10 of Algorithm 1. In (28),535

Titer logTrate
(Tstop

Tinit
) indicates the total number of iterations.536

At most two Tx antennas need to recalculate their MMMCs537

during each iteration. It is interesting to contrast (28) to538

the computational complexity associated with the SSS algo-539

rithm from [5], where in each iteration μ{Φnt} is evaluated540

2(N − Nt)Nt times for all nt (for more details see541

Section VI-D). The total NOR performed after TSSS SSS542

iterations is543

NORSSS = 2TSSS

Nt�
nt=1

NORMMMC(nt)(N −Nnt)Nnt544

≤ 2TSSSNORMMMC,max

Nt�
nt=1

(N −Nnt)Nnt . (29)545

It can be concluded that for large N , SSS is significantly546

more complex per iteration than ESA. Moreover, previous547

work shows that SA converges faster than SSS [18]. It can be548

expected that the same holds for ESA. In the numerical results549

section the complexity of ESA will be discussed in more550

detail and further contrasted to other existing pilot allocation551

algorithms.552

Fig. 3. (a) Floor plan of the environment, in which the channel sounding
experiment was performed. (b) Integrated three-element UWB SIW cavity-
backed slot antenna arrays at transmitter and receiver sides, were deployed
approximately 3.1 m and 0.55 m above ground level, respectively. Measure-
ment environment: (c) photograph of one side, (d) photograph of the other
side.

V. MEASUREMENT SETUP 553

Measurements were conducted in an indoor laboratory 554

environment at UGent. Fig. 3(a) depicts the laboratory plan 555

with brick walls and reinforced concrete floors. The labo- 556

ratory is approximately 19.2 m by 11.2 m. It contains two 557

electromagnetically shielded rooms. The larger room is a 558

rectangle of size 9.1 m by 4.2 m whereas the smaller room, 559

is approximately 5 m long and 3.9 m wide. The rest of the 560

laboratory is mostly equipped with metallic cabinets, desks, 561

and hardware equipment (see Fig. 3(c) and Fig. 3(d)). The 562

indoor radio channel with respect to a fixed transmitter was 563

measured at 20 spatially distinct receiver positions. The Tx and 564

Rx positions are outlined in the floor plan of Fig. 3(a). Half of 565

the Rx positions (R1-R10) can be considered as line-of-sight 566

(LoS) scenarios. A quarter of the Rx positions (R11-R15) can 567

be considered as obstructed-LoS (OLoS) scenarios, where the 568

free-space path from the transmitter to the receiver undergoes 569

a reflection and/or a diffraction (walls). The last 5 Rx positions 570

(R16-R20) can be considered as non-LoS (NLoS) scenarios, 571

where the path from the transmitter to the receiver undergoes 572

a transmission through a medium (wall, door). During the 573

measurements, the door was kept closed and the hallway was 574

empty. 575

Ultra wideband (UWB) channel sounding measurements 576

were carried out at each of the 20 Rx positions. UWB 577

cavity-backed slot antenna arrays in substrate integrated 578

waveguide (SIW) technology [25] were employed at both ends 579

of the measurement system. This type of antenna technology 580

offers the benefit that the antenna does not suffer from mutual 581
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coupling, which would otherwise distort the radio channel582

