
Copyright 2011 IEEE. This paper was accepted 5th International Conference on Signal Processing and 

Communication Systems (2011), scheduled for Tuesday, December 13, 2011 in 

Honolulu, Hawaii. 

 

A final version of this paper is published in the IEEE proceedings: 

DOI:  http://dx.doi.org/10.1109/ICSPCS.2011.6140840 

 

Personal use of this material is permitted. 

However, permission to reprint/republish this material for advertising or promotional purposes or for 

creating new collective works for resale or redistribution to servers or lists, or to reuse any 

copyrighted component of this work in other works, must be obtained from the IEEE. Contact: 

Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / 

Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966. 



A COMPARATIVE STUDY ON THE OPTIMIZATION OF GLOBAL OPTIMUM ACTIVE

CONTOURS

Jonas De Vylder, Jan Aelterman, Wilfried Philips

Ghent University - IBBT - Dept. of Telecommunications and Information Processing

St.-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Jonas.deVylder@telin.ugent.be

ABSTRACT

The active contour framework is widely used for segmenta-

tion of images. Specially active contours with a convex en-

ergy gained a lot of interest, since they are independent of

initialization. Several methods have been proposed to min-

imise the active contour energy, all claiming to be fast and ef-

ficient. In this paper we study and compare the convergence

and constraints of these methods. We also propose a new op-

timization method specially designed for the optimization of

convex energy active contours.

Index Terms— Active Contours, Image Segmentation,

Convex optimization

1. INTRODUCTION

Since Kass et al. [1] introduced the active contours, the frame-

work has become a constant recurring topic in segmentation

literature [2, 3, 4, 5, 6]. In the active contour framework, an

initial contour is moved and deformed in order to minimise a

specific energy function. This energy function should be min-

imal when the contour is delineating the object of interest.

Two main groups can be distinguished in the active contour

framework: one group representing the active contour explic-

itly as a parameterized curve and a second group which repre-

sents the contour implicitly, e.g. using level-sets. In the first

group, also called snakes, the contour commonly converges

towards edges in the image [1, 4]. The second group gener-

ally has an energy function based on region properties, such as

the variance of intensity of the enclosed segment [3, 7]. These

level-set approaches have gained a lot of interest since they

have some benefits over snakes. For example, they can easily

change their topology, e.g. splitting a segment into multiple

unconnected segments.

Recently an active contour model has been proposed with

a convex energy function, making it possible to define fast

global optimizers [5, 6]. These global active contours have the

benefit that their result no longer depends on the initialization.

This research has been made possible by the Institute for the Promotion

of Innovation by Science and Technology in Flanders (IWT).

In [8], Bresson et al. proposed an active contour with a convex

energy function which combines edge information and region

information. This method combines the original snake model

[1] with the active contour model without edges [3].

Due to the convexity of the active contour energy func-

tion, several efficient optimizers have been proposed to cal-

culate the active contours [5, 8, 6, 9, 10]. Although these

methods all show fast convergence, they haven’t been prop-

erly compared. In this paper we will discuss several of these

state of the art optimization methods and experimentally com-

pare their convergence. This paper also proposes a new op-

timizers which is a combination of two ”simple” optimizers.

The proposed method shows good convergence, while using

little memory and having a low computational cost.

This paper is arranged as follows: the next section de-

fines some notations used in this paper. The following section

briefly summarizes the theory of the active contour frame-

work. Section 4 discusses a range of optimizers which can

be used for the active contour optimization. Then, section 5

experimentally tests and compares the optimization methods.

Section 6 recapitulates and concludes.

2. NOTATIONS AND DEFINITIONS

In the remaining of this paper we will use specific notations.

To make sure all notations are clear, we briefly summarize the

notations and symbols used in this work.

We will refer to an image, F in its line scanning order, i.e.

f(i∗m+j) = F (i, j), where m×n are the dimensions of the

image. In a similar way we will represent the active contour

in vector format, u. If a pixel U(i, j) is part of the segment,

it will have a value above a certain threshold, all background

pixels will have a value lower than the given threshold. Note

that this is similar to level-sets. The way these contours are

optimized however is different than with classical level-set ac-

tive contours, as is explained in the next section. We will use

image operators, i.e. gradient, divergence and Laplacian in

combination with this vector notation, however the semantics

of the image operators remains the same as if it was used on



a matrix:

∇+f(t) =
(

∇+
x f(t),∇

+
y f(t)

