
IEEE SENSORS JOURNAL, VOL. 22, NO. 24, 15 DECEMBER 2022 24205

Deep-Learning-Based Step Detection and Step
Length Estimation With a Handheld IMU
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Abstract—A popular approach to track the position of a
user is to use an inertial measurement unit (IMU), which
allows tracking a user with a pedestrian dead reckoning (PDR)
system by estimating the length and heading of each step a
user takes. Furthermore, a user’s steps together with their
length can be used to detect anomalies in the gait due to, e.g.,
a gait disorder. To determine the length and/or heading of a
step, we first need an algorithm that estimates the boundaries
of a step, i.e., the start and end, in the IMU signals. In this
article, we propose a deep-learning-based step detection
algorithm that detects the start and end of a step using only
data from a handheld accelerometer. In this algorithm, also,
the relationship between the start and end of a step is used
to improve performance. To evaluate the performance of the
detector, in contrast to most previous works that only look
at the total number of detected steps, we determine if the
start and end of each step are detected at the correct instant.
This resulted in a step detector with an f-score of 99.2%
and 99.0% for, respectively, detecting the start and end of a
step. After detecting the start and end of the steps, we use a
long short-term memory (LSTM)/convolutionalneural network
(CNN)-based step length estimator, which resulted in a mean
absolute error (mae) on the step length of 3.21 cm. Finally,
we also determine the combined performance of the step detector and step length estimator, i.e., where the proposed
step detector is used to extract the accelerometer fragments of a step instead of assuming that the boundaries are known.
This resulted in an mae of 6.56 cm using the deep-learning-based step length estimator.

Index Terms— Deep learning, inertial measurement unit (IMU), pedestrian dead reckoning (PDR), step detection, step
length.

I. INTRODUCTION

DURING the last years, a lot of research has been carried
out on indoor positioning techniques. These techniques

can provide valuable information to a very broad range of
applications, e.g., in emergency situations, such as a fire, but
also in situations where a user needs to find his/her way
inside a large building, such as a shopping center or an
airport. Multiple positioning technologies, e.g., ultrawideband
(UWB), Wi-Fi, and Bluetooth low energy (BLE), determine
the position of a user by estimating the distance to certain
reference points spread through the environment. In general,
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this results in fairly accurate position estimates, but a drawback
of these technologies is that they require dedicated devices
distributed over the area in which we want to track the user.
Hence, the larger this area, the more devices are needed, and
the higher the deployment cost. Furthermore, the accuracy
drops when the line-of-sight between the user and one or more
reference points is obstructed by, e.g., a metal rack. Finally,
the positioning update decreases for an increasing number of
users that need to be localized.

A promising technique that does not suffer from these
drawbacks uses an inertial measurement unit (IMU) in a
pedestrian dead reckoning (PDR) application [1], [2], [3], [4],
[5], [6]. In a PDR application, a user’s position is tracked
incrementally by detecting his/her steps and estimating the
length and heading of those steps. Unlike other positioning
techniques, such as, e.g., Wi-Fi, UWB, BLE, or camera-
based positioning [7], [8], a PDR application is self-contained,
meaning that it does not rely on additional infrastructure in
the environment. A disadvantage of a PDR system, however,
is that it only provides relative position updates and that, due
to errors in step length and heading, the estimated position
starts to drift from the true position. Hence, in practice, PDR
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is often combined with another positioning technique, such as
UWB, to provide the initial position and the absolute position
estimates to correct the drift. The advantage of this combi-
nation is that it allows for a position estimate that remains
accurate over time and requires a lower number of reference
points (lower cost). In addition, the positioning update rate is
now determined by the step frequency and, hence, does not
decrease for an increasing number of users as for UWB.

To design a PDR system, several subsystems are required.
First, we must detect each step a user takes together with the
instant of the start and end of that step. Next, we use this start
and end to extract the data from the IMU during this step.
Finally, we use this data to estimate the length and heading
of the step, which then allows for updating the position of the
user. In this article, we focus on step detection and step length
estimation, as these also can be used in other applications,
where heading information is less important, such as activity
trackers or detecting gait disorders [9], [10].

A. Step Detection
The first phase of a PDR algorithm is to detect the steps in

the signals generated by the IMU. In the literature, several
methods can be found to detect/count the steps of a user.
A first family of methods employs an ad hoc algorithm based
on the periodic pattern in the measured acceleration to detect
steps [11], [12], [13], [14], [15], e.g., with peak or zero-
crossing detection. A drawback of these algorithms is that they
all have some parameters that need to be tuned to the specific
user, which limits their usefulness. To avoid parameters that
require tuning, a common approach is to use machine learn-
ing [16], [17], [18], [19] algorithms. A drawback of machine
learning, however, is that it requires the extraction of useful
features from the raw accelerometer and/or gyroscope data.

To solve this problem, nowadays, commonly deep learning
is applied, which is capable of automatically extracting useful
features from the raw data. Edel and Koppe [20] use bidi-
rectional long short-term memory recurrent neural networks
(BLSTM-RNNs) to detect steps. As the authors use a bidirec-
tional network, the neural network is able to use information
from previous and future time steps of the input time series.
This, however, has the downside that the entire time series
needs to be known before we can estimate the output so that
online processing is impossible. Luu et al. [21] compare a long
short-term memory (LSTM) network, a convolutional neural
network (CNN), and a WaveNet for step detection. To detect
a step, the authors use these networks to predict for a window
of acceleration data if the last sample in the window is from
a left or right step. By applying a sliding window approach,
the steps are then detected when the output changes from a
left to a right step or vice versa. In [22], a similar approach is
followed, and an LSTM network is trained on accelerometer
and gyroscope data to predict for each sample if it is part of
a left or right step. An advantage of this approach over the
approach of [21] is that, in [22], it is possible to make a new
prediction using only one new sample of the accelerometer and
gyroscope, while, in [21], an entire window of 2–4 s needs to
be processed. A drawback of both works, however, is that,
as the networks can only output a left or right step, it is
not possible to detect when a user temporarily stands still.

In [23], another approach is used, where a CNN estimates
the number of steps in a window of acceleration data. Using
a sliding window, the total number of steps together with an
estimate of their occurrence is then estimated. A problem with
this approach, however, is that the accuracy with which the
timestamp of a step is detected depends on the step size of
the sliding window. Furthermore, it is possible that, although a
large part of the acceleration data of a step is part of a window,
it does not contribute to the step count of that window as a
step is only counted at the end.

Common to most of these works is that the authors only
look at the total number of detected steps to determine the
performance of the detector and do not verify if each step
is detected at the correct time. However, as the step length
and heading are extracted from the IMU data during a step,
it also is important to verify if the start and end of steps are
detected at the correct instant. In addition, the discussed works
do not apply postprocessing to the output of the deep learning
networks, which could further improve the performance. For
example, when the network only shortly (wrongly) predicts
a left step during a right step, the step detection network
detects this as an extra erroneous step, while, with some
postprocessing, this extra step can be filtered out.

B. Step Length
The next phase in a PDR algorithm estimates the length

of a step. Several algorithms were already considered for
determining the step length. In [24], [25], [26], and [27],
the step length is written as a function of variables that are
extracted from the accelerometer and, in some papers, also the
gyroscope data, and involve user-specific parameters that need
to be tuned. A drawback of these approaches is that, while
the step length estimator may work well for one user, it might
perform badly for another user without retuning some para-
meters. To avoid user-specific tuning of parameters, a more
accurate and currently popular approach is to use deep learning
algorithms for step length estimation. Hannink et al. [28]
consider a CNN to estimate the step length. The input of this
network consists of the measured acceleration and angular rate
of two foot-mounted IMUs. This approach, however, requires
two IMUs: one for each foot, to estimate the length of a step,
and another device, e.g., a smartphone, to collect and process
the data of the two sensors. A similar approach is followed
in [29], but, instead of a CNN, a bidirectional LSTM network
is used. Wang et al. [30] use an LSTM network in combination
with denoising autoencoders (DAEs), where the LSTM is used
to extract useful features from the input, and the DAE is
used to denoise these features. In comparison with the other
methods, however, this approach is relatively complex as it
uses the accelerometer and gyroscope data in combination with
some manually extracted features and requires three separate
training phases. Our previous work [31] also considered step
length estimation. In that work, we developed a method
to systematically build the feature set for multiple machine
learning algorithms that were used to estimate the step length
using an accelerometer only. A drawback of this work is that
the performance of the step length estimator depends on the
initial feature set—extracted from the measured acceleration—
from which the feature selection algorithm selects the best
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features. If the initial set contains many features that are
useless to estimate the step length, the performance of the step
length estimator can be bad. Common to all these works is that
the authors assume that the boundaries of a step are known,
while this information is not a priori available in practical PDR
systems.