measurements. Each antenna array consists of three identical583

antenna elements, arranged in such a way that the array584

exhibits threefold rotational symmetry, resulting in an angle585

of 60◦ between subsequent antenna elements. The Tx and586

Rx antennas were placed approximately 3.1 m and 0.55 m587

above ground level, respectively. The measurement scenario588

with the receiver in position R8 is pictured as an example589

in Fig. 3(b). A performance network analyzer (PNA) of590

type Agilent E8364B was used to probe the indoor radio591

channel ranging from 4 GHz to 7 GHz, this being the UWB592

frequency band. The PNA was used to measure the complex593

gain between each Tx antenna-element and each Rx antenna-594

element, individually. The feeder cables for the Tx and the595

Rx antennas were included in the PNA calibration in order to596

exclude them from the measurement data. All measurements597

were performed outside regular working hours.598

VI. NUMERICAL RESULTS599

In this section, simulations are conducted to demonstrate the600

effectiveness of the proposed algorithms. A QPSK scheme is601

adopted for both data and pilots. The number of subcarriers602

per OFDM symbol is N = 1024 and a bandwidth of 528 MHz603

is assumed, yielding a sample period of 1.89 nanoseconds. For604

the channel, two scenarios are considered:605

1) A random scenario, where each of the MIMO subchan-606

nels is modeled in correspondence to one of the four607

communication environments and propagation scenarios608

proposed for the IEEE 803.15.3a WPAN standard. The609

corresponding channel models (CMs) are referred to as610

CM1, CM2, CM3 and CM4. CM1 and CM2 model the611

LoS and NLoS channel environments, for ranges smaller612

than 4 m. For larger ranges, the NLoS models CM3613

and CM4 are used, with emphasis on a strong delay614

dispersion in the case of CM4 [7]. In our simulations, the615

channel length L and sparsity K are obtained as follows:616

(a) generate a channel realization according to a specific617

CM using the code provided by the IEEE 802.15.3a618

standard group, with a sampling period of 1/6 nsec;619

(b) resample the obtained CIR to obtain the sample620

spaced CIR; (c) find the amount of channel samples that621

suffice to cover 90% of the total power (this yields L);622

(d) count how many of these L channel samples have623

an amplitude larger than 10−4 (this yields K). Hence,624

the channel length and sparsity are determined to be625

L = 180, 200, 350, 506 and K = 42, 56, 77, 121 for626

CM1 to CM4, respectively.627

2) A deterministic scenario, where the channels are taken628

from our measurements, performed in an indoor labora-629

tory environment at UGent, Belgium.630

Two metrics are used for performance evaluation: the631

NMSE (6) and the BER (7). These metrics are measured at a632

set of equidistant SNR points and determined by Monte-Carlo633

simulation. We average over 500 packets, with each packet634

consisting of a 1 OFDM symbol preamble and a 500 OFDM635

symbols payload. In the case of a random channel, a different636

channel realization is employed for each packet.637

A. Priority of the Parameters Lnt,nr and Knt,nr 638

This subsection analyzes the effect of Lnt,nr and Knt,nr 639

on the pilot BER, i.e., 640

641