)

∇+
· f(t) = ∇+

x f(t) +∇
+
y f(t)

∇2f(t) = ∇+
· ∇

+f(t))

where

∇+
x f(i ∗m+ j) = F (i+ 1, j)− F (i, j)

∇+
y f(i ∗m+ j) = F (i, j + 1)− F (i, j)

Each of these operators can also be defined using the back-

wards derivative operators:

∇−x f(i ∗m+ j) = F (i, j)− F (i− 1, j)

∇−y f(i ∗m+ j) = F (i, j)− F (i, j − 1)

If no confusion is possible, we will use the forward operators

and omit the + sign for the sake of readability. Further we

will use the following inner product and norm notations:

〈f ,g〉 =

mn
∑

i=1

f(i)g(i)

|f |g =
mn
∑

i=1

g(i) | f(i) |

‖f‖2 =

√

√

√

√

mn
∑

i=1

f(i)2

If the weights g(i) = 1 for all i, then we will omit g, since

we assume this will not cause confusion, but will increase

readability.

3. CONVEX ENERGY ACTIVE CONTOURS

In [5] an active contour model was proposed which has global

minimisers. This active contour is calculated by minimizing

the following convex energy:

E[u] = |∇u|+ γ〈u, r〉 (1)

with

r[x] = (µf − f [x])2 − (µb − f [x])2 (2)

Here f represents the intensity values in the image, µf and

µb are respectively the mean intensity of the segment and the

mean intensity of the background, i.e. every pixel not belong-

ing to the segment. Note that this energy is convex, only if

µf and µb are constant. If these values are not known in ad-

vance, they can be approximated by alternating between the

following two steps: first fix µf and µb and minimise eq. (1),

secondly update µf and µb. Chan et al. found that the steady

state of the gradient flow corresponding to this energy, i.e.

du

dt
= ∇ ·

∇u

|∇u|
− γr (3)

coincides with the steady state of the gradient flow of the orig-

inal Chan-Vese active contours [5, 3]. So minimizing eq. (1)

is equivalent to finding an optimal contour which optimizes

the original Chan-Vese energy function. Although the energy

in eq. 1 does not have a unique global minimiser, a well de-

fined minimiser can be found within the interval [0, 1]n:

u∗ = argmin
u∈[0,1]n

|∇u|+ γ〈u, r〉 (4)

Note that this results in a minimiser which values are between

0 and 1. It is however desirable to have a segmentation result

where the values of a minimiser are constrained to (0, 1), i.e.

a pixel belongs to a segment or not. Therefore u∗ is tresh-

olded, i.e.

Φ(u∗[t]);α) =

{

1 if u∗[t] > α

0 otherwise
(5)

with a predefined α ∈ [0, 1]. In [11] it is shown that

Φ(u∗[·]; 0.5) is a global minimiser for the energy in eq.

(1) and by extension for the energy function of the original

Chan-Vese active contour model [3]. In [8] the convex energy

function in eq. (1) was generalized in order to incorporate

edge information:

E[u] = |∇u|g + γ〈u, r〉 (6)

where g is the result of an edge detector, e.g. g = 1
1+|∇f | .

The active contour minimizing this energy function can be

seen as a combination of edge based snake active contours [1]

and the region based Chan-Vese active contours [3]. In Fig. 1

two examples of active contour segmentation are shown. The

left shows the original images. The middle column shows the

thresholded active contours, i.e. Φ(u∗[·]; 0.5). The segmen-

tation result is clearer in the right column, where the found

object boundaries are superimposed on the original image.

4. OPTIMIZATION

Due to the convexity of the energy function in eq. (6), a

wide range of ”fast” minimisers have been proposed to find

an optimal contour u∗ [8, 5, 6, 9, 10, 12]. In this section

we will briefly summarize and explain some of these opti-

mization methods. In the next section these methods will be

experimentally compared to each other.

4.1. Gradient Descent

Probably the simplest optimization scheme is gradient de-

scent which minimises eq. (6) by solving the following set

of Euler-Lagrange equations:

∇ ·
(g[t] ∇u[t]

|∇u[t]|

)

− γr[t] = 0 (7)



Fig. 1. Two examples of active contour segmentation. In the left column, the original images, the middle column depicts the

binary result of the segmentation and the right column superimposes the boundary of the segments onto the image.

In order to constrain the solution of this equation to the inter-

val [0, 1], a convex barrier or potential function, Γ(.) is added

as an extra term to eq. (6), i.e.