In recent works [32], [33], [34], [35], an increasingly popu-
lar approach for a PDR system is to divide the accelerometer
and gyroscope data into fragments of a fixed length. Using
these fragments, deep learning is then trained to directly output
the displacement and heading (change) during this fragment.
Hence, the need for a step detector is eliminated. A drawback,
however, is that this approach eliminates the possibility to ana-
lyze the gait of a user or count the total number of steps a user
has made. Therefore, we do not use this approach so that the
step detector and step length estimator can be used for different
applications. In addition, using fragments of fixed length has a
potential drift problem when the user is standing still as, in this
case, nonzero predictions for the step length and heading
change will lead to a growing error in the position estimate.

In this work, we present two contributions, i.e., a deep-
learning-based step detection and step length estimation algo-
rithm using a single handheld IMU. As we do not consider
heading estimation, we only provide the accelerometer data
to the deep learning networks and not the gyroscope data
as gyroscopes generally consume much more power than
an accelerometer. An advantage of this choice is that the
presented algorithms are better suited when low power con-
sumption is paramount and no heading information is required.
The gyroscope data can, however, be easily included by
including this data in the input to the neural networks.

First, we develop a long-short-term-memory-based step
detection algorithm that determines the start and end of each
step. As opposed to [17], due to the use of an LSTM network,
the step detector can readily handle steps that do not have the
same duration. Other advantages of our approach are that the
algorithm does not depend on user-dependent parameters as
in [11], [12], [13], [14], [15], and [16], and we determine
the start and end of each step separately. The latter makes it
possible to use the relation between the start/end of a step
to detect missing or erroneous steps, extract the acceleration
fragments for a certain step, and also detect pauses between
steps. This is not the case if we only detect when a step is
completed, i.e., the end of a step, which is done in most other
machine-learning-based approaches. In those approaches, it is
silently assumed that the end of the previous step is also the
start of a new step, and hence, the pause is included in the
accelerometer samples of the detected step. Therefore, in this
work, we also propose an algorithm that postprocesses the
output of the LSTM and leverages the relation between a start
and end of a step so that the step detection performance is
further improved. In contrast with other works that determine
the performance of a step detector by only looking at the
number of detected steps, in this work, we also evaluate if
the steps are detected at the right instant.

Second, we present a deep learning network for step length
estimation that combines the LSTM and CNN architectures so
that the network is capable of automatically extracting useful

features from the raw acceleration data using the CNN while
also being able to leverage temporal patterns with the LSTM
network. To train this network, we assume that the start and
end of a step are known, and compare its performance with
the step length estimator of our previous work and a state-
of-the-art approach [28]. Finally, in contrast with most other
works that only consider the true steps to evaluate the step
length estimate, we also combine the step detection and step
length estimation algorithms and evaluate the performance
degradation of the step length estimator due to the estimated
start and end of a step.

The rest of this article is organized as follows. In Section II,
we discuss the step boundary detection algorithm. First,
we introduce the topology of the deep learning network that
estimates for each sample of the accelerometer how likely a
step started or ended, and we elaborate on the training of the
network. Next, we use the output of this network to extract
the time instants at which a start or end of a step was detected
and present how the relationship between the start and end
of a step can be used to improve the performance of the
step detector. In Section III, we describe the deep learning
network that is used to estimate the length of a step. Then,
the results are discussed in Section IV, where we evaluate
the performance of the step boundary detector and step length
estimator separately, as well as their combined performance.
In addition, we also compare the proposed algorithms to other
state-of-the-art algorithms. Finally, conclusions will be given
in Section V.

II. STEP BOUNDARY DETECTION

In this section, we introduce the deep learning algorithm
to detect the boundaries of a step, i.e., the start and end
instant, from the measured acceleration of a handheld phone
in a texting position. In Fig. 1, we show an example of the
magnitude of the measured raw acceleration and the filtered
acceleration, low-pass filtered with a third-order Butterworth
filter with a cutoff frequency of 3 Hz, which correspond to four
steps together with the boundaries of these steps. This cutoff
frequency was chosen so that we remove as much as possible
of the higher frequency components in the acceleration that
do not correspond to taking a step and are, thus, not useful
for step detection. Comparing both curves in Fig. 1, it is
clear that it is much easier to extract the four steps from
the filtered acceleration, and using the raw acceleration can
result in false step detections. From the filtered acceleration
magnitude, we can easily identify the four steps and observe
that the boundaries for each of these steps can be found by
detecting instants where the acceleration magnitude crosses
1 g with a positive slope. Hence, in theory, the step boundaries
can easily be found. However, noise and/or acceleration not
related to taking steps (e.g., shaking the IMU) can result in
more instants where the magnitude crosses 1 g. An example
of this can also be seen in Fig. 1 around 0.4 s, caused by some
small arm movements before the test person started to walk.

In previous works, to limit the number of erroneously
detected 1-g crossings, an interval between two 1-g crossings
was detected as a step only if the maximum (minimum) accel-
eration during the interval was higher (lower) than a certain

Authorized licensed use limited to: University of Gent. Downloaded on February 15,2024 at 12:32:06 UTC from IEEE Xplore.  Restrictions apply. 



24208 IEEE SENSORS JOURNAL, VOL. 22, NO. 24, 15 DECEMBER 2022

Fig. 1. Example of the raw and low-pass filtered acceleration magnitude
for a handheld accelerometer with the boundaries for each step.

threshold. The problem with this approach is that the optimal
value of these thresholds is user-dependent and, hence, needs
to be tuned. For this reason, we want to apply machine learning
in the proposed step detector as this can eliminate the need for
tuning, provided that the machine learning algorithm is trained
on multiple users. Regular machine learning algorithms, such
as decision trees, support vector machines, or feedforward
neural networks, convert a fixed-length input to a fixed-length
output, but, in general, steps do not have the same duration.
Although we can solve this fixed-length problem by dividing
the raw accelerometer data into shorter fragments with a fixed
size, such an approach would not allow us to take into account
possible relationships between subsequent fragments of the
accelerometer data, resulting in a loss of valuable information.

To tackle the problem of variable length fragments, recur-
rent neural networks (RNNs) were developed. This type of
neural network can handle input data of variable size and
is able to detect temporal patterns in the input data by also
taking into account information learned from the previous
inputs. In this work, we employ an RNN based on the LSTM
architecture, which is designed to learn long-term dependen-
cies. We will use the LSTM network to separately predict
for each sample of the accelerometer if a step started and/or
ended.

In Section II-A, we will provide more details about the
architecture of the LSTM network and how it is trained to
obtain the desired output. The output of the LSTM network
consists of two sequences that provide potential candidate
samples for the start/end of a step, respectively. In Section II-
B, we will discuss how to extract the start/end time instants
of a step from the two output sequences generated by the
LSTM network. To this end, we use the relationship between
the start and end points of a step to combine the informa-
tion in order to identify if some starts/ends are missed or
detected erroneously. For example, when only a start was
detected but no matching end of a step, either the start was
wrongly detected or the LSTM network missed the end of the
step.

A. LSTM Network
This section discusses the design of the LSTM network

that we use to predict if a sample of the accelerometer is
the start and/or end of a step. In Fig. 2, we show a schematic
representation of the structure of the LSTM network in the

Fig. 2. Block diagram of the training phase.

training phase. In the remainder of this section, we discuss
the different parts of the block diagram in more detail.

1) Preprocessing the Data: The accelerometer data consist
of the raw acceleration a = [ax , ay, az], where aα is the α
component of the measured acceleration with α ∈ [x, y, z],
from the handheld phone in texting position sampled at
100 Hz. To limit the effect of the noise of the accelerom-
eter, we first smoothen the measured acceleration sequence
with a third-order low-pass Butterworth filter with a cutoff
frequency of 3 Hz, which results in the filtered acceleration
sequence ã = [ãx, ãy, ãz], where ãα is the Butterworth
filtered version of aα with α ∈ [x, y, z]. In addition, we also
determine the magnitude |ã| of the filtered acceleration with
|ã| = (ã2

x + ã2
y + ã2

z )1/2. To lower the training time and
improve the performance of the LSTM network, we scale the
acceleration using a MinMaxScaler so that the scaled values
of the acceleration are approximately between zero and one.
This results in the scaled accelerations |â| and âα, which
are, respectively, the scaled acceleration of the magnitude and
the α component with α ∈ [x, y, z]. For each sample of the
accelerometer, we provide the scaled acceleration sample, i.e.,
a 4-D vector âi = [âx,i , ây,i , âz,i , |â|i ]T , where |â|i and âα,i ,
respectively, correspond to the i th sample of the magnitude and
the α component of the scaled acceleration with α ∈ [x, y, z],
as an input to the LSTM network. To train the network, the
acceleration data are then divided into fragments of length
ns , i.e., the 4 × ns tuples ans

j = [â j,1, . . . , â j,ns ], where
j denotes the j th fragment and â j,� = â j ns+�, as training
data for the network. In the numerical results section, we will
further discuss the selection of this parameter.