BER(pilot)
�
K̃nt,nr , L̃nt,nr

�
642

= E

⎡
⎣#errnt,nr

�
K̃nt,nr , L̃nt,nr

�
mp ·Nnt

⎤
⎦ , (30) 643

where mp = 2 (QPSK), #errnt,nr(K̃, L̃) is defined in 644

Section IV-A, and E [·] denotes averaging over the noise, the 645

channel, and the preamble of the nt-th Tx antenna. 646

Fig. 4 shows the pilot BER (30) obtained for CM1 from [7], 647

Nnt = 128 and random pilot allocation, as a function of 648

K̃nt,nr and L̃nt,nr . In contrast to what was the case in [19], 649

we observe from Fig. 4(b) that the pilot BER is relatively 650

independent of L̃nt,nr for values of K̃nt,nr that significantly 651

deviate from the actual channel sparsity Knt,nr = 42. There- 652

fore, it is almost impossible to estimate Lnt,nr prior to the 653

estimation of Knt,nr . On the other hand, Fig. 4(a) reveals 654

that the pilot BER achieves a minimum at the optimum 655

K̃nt,nr = Knt,nr found in Fig. 4(b), independent of the 656

value of L̃nt,nr , provided that L̃nt,nr is larger than or equal 657

to the true Lnt,nr (see the value of L̃nt,nr achieving the 658

minimum pilot BER in Fig. 4(b) when K̃nt,nr = 42 or 60). 659

Hence, we propose to reverse the estimation order as compared 660

to [19]. First, an estimate K̂nt,nr of Knt,nr is generated by 661

keeping L̃nt,nr fixed and equal to some large value L
(max)
nt,nr , 662

with, e.g., L
(max)
nt,nr = N .4 Then, Lnt,nr is estimated, by min- 663

imizing #errnt,nr

�
K̃nt,nr , L̃nt,nr

�
with K̃nt,nr = K̂nt,nr . 664

If #errnt,nr

�
K̃nt,nr , L

(max)
nt,nr

�
is minimum for more than one 665

trial value K̃nt,nr , we choose K̂nt,nr equal to the smallest one. 666

Similarly, if #errnt,nr

�
K̂nt,nr , L̃nt,nr

�
is minimum for more 667

than one value L̃nt,nr , we choose L̂nt,nr equal to the small- 668

est one. Since the evaluation of #errnt,nr

�
K̃nt,nr , L̃nt,nr

�
669

involves the reconstruction of hnt,nr , the described procedure 670

not only estimates the duration and sparsity of the CIR, but 671

also produces an estimate ĥnt,nr of the CIR itself. It should 672

be noted, however, that this ĥnt,nr is not necessarily a reliable 673

estimate of hnt,nr ; this is usually only the case if (13) holds 674

and the MMMC (14) is sufficiently small for K̂nt,nr , L̂nt,nr 675

and the considered pilot allocation. The above results can be 676

summarized as follows. In the MU-MIMO-OFDM system, the 677

optimal estimate of the channel sparsity in terms of minimum 678

BER does neither depend on assumed channel length nor 679

on the SNR provided that the assumed channel length is 680

sufficiently large. On the other hand, no accurate estimate of 681

the channel length can be obtained if the assumed channel 682

sparsity is not close to the true channel sparsity. Therefore, 683

the channel sparsity should be estimated prior to the channel 684

length. 685

4Indeed, it is a valid assumption that the true value of L is smaller than N
since it is assumed to be smaller than the size of the CP.
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Fig. 4. Pilot BER for (N, Nnt , Knt,nr , Lnt,nr ) = (1024, 128, 42, 180),
QPSK and Es/N0 ∈ {20 dB, 30 dB}; (a) as function of the assumed sparsity
K̃nt,nr , for different values of the assumed channel length L̃nt,nr , and (b) as
a function of L̃nt,nr , for different values of K̃nt,nr .