E[u] = |∇u|g + γ〈u, r〉+ Γ(u) (8)

A wide variety of barrier functions have been proposed in lit-

erature, e.g. quadratic, linear, Huber, Lipschitz functions etc.

In Fig. 2 some different barrier functions for the interval [0, 1]
are shown. For a more extensive review on different barrier

functions, we refer to [13]. For this specific application, we

use the piecewise linear barrier function, since it was proven

in [5] that this function forces u ∈ [0, 1]n exactly. And as can

be seen in Fig. 2 ,this function does not penalize or favour

any value within [0, 1]. This piecewise linear barrier function

can be defined by

Γ(t) = max
(

0, 2β
∣

∣

∣
t−

1

2

∣

∣

∣
− 1

)

(9)

where β is the maximum intensity of the image. Adding this

penalty function to eq. (7) results in the following gradient

descent optimization step:

uk+1[t] = uk[t] + δtΨgd(uk[t])− δt
d Γ(uk[t])

duk[t]
(10)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

piecewise linear

log barrier

quadratic

Huber function

Fig. 2. Four different examples of a barrier function which

can be used to keep optimizers within the interval [0, 1]

where

Ψgd(u[t]) = ∇
−
x

(g[t] ∇+
x uk[t]

‖∇+uk[t]‖2

)

+∇−y

(g[t] ∇+
y uk[t]

‖∇+uk[t]‖2

)

−γr[t]

(11)

4.2. Newton-Raphson

A similar approach to solve the Euler-Lagrange equations in

eq. (7) is done by adding an update term according to the



Newton-Raphson optimization scheme, i.e.

uk+1[t] = uk[t] +
Ψgd(uk[t])

Ψnr(uk[t])
(12)

where Ψnr(.) is the derivative of Ψgd(.), i.e.

Ψnr(u[t]) =
d Ψgd(u[t])

d u[t]
(13)

=
−2g[t]

‖∇+uk[t]‖2
−

g[t1] + g[t2]

‖∇−uk[t]‖2

+
g[t] (∇+

x uk[t]) (∇
+
· uk[t])

‖∇+uk[t]‖32

+
g[t1] (∇

−
x uk[t]) (∇

−
· uk[t])

‖∇−uk[t]‖32

+
g[t] (∇+

y uk[t]) (∇
+
· uk[t])

‖∇+uk[t]‖32

+
g[t2] (∇

−
y uk[t]) (∇

−
· uk[t])

‖∇−uk[t]‖32

Where t1 and t2 are the left and top neighbour of pixel t.
The Newton-Raphson theoretically has a quadratic conver-

gence, the real convergence rate however might be signifi-

cantly lower due to the non differentiability of eq. (7) at

places where ∇u[t] = 0. In section 5 the real convergence

speed is experimentally tested.

4.3. Line Search

In the gradient descent method the variable u[t] is updated

according to the gradient direction with a constant step size

δt. A variation on this optimization scheme is given by a line

search algorithm, where the updating direction is the same as

with gradient descent, but where the step size is variable. We

propose a new line search algorithm, where the step size is

chosen such that the value of u[t] ∈ (0, 1). This is a reason-

able assumption, since a thresholded version of an optimal u∗

is also optimal (see section 3 or [11]). So instead of looking

for an optimal u∗ and then threshold it, we will immediately

search for a binary optimum. This is achieved by the follow-

ing updating scheme:

uk+1[t] = uk[t] + Ψls(uk[t]) sgn(Ψgd(uk[t])) (14)

where Ψls(.) represents the step size, i.e.

Ψls(u[t]) =











0 if u[t] = 0 andΨgd(u[t]) < 0

0 if u[t] = 1 andΨgd(u[t]) > 0

1 otherwise

(15)

This step size results in an optimization step where u[t] either

keeps the same value or where it switches its value. Assume

for example that uk[t] = 0 and that the gradient of eq. (7)

points in the direction of −∞, then uk+1[t] will remain zero.

If the gradient pointed in the direction of +∞ however, uk[t]
would switch to the value one. Note that this method is more

a heuristic than a real optimization technique, i.e. there is no

proof of convergence. In section 5 the convergence results of

this method will be tested and discussed.