2) Desired Output: Let us look closer at the desired output.
Ideally, the desired output sequences—sideal: start of the step
and eideal: end of the step—equal one at the instants of the
true start and end of steps, respectively, i.e., at the instants
where the acceleration magnitude crosses the 1-g threshold
with a positive slope and zero otherwise (see Fig. 3). This
ideal desired output, however, strongly restricts the potential
start/end samples and will result in a high loss when the
start/end of a step is not detected at the exact sample. This
will make the network hard to train. Therefore, we relax our
constraints on the desired sequence by making the desired
output equal to one for some period around the true start/end
of a step. In this way, the LSTM algorithm learns that the
prediction of the start/end of a step does not have to be perfect,
as long as it is close to the true start/end. In our simulations,
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Fig. 3. Example of a fragment of |ã| together with different desired output
sequences of the LSTM network. sblock, sdelay, and eblock are “1” during
0.2 s, and sdelay contains a delay of d = 0.3 s.

we found that an interval of 21 samples, i.e., ten samples
before and after the start/end of a step, results in the best
performance, which corresponds to an uncertainty interval of
0.1 s at 100 Hz. This altered output is also shown in Fig. 3
as sblock (start of step) and eblock (end of step).

The LSTM network evaluates sample per sample of a
fragment, and based on the already processed samples, it needs
to determine if the sample corresponds to a start or end
of a step. It is clear that, by only using preceding accel-
eration samples, and not knowing the successive samples,
the determination of the start of a step is not obvious.
To solve this issue, we suspend the determination of the
start of a step until we have sufficient information to take
the decision. This is achieved by adding a fixed delay d to
the desired output (sdelay), as illustrated in Fig. 3. As long
as this delay is smaller than the duration of a step, this
delay does not impact the real-time character of the decision
process. Note that such a delay is not necessary for the
decision process of the end of a step: the end of a step can
immediately be predicted when the last sample of the step
is delivered to the LSTM network. The resulting sequences
sdesired = sdelay and edesired = eblock are then used to train the
network.

3) LSTM Algorithm: In Fig. 4, we show the architecture of
the LSTM network, where we unfold the network for each
of the ns samples of an accelerometer fragment ans

j . In this
architecture, a row corresponds with a layer of the network
and a column with a timestep/sample.

For the �th timestep of the network, � = 1, . . . , ns , the input
consists of the �th preprocessed acceleration sample â j,� of
fragment j . This acceleration sample â j,� is then applied to the
�th cell of the first LSTM layer, containing nh hidden states.
The LSTM cell transforms the 4 × 1 input â j,� combined
with the nh × 1 hidden states vector h�−1 produced by the
previous cell into the nh × 1 output h� of the cell. The
resulting output is then forwarded to the next cell in the layer,
as well as to the next layer for the same timestep. As there
might be dependencies between subsequent fragments of the
accelerometer ans

j , we use stateful LSTMs. This means that
the hidden states hns of the last sample in a fragment are
passed as input h0 to the first LSTM cell of the next fragment
in the same layer, provided that the next fragment directly
succeeds the current fragment. Otherwise, we reset the hidden
states vector h0 to an all zeros vector. The second LSTM layer
uses as input the nh × 1 output vectors h� from the previous

Fig. 4. Architecture of unfolded LSTM network that is used to predict
how likely a sample is a start and/or end of a step.

layer and also contains nh hidden states to produce the
nh × 1 output vectors h′

�. We restrict our network to
two LSTM layers, as our simulations revealed that adding
more layers in the network only increased the computational
complexity, while not resulting in a significant performance
improvement.

To reduce the risk of overfitting, we add a dropout layer
after each LSTM layer. For each epoch in the training phase,
the dropout layer randomly selects a fraction pdropout of the
outputs of the preceding LSTM layer to be ignored by the
next layer. As a result, the LSTM network learns to predict
the desired output when it can only process part of the entire
input. As the dropout layers are intended to prevent overfitting,
they are included only during the training phase, but not during
the test phase.

Finally, we use a dense (or fully connected) layer with a
sigmoid activation function to transform the outputs of the
second LSTM layer to the wanted output sequences, i.e.,
an output sequence sLSTM corresponding to the start of the
steps and an output sequence eLSTM for the end of the steps.
The sigmoid function ensures that the values of the output
sequences are between 0 and 1. Hence, the outputs sLSTM, j,�

and eLSTM, j,� of the LSTM network at the �th timestep of the
j th fragment give an indication of the corresponding sample
â j,� being (close to) the start or end of a step. In the results
section, we will find the values for the parameters (nh , ns ,
pdropout, d, and so on) that result in an LSTM network with
good performance.

To train the network, the outputs sLSTM and eLSTM of the
LSTM algorithm are compared with the desired outputs sdesired
and edesired using a binary cross-entropy loss function Lce,
which is given by

Lce = Ls,ce + Le,ce

2
(1)

where Lce is the average of the binary cross-entropy Ls,ce for
the output corresponding to the start of a step and the binary
cross-entropy Le,ce for the output corresponding to the end of
a step. In (2) and (3), we give the expression for, respectively,
Ls,ce and Le,ce, where n f is the number of fragments in the
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training set and ns is the length of each fragment, as defined
in Section II-A.1

Ls,ce = − 1

ns · n f

ns∑
i=1

n f∑
j=1

[
sdesired, j,i · log

(
sLSTM, j,i

)
+ (

1 − sdesired, j,i
)

· log
((

1 − sLSTM, j,i
))]

(2)

Le,ce = − 1

ns · n f

ns∑
i=1

n f∑
j=1

[
edesired, j,i · log

(
eLSTM, j,i

)
+ (

1 − edesired, j,i
)

· log
((

1 − eLSTM, j,i
))]

. (3)

From these equations and the knowledge that sdesired, j,i and
edesired, j,i are either zero or one, it is clear that, if sLSTM, j,i =
sdesired, j,i (eLSTM, j,i = edesired, j,i ), the contribution to Ls,ce
(Le,ce) is zero. Hence, the lower the loss Lce, the better the
LSTM network predicts the start and end of a step.

A problem with the current definition of the loss Lce is that
the desired outputs sdesired and edesired are equal to one during
only a small part of a step and zero elsewhere. In our training
set, the number of samples N0,s and N1,s for which sdesired
is equal to zero or one are, respectively, N0,s = 137 417 and
N1,s = 65 583. As each start of a step also has a corresponding
end, the number of samples N0,e and N1,e for which edesired
is equal to zero or one is equal to, respectively, N0,s and N1,s ,
i.e., N0,s = N0,e and N1,s = N1,e . Hence, the contribution
of the samples for which the desired output sdesired (edesired)
is equal to one to the loss Ls,ce (Le,ce) is smaller than for
the samples for which the desired output sdesired (edesired) is
equal to zero. This implies that the network is biased to more
accurately predict the zero output. To prevent that the network
is not able to accurately predict the more seldom start/end of a
step, we apply weight balancing, i.e., during training, samples
for which sdesired (edesired) are equal to zero contribute less
to the loss function than samples for which sdesired (edesired)
is equal to one. With weight balancing, the losses Ls,ce and
Le,ce can be rewritten as

Ls,ce = − 1

ns · n f

ns∑
i=1

n f∑
j=1

ws, j,i

· (sdesired, j,i · log
(
sLSTM, j,i

)
+ (

1 − sdesired, j,i
) · log

((
1 − sLSTM, j,i

)))
(4)

Le,ce = − 1

ns · n f

ns∑
i=1

n f∑
j=1

we, j,i

· (edesired, j,i · log
(
eLSTM, j,i

)
+ (

1 − edesired, j,i
) · log

((
1 − eLSTM, j,i

)))
(5)

where ws, j,i and we, j,i are the weights that are used to balance
the loss. In (6) and (7), the definition of these weights is
given, as well as their values for our training set. From these
equations, we can see that samples with the desired output
of one contribute approximately twice as much to the loss

function as the samples with the desired output of zero

ws, j,i =

⎧⎪⎪⎨
⎪⎪⎩

N0,s + N1,s

2 · N1,s
= 1.548, if sdesired = 1

N0,s + N1,s

2 · N0,s
= 0.739, if sdesired = 0

(6)

we, j,i =

⎧⎪⎪⎨
⎪⎪⎩

N0,e + N1,e

2 · N1,e
= 1.548, if edesired = 1

N0,e + N1,e

2 · N0,e
= 0.739, if edesired = 0.

(7)

The weighted binary cross-entropy loss Lce is then used
to update the internal weights of the LSTM network with
a gradient descent-based algorithm to improve, i.e., lower,
the loss in the next epoch. In this article, we implemented
the neural network in the Keras framework [36] and used the
Adam optimizer [37] with a learning rate of 0.001 to update
the internal weights of the network.