B. Channel Length and Sparsity Estimation686

We now assess the performance of CoSaMP when the true687

sparsity Knt,nr and the true length Lnt,nr of all the channels is688

replaced by estimates obtained using (16)-(17). We evaluate689

the NMSE and the BER that results from a ZFE receiver.690

We benchmark these performance metrics against those of a691

system with (1) a ZFE receiver with CoSaMP CIR recon-692

struction without prior knowledge of the channel statistics and693

assuming Lnt,nr = N and Knt,nr = Nnt for all (nt, nr), (2) a694

ZFE receiver with OMP CIR reconstruction [10], (3) a ZFE695

receiver with EM-GM-GAMP CIR reconstruction [12] and696

(4) a ZFE receiver with perfect channel knowledge. By means697

of example, a 4 × 4 uplink MU-MIMO system is considered698

with a 4 antenna AP and 4 single antenna UNs. A random699

channel is assumed, with CM1 for h1,nr , CM2 for h2,nr ,700

CM3 for h3,nr and CM4 for h4,nr , and nr = 1, 2, 3, 4.701

Further, a random orthogonal pilot allocation is assumed,702

with N1 = 128, N2 = 160, N3 = 288 and N4 = 448.703

All subcarriers are allocated so N5 = 0. Each Monte Carlo704

simulation, a new orthogonal pilot allocation {P1, . . . ,P5} 705

with the mentioned subset sizes is randomly generated. Note 706

that, for each (nt, nr) pair, the amount of pilots allocated to the 707

nt-th Tx antenna is smaller than the number of channel taps 708

hnt,nr (k) that has to be estimated: N1 = 128 < L1,nr = 180, 709

N2 = 160 < L2,nr = 200, N3 = 288 < L3,nr = 350, 710

N4 = 448 < L4,nr = 506 (see CM specification at the 711

beginning of this section). Fig. 5 (a) and (b) show that a 712

CoSaMP channel estimator that assumes Lnt,nr = N and 713

Knt,nr = Nnt underperforms. The NMSE is extremely high 714

and the BER is close to 50%. This is because the CoSaMP 715

algorithm is unable to converge if the assumed channel sparsity 716

and/or the assumed channel length is significantly larger than 717

the true value [26]. In contrast, it can be observed that if we 718

first estimate Knt,nr , then estimate Lnt,nr , and subsequently 719

reconstruct the CIR using these estimates, the system achieves 720

a prominent NMSE and BER improvement. CoSaMP with 721

estimated Lnt,nr and Knt,nr achieves virtually the same 722

performance as OMP and EM-GM-GAMP. For the considered 723

system set-up, the residual BER performance degradation with 724

respect to the case that the channel is perfectly known at 725

the receiver, is limited to a loss of about 2.5 dB in SNR. 726

We note that this loss can be attributed to the random selection 727

of the pilot allocation. In the following sections, we will 728

show that this gap can be reduced further by optimizing the 729

pilot allocation. Fig. 5 (a) and (b) also show the NMSE and 730

BER that results when conventional LS or MMSE channel 731

estimation (as opposed to CS-based channel estimation) is 732

employed. In this case, the receiver first produces LS or 733

MMSE estimates of the frequency-domain channel response 734

samples at the pilot subcarriers, and then spline interpolation 735

is performed to reconstruct the intermediate samples. The 736

interpolation step is known to cause an error floor at high SNR. 737

The MMSE estimator is assumed to follow a LS estimator and 738

uses ĥLSĥ
H

LS instead of the true channel covariance matrix, 739

with ĥLS the LS estimator output. We observe that, in the SNR 740

range of interest, the CS-based CoSaMP algorithm performs 741

more than an order of magnitude better than the conventional 742

LS and MMSE channel estimation methods, both in terms 743

of NMSE and BER. In general, proper operation of any 744

conventional channel estimation method requires a number of 745

pilots that is larger than or equal to the length of the unknown 746

channel, while in the considered scenario this is not the case. 747

Finally, we wish to note that the use of CS techniques (while 748

reducing the required number of pilots) does not come at 749

the expense of increased complexity. Our previous work [19] 750

shows that the complexity of the procedure to estimate Lnt,nr , 751

Knt,nr and hnt,nr using CoSaMP is not significantly larger 752

than that of reconstructing hnt,nr using frequency-domain 753

MMSE estimation followed by spline interpolation. If Nnt 754

is small, the two approaches have a comparable complexity, 755

whereas for large Nnt , the CoSaMP approach even becomes 756

the least complex. From the above results, we conclude that (in 757

the considered MIMO context) a CoSaMP channel estimator, 758

using previously obtained estimates of the channel length and 759

sparsity, performs similar to other CS-based methods that do 760

not require prior knowledge of Lnt,nr and Knt,nr . For the 761
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Fig. 5. Parallel estimation of length and sparsity of 4 × 4 MIMO channels,
with all channels from the i-th Tx antenna modeled using CMi, i=1,2,3,4.
Performance comparison in terms of (a) NMSE and (b) BER.