4.4. Dual formulation

A different approach is proposed in [8, 9]. In this approach an

optimization scheme is calculated based on the dual formula-

tion of the total variation norm. Instead of optimizing eq. (6)

directly for u, an extra variable v is introduced in the energy

term, i.e. the following energy term is optimized for u and v:

E[u,v] = |∇u|g + γ〈v, r〉+
λ

2
‖u− v‖22 + Γ(u) (16)

where Γ(.) is the same barrier function as in subsection 4.1

and λ is a weighting parameter, defining the influence of the

similarity between u and v. Due to the convexity of the en-

ergy function, we can optimize u and v independently. This

results in alternating between the following two optimization

problems:

argmin
u

|∇u|g +
λ

2
‖u− v‖22 (17)

argmin
v

λ

2
‖u− v‖22 + γ〈v, r〉+ Γ(u) (18)

In [8] it was proven that the optimal u for eq. (17) is given

by:

uk+1[t] = vk[t]−
1

λ
∇+
· p[t] (19)

where p satisfies

g[t]∇
( 1

λ
∇·p[t]−v[t]

)

−
∣

∣

∣
∇
( 1

λ
∇·p[t]−v[t]

)

∣

∣

∣
p[t] = 0 (20)

Given this set of equations, p can be calculated using the fixed

point algorithm described in Algorithm 1. experiments show

Algorithm 1: A fixed point optimization algorithm

which can be used to calculate a proper p for eq. 20.

1 p0[t] = (0, 0)

2 pk+1[t] =
pk[t]+δt ∇−(∇+

·

pk[t]−λvk[t])

1+δt |∇−(∇+
·
pk[t]−λvk[t])|

that a single run of this fixed point method, already results in

good convergence properties for the optimization of eq. (17)

and by extension for the optimization of eq. (16). The op-

timization of v in eq. (18) is give by the following closed

solution:

vk+1 = min
(

max
(

uk+1 −
µ

λ
c, 0

)

, 1
)

(21)

For the proof of this closed solution, we refer to [8].



4.5. Split Bregman

A different optimization method is Split Bregman optimiza-

tion, which is similar to the augmented Lagrangian method

and is considered to be an efficient optimization technique for

solving L1 regularized problems [14, 6, 15]. Similar to the

optimization based on the dual formulation, the split Bregman

method will ”de-couple” the L1 norm and the inner product,

by introducing a new variable d and by putting constraints on

this new variable. This results in the following optimization

problem:

E[u,d] = |d|g + γ〈u,p〉 such that d = ∇u (22)

This optimization problem can be converted to an uncon-

strained problem by adding a quadratic penalty function,

i.e.

E[u,d] = |d|g + γ〈u,p〉+
λ

2
|d−∇u|22 (23)

Where λ is a weighting parameter. If γ is large, d = ∇u.

However setting γ high introduces numerical instability. Note

that that when λ is not high, the quadratic penalty function

only approximates the constraint d = ∇u. By using a Breg-

man iteration technique [14], this constraint can be enforced

exactly, in an efficient way. In the Bregman iteration tech-

nique an extra vector, bk is subtracted from the penalty func-

tion. This results in the following two unconstrained steps.

(uk+1,dk+1) = argmin
uk,dk

|dk|g + γ〈uk,p〉

+
λ

2
|dk −∇uk − bk|

2
2 (24)

bk+1 = bk +∇uk+1 − dk+1 (25)

The first step requires optimizing for two different vectors,

u and d. Since the constrained optimization step is con-

vex, these optimal vectors can be calculated by alternating

between optimizing eq. (24) for u and optimizing for d:

uk+1 = argmin
uk

γ〈uk,p〉+
λ

2
|dk −∇uk − bk|

2
2

dk+1 = argmin
dk

|dk|g +
λ

2
|dk −∇uk+1 − bk|

2
2

(26)

The first problem can be optimized by solving a set of Euler-

Lagrange equations. For each element u(i) of the optimal u

the following optimality condition should be satisfied:

∇2u[t] =
γ

λ
c[t] +∇ · (d[t]− b[t]) (27)

Note that this system of equations can be written as Au = w.

In [6] they proposed to solve this linear system using the it-

erative Gauss-Seidel method. However, in order to guaran-

tee the convergence of the Gauss-Seidel method, A should be

strictly diagonally dominant or should be positive semi defi-

nite. Unfortunately A is neither. Therefore we will optimize

eq. (27) using the iterative conjugate residual method, which

is a Krylov subspace method for which convergence is guar-

anteed if A is Hermitian [16]. Experiments showed that due

to the fact that this system is not constrained to [0, 1], too

many iterations of the conjugate residual method results in

numerical unstable solutions. In [6] it was observed that the

split Bregman optimization converges even with just an ap-

proximation of the solution of the linear system in eq. (27).