4) Performance Measures: Using the procedure explained
above, we can train the LSTM network to determine the two
outputs sLSTM and eLSTM, which, respectively, correspond to
the output that indicates if an accelerometer sample is close to
the true start and/or the end of a step. Both these outputs lie
in the interval [0, 1], where a value close to zero indicates that
the sample most likely is not a start or end, while a value close
to one indicates that the sample is most likely a start and/or
end of a step. After we updated the weights of the LSTM
network using the binary cross-entropy loss, we now want
to evaluate the performance with some more comprehensible
metrics. To evaluate the performance of the LSTM network,
we first determine the recall and precision on the output
corresponding to the start and end of a step combined, i.e.,
on the concatenated output bLSTM = sLSTM � eLSTM, where
� denotes the concatenation operator. The recall expresses
how likely the network correctly predicts that a sample is a
start (end) of a step, while the precision tells us how likely it
is that, if the algorithm predicts a start (end), it actually was
a start (end) of a step. Hence, the recall and precision can be
determined with the following equation:

r = tp

tp + fn

p = tp

tp + fp
. (8)

where r and p are, respectively, the recall and precision, tp
is the number of true positives, fn is the number of false
negatives, and f p is the number of false positives.

To find the number of true positives, false negatives, and
false positives, we round the values in bLSTM to one if
they are larger than 0.5 and to zero in the other case, and
check if the rounded values are equal to the desired outputs
bdesired = sdesired � edesired. From the recall and precision,
we can then determine the f-score as in (9), which we use to
evaluate the performance of the LSTM network. Note that a
high f-score corresponds with high precision and recall and,
hence, a good performance. For each epoch during the training
phase, we keep track of the achieved f-score and save the
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Fig. 5. Illustration of a fragment of the acceleration magnitude |ã| with
the rounded output for the end of a step that could result in a misdetected
end due to the short 1 → 0 → 1 transition.

model for the epoch with the best f-score

f-score = 2
r · p

r + p
. (9)

So far, we developed an LSTM network that only indicates
for each sample the confidence of being the start/end of a
step. In Section II-B, we use the output of this deep learning
network to extract/detect the actual time instants a step started
and/or ended.

B. Combine Start and End of Steps
Now that we have the outputs sLSTM and eLSTM, we still

need to extract the corresponding start and end boundaries,
i.e., the time instants where a step started or ended. To do so,
we first round these outputs to either zero or one using (10)
and (11), where th denotes the threshold that we use to round
sLSTM and eLSTM, which results in the rounded outputs ŝLSTM
and êLSTM

ŝLSTM, j,i =
{

1, if sLSTM, j,i > th

0, otherwise
(10)

êLSTM, j,i =
{

1, if eLSTM, j,i > th

0, otherwise.
(11)

From these rounded outputs, we already can extract the
step boundaries by detecting sequences of ones in the output,
where each sequence results in a start or end of a step.
However, in some scenarios, this approach will result in the
erroneous detection of additional steps. An example of such
a scenario is illustrated in Fig. 5, where a fragment of the
acceleration magnitude is shown together with the rounded
output êLSTM for the end of a step. If we compare this with
the true output, which is shown in the cyan curve of Fig. 3,
we can see that the estimated ends are identical to the true ends
except for the second step where the output shortly becomes
zero. Hence, in this situation, detecting sequences of ones to
find the end of a step would result in an extra (erroneous)
end of a step. To avoid this, we first preprocess the rounded
outputs ŝLSTM and êLSTM as follows: if the time between a
1 → 0 and 0 → 1 transition is smaller than a threshold
w1→0→1, we replace this with 1 → 1, i.e., we replace two
sequences of ones separated by a short zero-sequence with
one large sequence of ones. This step then results in the new
outputs s̃LSTM and ẽLSTM, and prevents that, if the output is
zero for only a very short time, two separate starts or ends of
a step would be detected instead of one. In the results section,
we will find the optimal value of w1→0→1.

Finally, from the preprocessed outputs s̃LSTM and ẽLSTM,
we extract the sets containing all the time instants where a step
starts (�s,d) or ends (�e). To this end, we look for sequences
of ones in s̃LSTM (ẽLSTM), i.e., we look for sequences where
s̃LSTM,istart :iend = 1 (ẽLSTM,istart :iend = 1), where we omit the
j subindex for clarity and with istart and iend, respectively,
the start and end timestep of a sequence of ones. For each
sequence, we then add the time instant of the start (end) of a
step to �s,d(�e) if the following conditions are met:

iend − istart > w

max (αLSTM (istart : iend)) > thmax (12)

where w is the minimal required length of a sequence of ones,
αLSTM is either sLSTM or eLSTM depending on whether we are
determining the start or end instants of the steps, and thmax
with th ≤ thmax ≤ 1 is the threshold for the output of the
LSTM network (before rounding) during a sequence of ones in
the rounded output. The first condition makes sure that short
bursts of ones do not result in a detected start or end of a
step, while the second condition verifies that, for at least one
sample of the sequence, the predicted (unrounded) output lies
above thmax. This ensures that the start or end is detected
only when the LSTM network is confident enough that a step
started or ended. If these conditions are met, the time instant
that corresponds to the middle of the sequence of ones, i.e.,
im = (istart + iend/2), is added to �s,d or �e. Finally, we still
need to take into account the delay d that was introduced to
the output for detecting the start of a step. To this end, we need
to subtract the delay d from the time instants for the start of
a step in �s,d , i.e., �s = {i − d | i ∈ �s,d}.

So far, we extracted two sets with the time instants where
steps started or ended, i.e., �s and �e, from the output of the
LSTM network. However, up until now, we did not consider
the relationship between the start and end of the steps. For
example, when we detect an end of a step before we have
detected any start of a step, either the end of a step was
detected incorrectly or the algorithm missed the start of a step.
In the remainder of this section, we describe the algorithm that
combines the information of the detected start and end of the
steps into the sets that contain the final estimate of the step
boundaries, which we will call � f,s and � f,e, respectively.

First, we derive three sets �1, �2, and �3 from �s and �e.
�1 contains all starts of �s for which no end of a step in

�e closer than a threshold m exists, where m is the threshold
for the minimal duration of a valid step, while �3 contains all
ends for which no start of a step closer than m exists. Hence,
ideally, �1 contains only the first start of each sequence of
steps, and �3 contains only the last end of a step for each
sequence. For �2, we determine, for each start of a step, the
closest end of a step, and if they are closer than m, we add
the average of the start and end to �2. In short, we look
for instants where, at the same time, a step begins and ends,
and put these in a separate set �2. As during walking each
step follows directly after the other, generally, �2 will contain
much more elements than �1 and �3. Then, we transform
these three sets back into two (temporary) sets �s,t and �e,t
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Fig. 6. Flowchart that is used to detect missing ends of a step or wrong
starts of a step.

as in (13) and (14) and sort both sets in increasing order

�s,t = �1 ∪ �2 (13)

�e,t = �3 ∪ �2. (14)

Next, we go through these sets to determine if some starts or
ends of a step are missing or detected incorrectly. In Fig. 6,
a flowchart is shown, which illustrates how possibly missing
ends of a step are added to �e,t or incorrect starts of a step are
removed from �s,t . To this end, we loop over all the elements
s ∈ �s,t . In Fig. 6, e1, e2, s1, and s2 are defined as

e1 = {el ∈ �e | s − M < el < s − m} (15)

e2 = {el ∈ �e | s + m < el < s + M} (16)

s1 = {el ∈ �s | s − M < el < s − m} (17)

s2 = {el ∈ �s | s + m < el < s + M} (18)

with m and M , respectively, being the thresholds for the
minimum and maximum durations of a valid step. A simi-
lar procedure is followed where we loop over all elements
e ∈ �e,t .

As a final step, we again loop over all elements s ∈ �s,t

and determine the end e ∈ �e,t , for which s+m < e < s+ M ,
i.e., we determine if there is an end in �e,t that can be the end
of a step with start s. If such an end of a step is found, we add
s to � f,s and e to � f,e. In Section IV, we test our method
to detect the start and end instants of a step and evaluate the
performance. To evaluate the performance of the algorithm,
we compare the final sets �f,s and �f,e with the true sets
�true,s and �true,e for, respectively, the start and end instants
of all steps by determining the recall, precision, and the f-score
for detecting the start and end instants of a step. To determine
if the start (end) of a step is detected at a correct instant, for
each element in �f,s (�f,e), we determine the closest element
in �true,s (�true,e). If the difference between these two elements
is smaller than (m/2), i.e., the half of the minimal step length,
the predicted start (end) instant of a step is assumed to be

TABLE I
DESCRIPTION OF THE VARIABLES USED FOR STEP DETECTION

correct. In Table I, we, for clarity, summarize the variables
used for step detection together with their description.