considered scenario where Lnt,nr is larger than Nnt (number762

of pilot subcarriers available for estimation), CS-based meth-763

ods significantly outperform the conventional LS or MMSE764

techniques.765

C. Number of Pilots Per Tx Antenna766

We now demonstrate how a receiver can acquire (and767

track) the appropriate values for the number of pilots Nnt768

in each per-Tx-antenna preamble. For illustration purposes,769

we consider an 8 × 8 uplink MU-MIMO system with random770

channels; for all nr = 1, 2, . . . , 8, we assume CM1 for h1,nr ,771

h2,nr and h3,nr , CM2 for h4,nr , h5,nr and h6,nr , CM3772

for h7,nr , and CM4 for h8,nr . The minimum number of773

pilot subcarriers Nnt that should be allocated to Tx antenna774

nt = 1, 2, . . . , 8, is N1,min = N2,min = N3,min = 89,775

N4,min = N5,min = N6,min = 103, N7,min = 169, and776

N8,min = 250, respectively (see (13) and the CM specification777

at the start of this section). Summing all these values yields778

995, which indicates that it should indeed be possible to779

accurately estimate all 8 × 8 MIMO channels using a single780

OFDM symbol preamble with 1024 subcarriers.781

In practice, the true channel lengths and sparsities are 782

not a priori known. In that case, the values Nnt can be 783

derived by following the iterative procedure described in 784

Section IV-B. In Table I, we show how the appropriate values 785

of N1, N2, . . . , N8 can be acquired in two iterations, for 786

the considered MIMO system, when operating at an SNR of 787

30 dB. 788

• Initialization: No information about the channels is avail- 789

able, so we assign all Tx antennas the same number of 790

pilot subcarriers (N (0)
1 = N

(0)
2 = . . . = N

(0)
8 = 128) and 791

randomly select an orthogonal pilot allocation with these 792

equal subset sizes. 793

• Iteration 1: We estimate the sparsity Knt,nr and channel 794

duration Lnt,nr for each Tx-Rx pair based on the initial 795

preamble. From these estimates, the minimum number of 796

required pilots is determined based on (18) with δnt = 1. 797

This results in N
(1)
1 = N

(1)
2 = N

(1)
3 = 89, N

(1)
4 = 798

N
(1)
5 = N

(1)
6 = 103, N

(1)
7 = 182 and N

(1)
8 = 266. Note 799

that the sum N
(1)
1 + N

(1)
2 + . . . + N

(1)
8 = 1024 implies 800

that all subcarriers are allocated. 801

• Iteration 2: We use the novel pilot allocation to 802

re-estimate the sparsity and channel length for the differ- 803

ent Tx-Rx antenna pairs. The estimated sparsity and chan- 804

nel length of Tx antennas 1-6 does not change. This was 805

to be expected as, in Iteration 1, N
(1)
1 , N

(1)
2 , . . . , N

(1)
6 806

are smaller than 128, indicating that the sparsity and 807

channel length of the channels from Tx antennas 1-6 can 808

be estimated properly with the 128 pilot carriers per Tx 809

antenna that were available in the initial preamble used 810

in Iteration 1. However, as N
(1)
7 and N

(1)
8 are both larger 811

than 128, the length and sparsity of the channels from 812

Tx antennas 7-8 could not be estimated accurately in 813

Iteration 1. Using the new estimates of Knt,nr and Lnt,nr 814

to compute N
(2)
7 and N

(2)
8 with (18) and δnt = 1, yields 815

169 and 250, respectively. Note that these values agree 816

with the predicted minimum number of pilots, given in 817

the first paragraph of this section. As 3·89+3·103+169+ 818

250 = 995, there are 29 excess carriers left to judiciously 819

distribute over the different Tx antennas. This can be done 820

by choosing appropriate scaling factors δnt , with a value 821

larger than 1. Because antennas 7 and 8 correspond to 822

the largest channel lengths and sparsities, these antennas 823

are assigned a slightly larger scaling factor. We obtain 824

N
(2)
1 = N

(2)
2 = N

(2)
3 = 90, N

(2)
4 = N

(2)
5 = N

(2)
6 = 104, 825

N
(2)
7 = 176 and N

(2)
8 = 266 (summing up to 1024). 826

A novel random orthogonal pilot allocation with these 827

novel subset sizes needs to be selected. Since for all Tx 828

antennas, N
(2)
nt,nr is smaller than or equal to N

(1)
nt , it is 829

expected that the sparsity and channel length estimates 830

obtained in Iteration 2 are accurate and further iterations 831

are not required as long as the true channel length and 832

sparsity values remain the same. Results not presented 833

here confirm this presumption. 834

Fig. 6 illustrates the importance of allocating an appropriate 835

number of pilots to each Tx antenna by comparing the BER 836

performance of the considered 8 × 8 MIMO system when 837

the receiver (1) has perfect channel knowledge, (2) uses 838
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TABLE I

PROCEDURE TO DETERMINE THE APPROPRIATE NUMBER OF PILOT SUBCARRIERS IN EACH PER-ANTENNA PREAMBLE FOR AN 8 × 8 MIMO
SYSTEM, OPERATING AT AN SNR OF 30 dB AND INITIALIZED WITH AN ARBITRARY INITIAL