Therefore, we propose to use only one iteration of the conju-

gate residual method. Using just one iteration enables to get

a reduced algorithm which needs less calculations and less

memory. This reduced conjugate residual algorithm is shown

in Algorithm 2.

Algorithm 2: The reduced conjugate residual step for a

linear system

1 r = w −Au

2 α = 〈r,Ar〉
〈Ar,Ar〉

3 u = u− αr

The solution of eq. (27) is unconstrained, i.e. u[t] does

not have to lie in the interval [0, 1]. Note that minimizing

eq. (26) for u[t], i.e. all other elements of u remain con-

stant, is equivalent to minimise a quadratic function. If u[t] /∈
[0, 1] then the constrained optimum is either 0 or 1, since a

quadratic function is monotonic in an interval which does not

contain its extremum. So the constrained optimum is given

by:

u∗[t] = max
(

min
(

u[t], 1
)

, 0
)

(28)

In order to calculate an optimal dk in eq. (26), a closed

form solution can be calculated using the shrinking operator,

i.e.

dk+1[t] = Υ
(

∇u[t] + bk, g[t], λ
)

(29)

where

Υ(τ, θ, λ) =

{

0 if |τ | ≤ θ
λ

τ − θ
λ
sgn(τ) otherwise

(30)

5. RESULTS

For the validation of the segmentation, a dataset of 7 pictures

was assembled. These pictures come from different image

modalities such as microscopy, photos, ultrasound and MRI-

scans. All these images have a dimension of 512×512 pixels.

To compare the active contour result with ground truth

segmentation, the Dice coefficient is used. If S is the resulting

segment from the active contour, i.e. φ(u∗, 0.5), and GT the



ground truth segment, then the Dice coefficient between S and

GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(31)

where S ∧ GT consist of all pixels which both belong to the

detected segment as well as to the ground truth segment. If

S and GT are equal, the Dice coefficient is equal to one. The

Dice coefficient will approach zero if the regions hardly over-

lap. Note that ground truth is a relative concept, what is con-

sidered to be a foreground segment for one application might

be clutter for a different application. Instead we will compare

the calculated active contour with the optimal contour, i.e. the

contour with minimal energy, u∗. Therefore, the active con-

tour is calculated using all methods described in the previous

section. The active contour which had the lowest energy after

300 iteration is considered to be the ground truth.

All methods were implemented in C and run on a com-

puter with an Intel i7 Q720 1.6 GHz CPU with 4GB RAM.

5.1. Convergence

As a first experiment, each method runs 300 iterations on the

test dataset. After each iteration, the Dice coefficient between

the thresholded active contour and the ground truth was cal-

culated. In the top of Fig. 3 the average Dice coefficient after

each iteration is plotted for each method. As can be seen is the

gradient descent method the slowest. All other methods con-

verge fast at the first few iterations, but then slows down. In

the bottom part of Fig. 3 a close up of the top plot is shown.

The line search converges much faster during the first itera-

tion then other methods, but then starts oscillating, and never

really converges. Optimization based on the dual formulation

of the TV-norm is the second fastest method and does con-

verge to a global optimum. Both the Newton-Raphson as the

split Bregman method converge slower than previous meth-

ods. Neither do they reach the real optimum due to numerical

errors. In order to benefit from the fast start from the line

search optimization, we propose to combine the line search

scheme and the Newton-Raphson optimization scheme. We

apply a single updating step based on line search and for all

other iterations we apply the Newton-Raphson updating step.

This combined optimization reaches the real optimum, while

converging faster than all other methods. Since the rate of

convergence does not say everything, we summarize some

extra measurement in Table 1. The second column of this

table contains the theoretical time complexity of one iteration

of each method. For the primal-dual and the split Bregman

method we explicitly mentioned the amount that a matrix of

dimension of n ×m has to be scanned. For the primal-dual

method consists this of one scan for the calculation of p, one

run for the calculation of u and a final scan for v. The split

Bregman method needs 9 runs in total: 7 runs needed in the

conjugate residual optimization and two runs to update the

vectors d and b. The conjugate residual needs a single run to

calculate the right side of the Euler-Lagrange equations, two

runs to calculate a Laplacian, one run to calculate the residu-

als, two runs to calculate an inner product and finally a single

run to update u.