III. STEP LENGTH

In Section II, we designed an algorithm that detects the
boundaries, i.e., the start and the end instant, of each step
that a user takes and, hence, allows to extract all the accel-
eration samples that correspond to a certain step. In this
section, we now want to estimate the length of a step using
the extracted samples. In this work, we combine the step
detection algorithm of Section II with a ridge-regression-
based step length estimation algorithm, which resulted in the
best performance among the considered algorithms from [31].
Although this ridge regression step length estimator performs
well, the drawback is that it is obtained by training a machine
learning network on a subset of a larger ad hoc selected feature
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set that was not optimized for step length estimation. While
the performance of the estimator is improved by optimally
selecting the features, this comes at the cost of higher com-
plexity. Therefore, we opt in this article to propose a novel
step length estimator based on a deep learning network that
consists of several LSTM, convolutional, and dense (or fully
connected) layers. In this network, the LSTM layers are used
to detect temporal patterns in the input data, whereas the
convolutional layers serve to detect spatial patterns. Such a
convolutional layer is commonly used in image processing
to automatically extract useful features from the input data,
i.e., feature extraction and selection are integrated into the
proposed algorithm. This is in contrast to the algorithm
from [31], where the features from the large initial set needed
to be extracted manually, and a feature selection procedure
is used to select the optimal subset of features. In the next
section, the architecture of this network is discussed.

A. Deep Learning Network for Step Length Estimation
Similarly as for the LSTM network that determines how

likely an accelerometer sample is at the start/end of a step,
several actions are required to obtain a trained deep learning
network for estimating the step length. In the remainder of
this section, we discuss these actions in more detail.

1) Preprocessing the Data: First, we need to preprocess the
accelerometer data before it enters the deep learning network,
i.e., similarly as for the step detection algorithm, we feed the
scaled acceleration samples âi = [âx,i , ây,i , âz,i , |â|i ]T to the
network. Furthermore, we use the output of the step detector,
consisting of each step j in the measurement of the start s j and
end e j of the step, to divide the scaled accelerometer data into
fragments astep

j = [âs j , . . . , âe j ] containing all acceleration
samples of the j th step. In general, this fragment contains
a variable number of samples. However, the deep learning
network that we use requires an input fragment of a fixed
length. Therefore, we transform the input fragments to a
sequence of fragments of fixed size 4 × ns,fixed, by either
zero-padding or truncating the acceleration fragments. In this
work, we set ns,fixed = 100 samples, i.e., at a sample rate of
100 Hz, this would correspond to an accelerometer fragment
of 1 s.

2) Desired Output: The desired output of the deep learning
network ideally consists of the step length Ldesired, j for each
accelerometer fragment astep

j that corresponds with a step.
However, to predict the (unscaled) length of a step, the final
layer of the deep learning network needs to have larger weights
to transform the output of the intermediate layers—often these
outputs are in the range [−1, 1] or [0, 1]—to the step length.
To learn these larger weights, the network generally needs to
be trained longer, and the gradient-descent-based algorithm
that is used to determine the weights of the deep learning
network may become unstable. Therefore, in this work, we will
train the network to predict the scaled step length L̂ j . To this
end, we apply a MinMaxScaler to the desired step length

Ldesired, j , which results in the scaled step lengths L̂desired, j .
From the scaled step length predicted by the network, the
inverse of the scaling operation can then be used to convert
the predicted scaled step length to the unscaled one.

Fig. 7. Unfolded architecture of deep learning network for step length
estimation.

3) Deep Learning Algorithm: In Fig. 7, we show the archi-
tecture of the deep learning network that we use to determine
the scaled length of a step, where we unfold the network
for nstep subsequent steps. To predict the step length for an
acceleration fragment astep

j , in the first phase, the network

needs to extract useful features from this fragment. This is
done by the CNN, where every additional convolutional layer
is capable of automatically extracting features with increasing
complexity. For example, in a 2-D convolutional network for
image classification, the first layer(s) can detect edges, while
the following layers can use the edges to, e.g., detect shapes.
In this work, we restricted the number of convolutional layers
to two, as our simulations showed that more layers did not
result in a better performance. Each convolutional layer is
followed by a pooling layer to reduce the output size of the
convolutional layer and, consequently, the number of learnable
parameters so that the extracted features depend less on the
place they are detected in the input, implying that the network
becomes more robust and less susceptible to overfitting.

The transformation of the input fragments into fragments
of fixed size in the preprocessing step (see Section III-A.1)
is necessary due to the convolutional layers, which require
inputs of fixed size. Hence, for the �th timestep of the network,
� = 1, . . . , nstep, the input consists of the �th acceleration
fragment astep

� of size 4 × ns,fixed. The first convolutional
layer consisting of nfilt,1 filters of length nl,1 transforms the
�th acceleration fragment into a new output vector c(1)

� of size
nfilt,1 × ns,fixed by taking the convolution of the acceleration
fragment and the nfilt,1 filters. Next, c(1)

� is applied to a max
pooling layer, which reduces its input vector to a vector p(1)

�
of size nfilt,1 × �(ns,fixed/npool,1)� by only keeping from its
input the maximum in nonoverlapping windows of npool,1
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(subsequent) samples. The output of the first pooling layer
is then applied to a second convolutional and pooling layer,
which ultimately results in an output p(2)

� of size nfilt,2 ×
�(ns,fixed/npool,1npool,2)�.

After the convolutional and pooling layers, the extracted
feature map is sent to the LSTM layers. These LSTM layers
enable the network to also take into account previous accel-
eration fragments to better estimate the step length for the
current acceleration fragment. As the LSTM layers require

a 1-D input, we first need to pass the 2-D output p(2)
� to

a flatten layer, which transforms the 2-D input into a 1-D
output f�. This flattened output is then applied to two LSTM
layers, which, respectively, transform their input to an output
of size nLSTM,1 × 1 and nLSTM,2 × 1. In this work, we chose
to use two LSTM layers as more layers did not result in a
significant performance improvement. Finally, we still need
to extract the predicted scaled step length from the output of
the last LSTM layer. To this end, generally, one or more dense
(or fully connected) layers are used. In this work, we achieved
the best performance with two dense layers, which transform
their input to an output of, respectively, size ndense,1 × 1 and
ndense,2 × 1. As the final dense layer needs to return a scalar,
i.e., the scaled step length estimate L̂� of the current step, the
length ndense,2 of the dense layer output must be equal to one.
Similarly as for the network used for the step detection, we add
a dropout layer with dropout probability pdropout,i , where the
subindex i corresponds to the i th dropout layer, after each
pooling and LSTM layer (not shown in Fig. 7), in order to
minimize the risk of overfitting.

To train the network, we divide the training data into
batches, where one batch contains bs examples. Each of these
examples contains the accelerometer fragments astep

b,i,� of nstep
successive steps together with the corresponding desired scaled
step lengths L̂desired,b,i,�, where b and i denote that the exam-
ple is the i th example in the bth batch, and � = 1, . . . , nstep
denotes the �th step in the example. For each example in the
bth batch, we then apply the data of the nstep steps to the deep
learning network of Fig. 7 to predict the corresponding nstep

scaled step lengths L̂b,i,�. These outputs are then compared
with the desired output using a mean squared error loss
function Lb

mse [see (19)], which allows updating the weights
of the deep learning network with a gradient descent approach
every time a batch has been processed

Lb
mse = 1

bs · nstep

bs∑
i=1

nstep∑
�=1

(
L̂desired,b,i,� − L̂b,i,�

)2
. (19)

This training process is applied to all batches of the training
data for 1000 epochs. More specifically, during an epoch,
we start from the model that was trained in the previous epoch
(and not the model of the best epoch so far) and apply the
training data batch by batch so that the weights of the deep
learning network can be updated once again. At the end of
each epoch, the performance (see Section III-A.4) of the model
was evaluated on the test set, and if the performance of the
model on the test set for the current epoch was better than
the models for all previous epochs, then the model is saved.
By using the test set to determine the best epoch, we avoid

TABLE II
DESCRIPTION OF THE VARIABLES USED

FOR STEP LENGTH ESTIMATION

that the deep learning network would overfit on the training
data. To implement the step length estimation network, we use,
similarly as for the step boundary detection, Keras and the
Adam optimizer with a learning rate of 0.001 to update the
internal weights of the network.

4) Performance Measure: To evaluate the performance of
the step length estimator, we determine the mean absolute
value of the error between the estimated step length and the
true step length extracted from the ground-truth data. So far,
we assumed that we knew the step boundaries s j and e j of the
steps to extract the acceleration fragment. In practice, however,
these step boundaries are not known in advance. Hence, in the
results section, we also investigate the performance when we
combine the step length estimator with the step detector from
Section II to extract the accelerometer samples that correspond
to a step instead of assuming that the boundaries are known.

In Table II, we, for clarity, summarize the variables used
for step length estimation together with their description.

IV. RESULTS

In this section, we discuss the results of the deep-learning-
based step detection and step length estimation algorithms.
First, we introduce the different datasets that are used to train
and evaluate the different neural networks. Next, we then
evaluate the performance of the step detector and compare
it with a state-of-the-art algorithm [21]. This involves the
selection of the parameters specified in Section II-A in order
to obtain the best recall, precision, and f-score, as well as
training the LSTM network. After training the network, we use
the algorithm from Section II-B to extract the time instant of
the start and end of each step from the output of the LSTM
network and evaluate the accuracy of the step detector.