SUBCARRIER PARTITION WITH N
(0)
1 = N

(0)
2 = . . . = N

(0)
8 = N/8 = 128

CoSaMP channel reconstruction and a random preamble with839

N1 = N2 = . . . = N8 = 128 (Iteration 0), (3) uses840

CoSaMP channel reconstruction and a random preamble with841

N1 = N2 = N3 = 89, N4 = N5 = N6 = 103, N7 =842

182 and N8 = 266 (Iteration 1), or (4) uses CoSaMP channel843

reconstruction and a random preamble with N1 = N2 = N3 =844

90, N4 = N5 = N6 = 104, N7 = 176 and N8 = 266845

(Iteration 2). The preamble with an equal number of pilots846

for every Tx antenna results in a very high BER. This is847

mainly because accurate estimates of subchannels of type CM3848

and CM4 cannot be obtained in this case. In contrast, the849

preamble redesigned after Iteration 1 ensures accurate channel850

estimation for all subchannels and therefore results in a much851

lower BER. Although the pilot distribution in the preamble852

is further optimized in Iteration 2, we observe that the BER853

performance is comparable to that of Iteration 1. This is854

no surprise since in both iterations, the obtained number of855

pilot carriers to be assigned to each Tx antenna exceeds the856

minimum number of pilot subcarriers required to accurately857

estimate the channel.858

Our results demonstrate that the strategy proposed in sub-859

section IV-B is effective in appropriately distributing the860

pilot subcarriers over the TX antennas. At the start of the861

transmission, the amount of pilot subcarriers that is allocated862

to each Tx antenna does not yet optimally match that the863

channel conditions as seen by the different antennas. This864

has a negative impact on the system performance. During865

the acquisition period, the BER gradually decreases. After a866

few packets, a steady state is achieved. The corresponding867

BER is still significanty larger than in the case where the868

channel is perfectly known. The reason for this is that only869

the amount of subcarriers per TX antenna is optimized, not870

the actual allocation (which subcarriers can be used by which871

Tx antenna).872

D. Joint Pilot Position Allocation for All Antenna Preambles873

In this subsection, we discuss the complexity, the con-874

vergence and the performance of the ESA procedure875

Fig. 6. The measured channel between transmitter and R8 receiver with tap
spacing of t = 1 ns.

from Section IV-C to partition the available preamble 876

subcarriers into per-Tx-antenna subsets Pnt = {pnt(1), 877

pnt(2), . . . , pnt(Nnt)} of appropriate sizes Nnt . The obtained 878

results will be contrasted to those of the stochastic sequential 879

search (SSS) procedure from [5], with one outer and TSSS 880

inner iterations. In each SSS inner iteration, each item pnt(s) 881

with nt = 1, 2, . . . , Nt and s = 1, 2, . . . , Nnt is successively 882

swapped with each item of P\Pnt . The MMMCs of the parti- 883

tions obtained after every swap are recorded, and the partition 884

with the smallest sum MMMC is selected as the updated 885

partition. Given the large number of MMMC evaluations 886

involved in one iteration, it is clear that the complexity of SSS 887

is very significant. For simplicity, the complexity of ESA and 888

SSS is compared based on the upper bound expressions (28) 889

and (29) derived at the end of Section IV-C, or equivalently 890

on the maximum amount of MMMC evaluations performed, 891

i.e., NESA = 2Titer logTrate

�
Tstop

Tinit

�
for ESA and NSSS = 892

2TSSS

�Nt

nt=1 Nnt(N − Nnt) for SSS. It is important to 893

note that both ESA and SSS will ultimately converge to the 894
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TABLE II