The third column of Table 1 contains the average time

to calculate a single iteration of a 512 × 512 image. The

split Bregman has the highest computational cost, as was ex-

pected by the theoretical complexity of the methods. All other

methods result in a similar computational time, except for the

line search method which is the fastest to calculate. The last

column summarizes the memory required for each method.

We have omitted the memory needed to store uk and uk+1

since this is the same for each method. Only the primal-dual

method and the split Bregman method require more memory

then to store a temporal variable. The primal-dual method

needs to store v and p, v has the same size as the image,

whereas p is twice as big as the image. For the split Breg-

man the extra vectors d and b have to be stored, each twice

the size of the image. The conjugate residual method, needed

for the optimization of the split Bregman method, requires

three times the amount of memory to store the image. This

is needed to store the residuals, the Laplacian of the con-

tour itself and the Laplacian of the residuals. The Laplacians

could be recalculated, instead of stored, but this would lead to

slower iterations.

5.2. Scalability

To test the scalability of the different optimization algorithms,

the average calculation times of a single iteration was mea-

sured for images of different sizes. These images have a di-

mension of N × N where N = 27, 28, ..., 212. The results

of these time measurements are shown in Fig. 4. As can be

seen does the split Bregman method slow down much faster

than the other methods. The line search method remains the

fastest to calculate independent of the image size. The com-

bination of the line search method and the Newton-Raphson

method is slower than optimization only based on the line

search scheme, but is still faster to calculate than the other

proposed methods. A side from computational speed, is the

memory requirements an extra factor determining the scala-

bility. Although the primal-dual method is reasonably fast for

large 2D images, e.g. images of 4096 × 4096 pixels, it does

require three times the amount of memory needed by the gra-

dient based methods. This memory constraint will hamper the

method for even bigger datasets, e.g. for segmentation of 3D

images.

5.3. Robustness

The experiments done in subsection 5.2 are all done on using

the same parameters. Although the measurements are done

on different types of images, e.g. microscopy, photos, etc.,

these measurements say little of the influence of noise or on



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# iterations

D
ic

e
 c

o
e
ff
ic

ie
n
t

GD

NR

LS

PD

SB, lambda = 1.1

LS+NR

SB, lambda = 0.5

0 10 20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

1

# iterations

D
ic

e
 c

o
e
ff
ic

ie
n
t

GD

NR

LS

PD

SB, lambda = 1.1

LS+NR

SB, lambda = 0.5

Fig. 3. A comparison of the convergence of the Dice coefficient between ground truth and the active contours, calculated using

different methods. The methods used for the active contour optimization are: gradient descent, Newton-Raphson, line search,

primal-dual, split Bregman and a combination of line search and Newton-Raphson. The top plot shows an overview whereas

the bottom plot shows a close up of the same plot.

method Time complexity Time measurement (ms) Memory

Gradient descent O(n×m) 30.83 O(1)
Newton-Raphson O(n×m) 33.91 O(1)
Line Search O(n×m) 25.79 O(1)
Primal-Dual O(3× n×m) 33.8 O(3× n×m)
Split Bregman O(9× n×m) 60.09 O(7× n×m)
Line search + Newton-Raphson O(n×m) 32.49 O(1)

Table 1. A Comparison of the different methods



128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

image dimension (N)

ti
m

e
 (

s
)

GD

LS

LS+NR

NR

PD

SB

Fig. 4. The time needed to calculate a single optimization iteration, depending on the image size. The images have dimension

N ×N .

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# iterations

D
ic

e
 c

o
e
ff
ic

ie
n
t

GD

NR

data3

SB, lambda = 1.1

SB, lambda = 0.5

LS + NR

LS

Fig. 5. A comparison of the convergence of the active contours for noisy images with stronger regularization. The Dice

coefficient between ground truth and the active contours are plotted for each iterations step.. The methods used for the active

contour optimization are: gradient descent, Newton-Raphson, line search, primal-dual, split Bregman and a combination of line

search and Newton-Raphson.



the influence of the regularization term. To test these influ-

ences, we added white Gaussian noise to the images. The

active contours where optimized with a small weight for the

data fit term, i.e. γ = 0.0001, thus emphasizing the influ-

ence of the total variation regularization term. A new set of

ground truth images was calculated for these noisy images in

the same way as described in subsection 5.1. Fig. 5 shows the

results of the convergence measured with the Dice coefficient.