Second, we assess the performance, i.e., the mean absolute
error (mae), of the step length estimator from Section III,
assuming the start and end of the step are known. Also, this
network involves the selection of some parameters, so we
first determine parameter values that lead to a good, though
not necessarily optimal, performance as testing all possible
parameter value combinations is infeasible. After training the
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network, we determine the performance of the estimator and
compare the results with the step length estimator from [31],
where the feature selection was not included in the network
and the state-of-the-art algorithm of [28].

Finally, we combine the deep-learning-based step detector
and the step length estimation algorithm. To this end, we first
use the step detector to detect the start and end of a step
and use these to extract the accelerometer fragment that
corresponds to that step. Next, we use this fragment as an input
for the step length estimator and compare the performance
with the performance of the step length estimator, where we
assumed that the start and end of a step are known.

A. Datasets
In this network, we use two different datasets, i.e., one for

training and evaluating the step detection algorithm and one
for the step length estimation. For the LSTM network/step
detection algorithm, we use the dataset that was introduced
in [19]. For this dataset, we gathered the IMU data of three
users that, while holding a smartphone in a texting position,
perform a measurement where they are free to choose the
trajectory inside a room. For these measurements, two different
smartphones are used, i.e., a Samsung Galaxy IV and a
Motorola Moto Z Play. The Samsung device contains a K330
IMU from STMicroelectronics that samples the acceleration
at 100 Hz and has a range of ±2 g. The Motorola device,
on the other hand, contains a BMI160 IMU from Bosch that
samples the acceleration at 100 Hz and has a range of ±16g.
To obtain the ground-truth data, we manually extracted the step
boundaries from the low-pass filtered acceleration magnitude
by determining the instants at which the magnitude crosses
1 g, i.e., the gravitational force, with a positive slope. During
the measurements, also, the total number of steps was counted
as verification that the right amount of steps was annotated in
the dataset. This resulted in a dataset with 6226 steps, of which
3120 steps are used to train the step detection algorithm, and
3106 steps to test it.

For the step length estimation, we use the dataset from our
previous work [31] to train and test the network. During a
measurement, the user walked on a straight path of approx-
imately 5 m next to a tape measure with a smartphone in
a texting position, while a ceiling-mounted camera captured
the experiment. Based on these camera images, it was then
possible to extract the ground-truth step length from the
position of the foot relative to the tape measure. For this
dataset, we gathered the IMU data with the same devices that
were used for the step detection dataset and with the same
three test persons. This resulted in a dataset with in total
of 837 annotated steps, where each measurement contributed
three to four subsequent steps. Approximately 80% of this
dataset is used to train the network, while the remaining 20%
is used to test the trained algorithm. As, in the dataset, each
experiment resulted in minimally three successive steps, we set
nstep = 3.

B. Results Step Detection
For the LSTM network for the step detection, as discussed

in Section II-A, we first need to optimize the parameters

(ns, nh , d, pdropout). As these parameters are not related to
each other and training the network is an expensive operation,
testing every possible combination is very time-consuming.
Therefore, in this work, we determine a (suboptimal) para-
meter set that leads to a good performance. To determine
the values for the parameters, we sequentially update the
parameter set, where each new parameter set differs in only
one parameter compared to the parameter set that led so far
to the best performance. In this tuning process, we started
with tuning ns followed by d, nh and pdropout. With this order,
we first optimize the parameters that determine the input of the
network (ns , d), then the parameters of the network itself (nh ),
and, finally, the parameters that regularize the network, i.e.,
prevent overfitting (pdropout). Note that this order is arbitrary,
and another order could lead to better performance. For each
of the approximately 100 considered parameter sets, we train
the LSTM network for 200 epochs on the training data and
evaluate the performance of the trained LSTM network by
computing the f-score, as discussed in Section II-A. This
f-score is determined for each measurement in the training set,
and the final f-score for an epoch is found by averaging over
all the measurements in the training set. For each parameter
set, we save the f-score and the LSTM network for the epoch
that resulted in the best f-score. The parameter set resulting in
the highest f-score is used for the final results. To select the
values for the parameters, we need to take into account the
following considerations.

1) Number ns of Samples in a Fragment: As it is compu-
tationally hard to analyze long acceleration fragments
to find the steps included in the signal, we divide the
acceleration signal in shorter fragments, i.e., ns may not
be too large. However, to be able to detect the start
and end of a step, all samples of the step need to be
included in the fragment, implying that ns may not be
too small and at least large enough to contain all samples
of one step. Hence, ns depends on the sample frequency
of the IMU and the walking frequency. As, in this work,
the IMU samples at 100 Hz and a walking user usually
takes at least one step per second, ns should be at least
100 samples.

2) Number nh of States in an LSTM Layer: A higher nh

enables the LSTM network to learn a more complicated
model. However, choosing a very large nh can result in
overfitting.

3) Delay d (in Number of Samples) in the Decision Process
for the Start of a Step: A higher value gives the LSTM
network more time/information to decide how likely a
sample of the acceleration data was the start of step.
However, to extract a step in real time, the delay must
be shorter than the duration of a step. Hence, d also
depends on the sample and walking frequency. As the
sample frequency in this work is 100 Hz and a user
usually takes less than 2.5 steps per second, d should
be less than 40 samples.

4) Probability pdropout That an Output of a Layer Is Not
Used in the Next Layer: As we have two dropout layers
in the LSTM network for step detection, we consider
that each of the dropout layers can have a different
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TABLE III
OPTIMAL PARAMETERS FOR THE LSTM NETWORK

TABLE IV
PRECISION, RECALL, AND F-SCORE OF THE LSTM NETWORK FOR

STEP DETECTION ON TRAINING AND TEST SETS

dropout probability. In general, a low dropout probability
increases the risk of overfitting, while a high probability
can prevent the LSTM network from learning anything.

In Table III, the parameters for the LSTM network are
given, which resulted in the best performance. As ns is equal to
200 samples, this means that, for walking frequencies between
1 and 2.5 Hz, each fragment contains at least two steps and
can contain up to five steps. For the number of hidden states
nh in the LSTM layers, we find that a value of 400 results
in the best performance. During our experiments, however,
we noticed that a lower value does not severely degrade the
performance.

In Table IV, we show the precision, recall, and f-score of
the LSTM network on the training and test sets when the
parameters from Table III are used to train the network. For the
training set, we see that precision, recall, and, hence, f-score
are very close to each other. The precision of 98.8% is slightly
higher than the recall of 98.4%, which results in an f-score of
98.6%. This means that the LSTM network more frequently
fails to predict the start or end of a step, i.e., a false negative,
than it predicts a nonexisting step, i.e., a false positive. On the
test set, the difference between precision and recall is larger
than on the training set. When we compare the performance
for the training set to the performance for the test set, we can
see that the difference is around 3%, e.g., the f-score decreases
from 98.6% to 95.4%.

In the second part of the step detection algorithm, we use
the output of the LSTM network from the first part to extract
the time instants where a step started (ended) and combine
them to obtain more accurate estimates, as described in
Section II-B. To obtain good performance, we first need to
optimize the parameters (th, m, M, w,w1→0→, thmax) of the
algorithm. In contrast to the training of the LSTM network,
the algorithm that extracts the start and end of a step has much
lower complexity. As a consequence, it is easier to find the
optimal parameter settings. To determine the performance of
a parameter set, we extract the time instants when a step started
(ended) and determine the precision, recall, and f-score, where
the start (end) is considered to be detected correctly when the
time between the predicted and true start (end) of a step is
smaller than half the minimum duration of a step, i.e., (m/2).
To find the optimal value for the parameters, we use a grid
search over all parameters, where we take into account the
following considerations.

1) Threshold th Used in (10) and (11) to Determine the
Rounded Outputs ŝLSTM and êLSTM: As the final dense
layer uses a sigmoid activation, i.e., the outputs of the
network lay in the interval [0, 1], an intuitive choice
would be to set the threshold as the center of this
interval, i.e., th = 0.5. When the threshold reduces,
the LSTM network will decide that a start/end of a
step occurred for smaller values of sLSTM and eLSTM,
implying that the probability of a false negative would
reduce, but, at the same time, the probability of false
positive increases. When the threshold increases, the
opposite occurs. Taking into account that the recall of
the LSTM network is lower than the precision, i.e., the
number of false negatives is slightly larger than the
number of false positives (see Table IV), we expect that
a value for th lower than 0.5 will result in the best
performance. In our grid search, we considered values
for th ∈ {0.3 : 0.05 : 0.6}.