PERFORMANCE COMPARISONS OF SSS AND ESA FOR N = 1024 AND Nt = 8

optimum pilot allocation (as will for example also a simple895

but stupid random search algorithm). As a consequence, what896

we are aiming for is not so much to show that ESA can897

outperform SSS in terms of BER, but rather to show that ESA898

is capable of achieving a slightly better BER performance with899

a significantly lower computational effort.900

A first set of results is obtained by considering the same901

8 × 8 random MIMO channel as in the previous subsection.902

For this channel, it is appropriate to allocate N1 = N2 =903

N3 = 90, N4 = N5 = N6 = 104, N7 = 176 and904

N8 = 266 pilot subcarriers to Tx antennas 1-3, 4-6, 7 and 8,905

respectively. Table II provides a comparison of SSS and906

ESA in terms of complexity (maximum number of MMMC907

evaluations performed) and performance (minimum value of908

sum MMMC and per-Tx-antenna MMMCs achieved). For a909

fair comparison, SSS and ESA are bootstrapped with the same910

initial randomly generated subcarrier partition P0. The sum911

MMMC and the per-Tx-antenna MMMCs of P0 are provided912

in the first row of Table II. For SSS, results are presented913

after TSSS equal to 5, 10 and 20 iterations. For ESA, the914

design parameters Tinit, Tstop and Titer are fixed to 10−2,915

10−8 and 50, respectively; for the design parameter Trate the916

values 0.95, 0.98 and 0.99 are employed.917

We make the following observations from Table II:918

• As could be expected, the performance of SSS and919

ESA improves when more potential subcarrier partitions920

are tested. It can be observed that, when TSSS of SSS921

increases from 5 to 20, or Trate of ESA increases922

from 0.95 to 0.99, the number of MMMC evaluations923

(complexity in Table II) also increases, resulting in a924

smaller value of sum MMMC μ{Φ}.925

• In general, SSS converges much slower than ESA. With926

SSS, the smallest MMMC achieved after more than927

3 · 107 MMMC evaluations is 1.0892; with ESA, the928

smallest MMMC achieved after less than 1.5·105 MMMC929

evaluations is already as small as 1.0396.930

• As opposed to SSS, ESA not only concentrates on931

decreasing the sum MMMC, but also tries to make the932

per-Tx-antenna MMMC as small as possible.933

Fig. 7 shows the BER performance of a ZFE receiver using934

preamble-based CoSaMP channel reconstruction when the935

preamble is the one with ID P0, SSS-3 or ESA-3 in Table II.936

The BER of a ZFE receiver with perfect channel knowledge937

is also shown. We observe that the BER follows the MMMC,938

i.e., the smaller the MMMC, the smaller the BER.939

A second set of results is obtained for a deterministic 3 ×940

3 MIMO channel realization, for which we use measurements941

Fig. 7. Impact of pilot allocation procedure on BER performance.

from the channel sounding experiment described in Section V. 942

We consider a set-up whereby the Tx antennas are sparsely 943

distributed in space while the Rx antennas are co-located. The 944

channel between Tx antennas 1, 2 and 3, and the 3-antenna 945

receiver is modeled using measurements from one of the 946

antenna-elements at positions R8, R11 and R18, respectively 947

(see Fig. 3(a) in Section V). The true length and sparsity of the 948

employed channels are listed in Table III (as a reference); these 949

values were determined using the method described in [27]. 950

While the channel length is more or less the same for all Tx 951

antennas, the (LoS) channel from Tx antenna 1 is significantly 952

more sparse than the (OLoS) channel from Tx antenna 2, 953

which in turn is more sparse than the (NLoS) channel from 954

Tx antenna 3. 955

Table III also shows the computation of {N1, N2, N3} 956

and lists the measured length and sparsity for each sub- 957

channel. Initial estimates of Lnt,nr and Knt,nr are obtained 958

using an initial preamble with a random partition of the 959

available subcarriers into three sets of almost equal size 960

(N1 = 342, N2 = 341 and N3 = 341). From these 961

estimates, it is found that at least 165, 181 and 195 pilots 962

have to be allocated to Tx antennas 1, 2 and 3, respectively. 963

Since these values are significantly smaller than the values 964

employed to estimate Lnt,nr and Knt,nr , it can be assumed 965

that convergence is achieved immediately, after only one 966

iteration. To show the impact of the number of pilots on 967

the overall system performance, BER results are computed 968

not only for (N1, N2, N3, N4) = (165,181,195,483), but also 969

for (N1, N2, N3, N4) = (198,217,234,375), (247,271,292,214) 970
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TABLE III

PARAMETER ESTIMATION AND NUMBER OF PILOT SUBCARRIERS PER TX ANTENNA FOR A 3 × 3 MIMO SYSTEM WITH
SPATIALLY DISTRIBUTED TX ANTENNAS AND MEASURED CHANNELS