Just as with the non noisy images, do both the primal-dual

optimization as the combination of line search and Newton-

Raphson result in the best convergence. The convergence of

the split Bregman method clearly varies depending on the op-

timization parameter λ. Note that the both λ values resulted

in reasonable convergence in subsection 5.2, while λ = 1.1
results in poor convergence on noisy images. So in order to

have good convergence, the split Bregman optimization needs

proper parameter tuning for each different application or im-

age dataset.

6. CONCLUSION

This paper compared several optimization methods for the op-

timization of convex energy active contours. A side from state

of the art optimizers, new optimization method based on a

combination of a line search and a Newton-Raphson was pro-

posed. All methods where compared for the segmentation

of both regular as noisy images. The proposed combination

method converges significantly faster than other methods dis-

cussed, while taking less time to calculate a single iteration

than most methods, e.g. the split Bregman optimization. The

proposed method also needs significantly less memory than

other state of the art methods, e.g. the primal-dual method.

7. ACKNOWLEDGEMENTS

This research has been made possible by the Institute for the

Promotion of Innovation by Science and Technology in Flan-

ders (IWT).

8. REFERENCES

[1] M. Kass, A Witkin, and D. Terzopoulos, “Snakes: ac-

tive contour models,” International journal of computer

vision, pp. 321–331, 1988.

[2] M. Isard and A. Blake, Active contours, Springer, 1998.

[3] T. Chan and L. Vese, “An active contour model without

edges,” Scale-Space Theories in Computer Vision, vol.

1682, pp. 141–151, 1999.

[4] M.-A. Charmi, S. Derrode, and S. Ghorbel, “Fourier-

based geometric shape prior for snakes,” Pattern Recog-

nition Letters, vol. 29, pp. 897–904, 2008.

[5] T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms

for finding global minimizers of image segmentation

and denoising models,” Siam Journal on Applied Math-

ematics, vol. 66, no. 5, pp. 1632–1648, 2006.

[6] T. Goldstein, X. Bresson, and S. Osher, “Geometric ap-

plications of the split bregman method: Segmentation

and surface reconstruction,” Journal of Scientific Com-

puting, vol. 45, no. 1-3, pp. 272–293, 2010.

[7] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky,

“Fast geodesic active contours,” IEEE Transactions on

Image Processing, vol. 10, no. 10, pp. 1467–1475, 2001.

[8] X. Bresson, S. Esedoglu, P. Vandergheynst, J. P. Thiran,

and S. Osher, “Fast global minimization of the active

contour/snake model,” Journal of Mathematical Imag-

ing and Vision, vol. 28, no. 2, pp. 151–167, 2007.

[9] A. M. Yip, D. Krishnan, and Q. V. Pham, “A primal-dual

active-set algorithm for bilaterally constrained total vari-

ation deblurring and piecewise constant mumford-shah

segmentation problems,” Advances in Computational

Mathematics, vol. 31, no. 1-3, pp. 237–266, 2009.

[10] Dai-Qiang Chen, Hui Zhang, and Li-Zhi Cheng, “A fast

fixed point algorithm for total variation deblurring and

segmentation,” Journal of Mathematical Imaging and

Vision, pp. 1–13, 2011.

[11] X. Bresson and T. F. Chan, “Active contours based on

chambolle’s mean curvature motion,” 2007 IEEE Inter-

national Conference on Image Processing, Vols 1-7, pp.

33–363371, 2007.

[12] Stephen P. Boyd and Lieven Vandenberghe, Convex

optimization, Cambridge University Press, Cambridge,

UK ; New York, 2004.

[13] T. Pock, D. Cremers, H. Bischof, and A. Chambolle,

“Global solutions of variational models with convex reg-

ularization,” Siam Journal on Imaging Sciences, vol. 3,

no. 4, pp. 1122–1145, 2010.

[14] T. Goldstein and S. Osher, “The split bregman method

for l1-regularized problems,” Siam Journal on Imaging

Sciences, vol. 2, no. 2, pp. 323–343, 2009.

[15] H. Mao, H. Liu, and P. Shi, “A convex neighbor-

constrained active contour model for image segmenta-

tion,” in IEEE International Conference on Image Pro-

cessing, 2010.

[16] Y. Saad, Iterative methods for sparse linear systems,

SIAM, Philadelphia, 2nd edition, 2003.