2) Thresholds m and M for, Respectively, the Minimum
and Maximum Durations of a Valid Step (in Number
of Samples): Humans walking in general take between
approximately 60 and 150 steps per minute, i.e., a step
frequency between 1 and 2.5 Hz. Hence, a sampling
frequency of 100 Hz results in steps between 40 and
100 samples in length. This is also confirmed by the
steps in our dataset that has a duration between 34 and
131 samples and for which 99.8% of the steps have a
duration between 37 and 102 samples. As m and M
determine whether a fragment can correspond to a step,
they will have an impact on the accuracy of the network,
i.e., reducing m/increasing M increases the probability
of false positives, while increasing m/reducing M will
result in a higher probability of false negatives. In our
grid search, we considered values for m ∈ {32 : 2 : 46}
and M ∈ {142 : 2 : 152}.

3) Minimum length w (in Number of Samples) of a
Sequence of Ones in (12): A large value for w can lead to
not detecting the start (end) of some steps, while a small
value can lead to false detections. As the LSTM network
is trained to generate an output containing 21 successive
samples “1” when a step started or ended, the minimum
length w may not exceed 21. Note that the LSTM
network generates the output “1” if its output is above
the threshold th. Due to noise and fluctuations, one or
more of the outputs of the network may not exceed the
threshold, even if a start or end of a step occurred.
To avoid that this results in a false negative, we set
the minimum length w as roughly half of the expected
length of the sequence of “1,” i.e., in our grid search,
we considered values for w ∈ {6 : 2 : 14}.

4) Threshold w1→0→1 (in Number of Samples) Below
Which a 1 → 0 and 0 → 1 Transition Is Replaced
by a Sequence of Ones 1 → 1: The occurrence of
a 1 → 0 and 0 → 1 transition is closely related
to the disturbances mentioned for the minimum length
w. Therefore, the threshold w1→0→1 and the minimum
length w are correlated. Taking into account the mini-
mum duration m of a valid step and the minimum length
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TABLE V
OPTIMAL PARAMETERS TO EXTRACT TIME

INSTANTS OF START AND END

w of a sequence of “1,” the maximum duration w1→0→1
is upper bounded by w1→0→1 < m − w. Violating this
restriction can result in replacing two valid step detec-
tions with one false detection. Too large w1→0→1 will,
therefore, result in a higher number of false negatives,
but, on the other hand, too small w1→0→1 results in
erroneous detection of start/end instants of steps, i.e.,
false positives. In our grid search, we considered values
for w1→0→1 ∈ {10 : 2 : 18}.

5) Threshold thmax That Ensures That a Start (End) of a
Step Is Only Detected When the Unrounded Output of
the LSTM Network Is Large Enough: Choosing thmax too
large results in false negatives (a lower recall), while
a too small value results in false positives (a lower
precision). As mentioned in Section II-B, this variable
must take values in the interval [th, 1]. In our grid search,
we considered values for thmax ∈ {0.7 : 0.05 : 0.95}.

Table V shows the optimal parameters obtained with the
grid search. However, several other parameter sets resulted in
the same or slightly worse performance, indicating that the
algorithm is robust to slight variations of these parameters.
From the table, we can see that th = 0.4, which is indeed
as we expected slightly lower than 0.5. Although this lower
value for th increases the risk of false detections, thanks to the
values for thmax = 0.75 and w = 12, we only detect the start
(end) of a step when the sequence of ones is long enough, and
the corresponding unrounded output of the sequence is large
enough, which eliminates most false detections.

In Tables VI and VII, we show the precision, recall, and
f-score of the step detector on the training and test sets,
respectively, before and after combining the start and end of a
step, for the parameter settings from Table V. In Table VI,
where we show the performance of the algorithm before
combining the start and end of the steps, we observe that,
in most cases, the precision, recall, and, hence, the f-score,
are very similar. Only for detecting the end of a step in the
test set, the difference between the recall and precision is
slightly larger. From this table, we also see that the precision
is higher than the recall, implying that the step detector more
likely does not detect a step than it detects a wrong step.
Comparing the performance on the training and test sets, it is
clear that, as expected, the training set results in the best
performance, i.e., on average, the precision, recall, and f-score
for the training set are approximately 1% better than for the
test set.

In Table VII, we show the performance of the algorithm
after combining the start and end of steps. In comparison
with Table VI, we see that, for a given set (start/end and
training/test), the difference between precision and recall is
smaller. Furthermore, for the training set, the performance of

TABLE VI
PRECISION, RECALL, AND F-SCORE ON TRAINING/TEST FOR

DETECTING START AND END OF STEP BEFORE

COMBINING START AND END

TABLE VII
PRECISION, RECALL, AND F-SCORE ON TRAINING/TEST FOR

DETECTING START AND END OF STEP AFTER

COMBINING START AND END

Fig. 8. Example of a fragment of the acceleration magnitude where the
LSTM network erroneously detects the start of a step (around 1.4 s).
This wrong start is discarded by our algorithm.

the step detector hardly improves by using the relationship
between the starts and ends of steps, while, for the test set,
there is a clear improvement. For the start of a step, precision
and recall, respectively, increase from 99.1% and 98.9% to
99.2% and 99.3%, and for the end of the step, the precision
and recall increase from, respectively, 98.7% and 97.9% to
99.0% and 99.1%.

In Figs. 8–10, we show several examples of fragments of
the output of the LSTM network. In Fig. 8, the network
incorrectly detects a start of a step around 1.4 s. However,
as there is no end of a step within M samples, the step
detection algorithm ignores this start of the step. In Fig. 9,
the LSTM network fails to detect the start and end of the first
step. In this case, the step detection algorithm is not capable
of correcting these errors as the networks are nothing around
0.7 s. If the LSTM network would have detected the first
start of a step, the step detection algorithm would correct the
missing end of the first step. In Fig. 10, the LSTM network
does not detect the start and end of the step from 1.1 to 1.9 s.
However, as the starts (ends) of the previous and next steps
are detected correctly, the step detection algorithm adds the
missing start (end).

Finally, we also compare the step detection algorithm
with [21]. In that work, the authors considered an LSTM,
CNN, and WaveNet network to detect steps. To this end,
the networks were given accelerometer fragments of a fixed
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Fig. 9. Example of a fragment of the acceleration magnitude where
the LSTM network fails to detect the start and end of the first step (not
corrected by our algorithm).

Fig. 10. Example of a fragment of the acceleration magnitude where
the LSTM network fails to detect a start (around 1.1 s) and end (around
1.9 s) of a step. With our algorithm, this is corrected.

length for which the networks needed to predict if the last
sample of the fragment was part of a left or right step. With
a sliding window approach, we can then determine, for each
sample of the accelerometer, if it was from a left or right
step, and a transition between can be seen as the start/end of
a step. As the authors found that a CNN resulted in the best
performance, we only compare our step detection algorithm
with the CNN-based step detector from [21]. However, as our
step detection dataset also contained moments where the user
was not walking, we need to slightly modify the algorithm
so that it can detect a left step, a right step, and no step.
Furthermore, we also needed to apply weight balancing to
train the network as the number of examples for a left/right
step was much higher than the number of examples with no
step. In Table VIII, we show the resulting precision, recall, and
f-score of this method for detecting the start and end of the
step. Comparing this with Tables VI and VII, it is apparent
that the presented step detection algorithm outperforms the
step detector from [21], especially in terms of precision. The
main reason for this worse performance is that the output of the
CNN network often contained short bursts where it predicted
a left (right) step instead of a right (left) step. This leads
to many false step detections and, hence, a lower precision.
Therefore, postprocessing the output of the CNN network,
similarly as in our algorithm, can potentially result in a much
better performance.

C. Results Step Length
In this part, we evaluate the performance of the deep-

learning-based step length estimator and compare it with the

TABLE VIII
PRECISION, RECALL, AND F-SCORE ON TRAINING/TEST FOR

DETECTING START AND END OF STEP WITH CNN NETWORK [21]

TABLE IX
TUNED PARAMETERS FOR DEEP LEARNING NETWORK

FOR STEP LENGTH ESTIMATION

step length estimator in our previous work [31] and with [28],
where the authors use a CNN to estimate the step length from
accelerometer and gyroscope data. Similar to the proposed step
detector, the proposed step length estimation network requires
the tuning of several parameters, related to the convolutional,
LSTM, dense, pooling, and dropout layers. As the number
of parameters is high and training a deep learning network
requires a considerable amount of time, an exhaustive search
for the optimal parameters is not feasible.

Therefore, we determine a parameter set that results in sat-
isfactory performance, though not necessarily optimal. To find
suitable values for these parameters, we trained and evaluated
the step length estimator with a limited number of parameter
sets, where we sequentially update the parameter set by chang-
ing one parameter compared to the parameter set that, so far,
led to the best performance. For the step length estimation
network, we first tuned the parameters that determine how
the network is trained (bs), followed by the parameters of
the network itself (npool, nl , nfilt, nLSTM, ndense), and, finally,
the parameters that regularize the network (pdropout). The final
parameter set that results in the best performance, where the
performance is determined by the mae on the step length
error, is given in Table IX. In this table, parameters for similar
layers are grouped in an array, where the i th element of the
array corresponds to the i th layer of that type in the network
architecture. For example, nl = [42, 7] indicates that the first
convolutional layer uses filters with length nl,1 = 42, while
the second convolutional layer has filters with length nl,2 = 7.