and (312,343,369,0), where N4 is the number of pilot subcarri-971

ers unused for channel estimation. Each of these corresponds972

to choosing a different value of δnt in (18), as specified in973

Table III. For each of the δnt values, an initial preamble with974

a random partition of the available subcarriers into sets of975

size N1, N2 and N3, respectively, is further optimized using976

ESA with Tinit = 10−2, Tstop = 10−8, Trate = 0.99,977

and Titer = 50. For δnt = 1, 1.2, 1.5 and 1.9, the sum978

MMMC of the initial preamble is 0.5397, 0.4909, 0.4266 and979

0.3697, respectively; after ESA this reduces to 0.3251, 0.2928,980

0.2478 and 0.2140, respectively. Using the obtained preamble,981

CoSaMP channel reconstruction and ZFE is applied. The982

resulting BER is shown in Fig. 8(a). With δnt = 1, a BER983

below 0.2 cannot be achieved for SNR values below 30 dB.984

The BER performance improves significantly if δnt increases985

from 1 to 1.2 and further above 1.5, the BER performance986

remains more or less constant. Compared to a scenario where987

the channel is perfectly known at the receiver, the BER988

degradation with δnt = 1.5 or 1.9 is about 1 dB in SNR,989

which is very acceptable in practice.990

So far, we have shown that the proposed three-step pro-991

cedure for adaptive pilot allocation is much more effective992

in finding an appropriate orthogonal pilot allocation than the993

state-of-the-art approach from [5] and that this results in a994

good overall BER performance. For the sake of completeness,995

we further compare the ESA algorithm with the determin-996

istic pilot design (DPD) algorithm from [2] and the genetic997

algorithm (GA) from [6]. For this comparison, we use the998

same measured 3 × 3 MIMO channel as in Fig. 8(a) and the999

parameters of ESA and SSS are again set as Tinit = 10−2,1000

Tstop = 10−8, Trate = 0.99, Titer = 50 and TSSS = 20.1001

DPD basically employs a modified version of SSS for the1002

SISO case, adding Md outer iterations. In our simulations,1003

we take Md = 100. For GA, we use the design parameter1004

values employed in [6]. All algorithms are initialized with1005

the same preamble. As opposed to ESA and SSS, DPD1006

and GA always allocate an equal amount of pilot subcarriers1007

to each Tx antenna. As explained in the introduction, this1008

is not optimum in scenarios where some Tx antennas have1009

much better channel state conditions than others. The per-1010

TX-antenna preambles designed by DPD or GA are, in fact,1011

shifted versions of each other; in particular, pnt(i+nt−1) =1012

p1(i), for nt = 2, 3, . . . , Nt. The orthogonality condition1013

then implies that the subcarriers in P1 are spaced by at least1014

Nt. Further, because equidistant pilot allocation is known to1015

Fig. 8. A virtual 3 × 3 MIMO system, with 3 LoS, 3 OLoS and 3 NLoS
measured subchannels: (a) BER performance with ESA preamble design if a
varying fraction of the 1024 available preamble subcarriers are employed for
CoSaMP channel reconstruction (N4 = 483, 375, 214 and 0 for δnt = 1,
1.2, 1.5 and 1.9, respectively), (b) BER performance comparison of DPD,
GA, SSS and ESA when (N1, N2, N3, N4) = (250, 250, 250, 274).

yield a very high MMMC, meaningful DPD and GA designs 1016

are only possible if a significant amount of pilot subcarriers 1017

remain unused. In our simulation, we have imposed that 1018

every Tx antenna is allocated 250 pilot subcarriers, while 1019

274 subcarriers remain unused. As can be observed from the 1020

BER comparison results shown in Fig. 8(b), ESA has a better 1021
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BER performance than DPD, GA and SSS. At a BER of1022

4 ·10−3, the gain of ESA in terms of SNR is about 2 dB with1023

respect to DPD and GA, and about 1 dB with respect to SSS.1024

The sum MMMCs achieved with DPD, GA, SSS and ESA are1025

0.3561, 0.3336, 0.2834 and 0.2735, respectively. In terms of1026

complexity ESA also outperforms the other algorithms. The1027

maximum number of MMMC evaluations involved in ESA and1028

SSS is NESA = 1.4 · 105 and NSSS = 3.6 · 107, respectively1029

(Table II). The maximum amount of MMMC calculations1030

in DPD is NDPD = MdTSSSN1(N − 3N1) = 1.4 · 108.1031

Finally, GA produces 90 new pilot allocations per iteration and1032

performs 5000 iterations, making a total of NGA = 4.5 · 105
1033

MMMC evaluations. We conclude that the proposed ESA1034

algorithm, not only is better suited for scenarios where some1035

Tx antennas have much better channel state conditions than1036

others, but also provides a better performance complexity1037

trade-off than DPD and GA.1038

VII. CONCLUSION1039

In this paper, we proposed an algorithm to accurately1040

estimate the channel length and sparsity of all channels in1041

a distributed MIMO-OFDM spatial-multiplexing system. Due1042

to the distributed nature of the system, the channel length1043

and sparsity of the diverse channels may vary significantly.1044

As a result, the number of pilot subcarriers needed for the1045

estimation of each channel is different. Therefore, we also1046

proposed a method to determine the number of pilot subcarri-1047

ers in each per-Tx-antenna preamble. Finally, we developed a1048

novel low-complexity algorithm to select appropriate positions1049

for these pilot subcarriers while adhering to the orthogonal-1050

ity principle. Numerical performance results were presented1051

for both theoretical channel models and measured channels1052

and show that compared to the state-of-the-art method, our1053

approach not only demonstrates much faster converge, but also1054

improves the system performance in terms of NMSE and BER.1055
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