In Table X, we give the mae on the step length that is
achieved on both the training and test sets using the parameters
from Table IX. In addition, we also compare the performance
of the proposed deep learning network with the performance
that we achieve with the feature selection method from our
previous work [31] and step length estimator of [28], which
only uses convolutional layers and no LSTM layers. Hence,
the latter work in comparison with the proposed approach
is not capable of using information about previous steps.
The proposed deep learning approach results in an mae of
1.63 and 3.21 cm on, respectively, the training and test sets,
while the feature selection approach resulted in an mae of,
respectively, 4.07 and 5.15 cm on the training and test sets.
Hence, it is clear that the deep learning approach outperforms
the feature selection approach in terms of mae. The feature
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TABLE X
MAE FOR STEP LENGTH ESTIMATION USING FEATURE

SELECTION [31], CNN [28], AND PROPOSED DEEP

LEARNING APPROACH ON TRAINING/TEST SET

selection approach, on the other hand, has a lower complexity,
which results in faster training and prediction time. From our
tests, however, we can conclude that even the deep learning
approach is capable of providing step length estimates in
near real time. Comparing the proposed approach with [28],
we notice that the latter performs slightly worse compared to
the proposed algorithm even though the latter also uses data
from the gyroscope.

D. Results Step Detection and Length Combined
In the previous section, we discussed the results of the

proposed deep-learning-based step length estimator. For these
results, however, we silently assumed that the boundaries,
i.e., the start and the end, of a step are known, which,
in reality, is not the case. Hence, in this section, we evaluate
the performance of the step length estimator from Section III
combined with the step detector from Section II to extract the
start and end of each step.

The LSTM step detection algorithm from Section II was
trained and evaluated in Section IV-B using the step detection
dataset from [19], where it was used for step counting instead
of step detection. This dataset, however, does not contain
ground truth for the step length. On the other hand, the dataset
used to train and evaluate the performance of the step length
estimator (see Section IV-C), i.e., the step length dataset,
consists of many short fragments. As most errors in the step
detection occur when the user starts or stops walking, this step
length dataset is less suitable to optimize the parameters of the
step detection algorithm than the step detection dataset, which
contains longer fragments with more steps. Therefore, in this
section, although we will apply the combined step detection
and step length estimation algorithm on the step length dataset,
we use, for the parameters of the step detection algorithm, the
values given in Table V, i.e., optimized on the step detection
dataset. The detected start and end instants of the steps are
used to divide the measured acceleration fragments of the
step length dataset into shorter fragments containing a single
step. The resulting short fragments are then fed (after padding
the fragments to length ns, f ixed ) to the step length estimation
algorithm from Section III, where we use the parameters from
Table IX (which are obtained by assuming that the boundaries
of the steps are known) to estimate the step length.

In Table XI, we show the performance of the proposed step
detector on the training and test sets of the step length dataset.
Comparing Tables VII and XI, we observe that, as expected,
the performance of the step detector on the step length dataset
is slightly worse (for both the training and test sets) compared
to the performance on the step detection dataset due to the
short fragments in the step length dataset. The only exception

is the recall on the test set of the step length data, which is
equal to 100%, i.e., all steps in that dataset are detected.

In Table XII, we compare the performance of the step length
estimator on the training and test sets using a feature selection,
a CNN-based [28], and a deep learning approach. To this
end, we determine the mae on the step length in two ways.
The first way calculates the mae only on the steps that were
detected correctly, i.e., false positive and false negative step
detections are ignored. Using the feature selection approach,
this results in an mae of 4.20 and 5.14 cm on, respectively,
the training and test sets. The proposed deep learning approach
outperforms the feature selection approach and results in an
mae of, respectively, 2.46 and 3.54 cm on the training and
test sets. With the CNN-based approach of [28], we again
see that it performs slightly worse even though it also uses
gyroscope data. Comparing Tables X and XII, we see that
the performance using the feature selection approach barely
degrades when estimated step boundaries are used. For the
deep learning and CNN-based approach, on the other hand,
we notice a more significant degradation of performance,
especially on the training set. With the deep learning approach,
the mae on the training set increases from, respectively, 1.63 to
2.46 cm when, instead of using the true step boundaries,
the proposed step detector is used. A possible explanation
for this observation is that the feature selection approach
builds a less complex model for the step length than the
deep learning approach. While the less complex model of
the feature selection approach, in general, results in worse
performance, it also makes the method less susceptible to
changes in the input. On the other hand, the degradation of
the deep learning model is due to the dataset that is used to
train the model. During the training phase, it was assumed that
the step boundaries are known. However, when we combine
the step length estimator with the step detection network, the
fragments fed to the step length estimator will (slightly) differ
from the fragments with known step boundaries. As the step
length network is not trained on data with uncertainty on
the step boundaries, it is overfitted to the case with known
step boundaries. Although we expect that we can reduce the
degradation by training the step length estimator network on
fragments with uncertain step boundaries, this would come at
the cost of higher training complexity. As the test data are
not used to train the step length estimator network, the impact
of the overfitting is less prominent than on the training set,
implying that the degradation for the test set is lower than for
the training set.

For the second way to determine the mae, we also take into
account false negative and false positive step detections, i.e.,
steps that were not detected by the step detector and steps
that were detected when no step should have been detected.
To take these events into account, we set the true step length
for a falsely detected step equal to 0 cm, and for a step
that was not detected, we set the step length estimate equal
to 0 cm. In Table XII, the resulting mae is given. For the
feature selection approach, this results in an mae of 6.49 and
7.71 cm on, respectively, the training and test sets. On the
other hand, when using the deep learning approach, an mae
of 4.91 and 6.56 cm is achieved on, respectively, the training
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TABLE XI
RECALL, PRECISION, AND F-SCORE FOR STEP DETECTION

ALGORITHM ON STEP LENGTH TRAINING/TEST SET

TABLE XII
MAE FOR STEP LENGTH ESTIMATION USING FEATURE

SELECTION [31], CNN [28], AND PROPOSED DEEP LEARNING

APPROACH ON TRAINING/TEST SET TAKING INTO

ACCOUNT STEP DETECTION RESULTS

and test sets. In contrast with the first way, we now notice
that the CNN-based network results in a better performance
on the test set, while, for the training set, the performance is
comparable to the proposed algorithm. The reason for this is
that Hannink et al. [28] also use the gyroscope data to predict
the step length. Without the gyroscope data, we observed that
the proposed step length estimator performs better than the
CNN-based estimator. Hence, if performance is of the utmost
importance, it could be beneficial to also include the gyro-
scope data in the proposed algorithms. Comparing the second
with the first way to determine the mae, we observe that,
as expected, the performance degrades for all approaches.
Taking all results into account, we can conclude that the deep
learning results in the best, i.e., lowest, mae on the step length.

V. CONCLUSION

In this work, we propose a deep-learning-based step detector
and a step length estimator that only use the accelerometer
data of a handheld IMU. For the step detector, a network
consisting of several LSTM layers is used to predict if a step
starts or ends. Using the output of this network and taking into
account that the detection of the start and end of a step are
related, we determine the final prediction of the time instants
where a step starts and/or ends, which allows extracting the
accelerometer data that correspond to a step. In most previous
works, generally, only the performance on the number of
predicted steps is investigated and not if the steps are detected
at the right time, while, in this article, we also take into account
if the steps are detected at the right time. This approach results
in an f-score of 99.3% for detecting the start of a step and an
f-score of 99.1% for detecting the end of a step.

For the deep-learning-based step length estimator, we use
a network that consists of several convolutional and LSTM
layers, where the idea is that the convolutional layers extract
useful features from the measured acceleration to predict
the step length, and the LSTM layers take into account the
information gathered from previous steps. The results of this
step length estimator are then also compared with the feature
selection-based step length estimator of our previous work [31]
and a CNN-based state-of-the-art approach [28]. Assuming

that the boundaries of each step are known, this results in
an mae of 3.21 cm with the deep learning approach, while
the feature selection and CNN-based approach result in an
mae of, respectively, 5.15 and 3.30 cm. In practice, however,
we also need to take into account that a step detector can
make errors, and hence, the step boundaries are not perfectly
known. To this end, we combine the proposed deep-learning-
based step detector with multiple step length estimators and
evaluate the performance. Taking into account false positive
and false negative step detections to evaluate the step length
estimator, we obtain an mae of 6.56 cm with the proposed
deep-learning-based step length estimator, while the feature-
selection-based step length estimator and the CNN-based step
estimator, respectively, result in an mae of 7.71 and 6.00 cm.
Hence, we can conclude that, although the performance of the
proposed step length estimator degrades more when we take
into account false negative and positive step detections, it still
outperforms the feature selection-based step length estimator.
Furthermore, we observed that Hannink et al. [28] perform
better than the proposed algorithm when we combine it with
the step detection algorithm due to the use of the gyroscope
data.
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