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ABSTRACT
Limited depth of eld is an important problem in microscopy imag-
ing. 3D objects are often thicker than the depth of eld of the micro-
scope, which means that it is optically impossible to make one single
sharp image of them. Instead, different images in which each time a
different area of the object is in focus have to be fused together. In
this work, we propose a curvelet-based image fusion method that is
frequency-adaptive. Because of the high directional sensitivity of the
curvelet transform (and consequentially, its extreme sparseness), the
average performance gain of the new method over state-of-the-art
methods is high.

Index Terms— image restoration, image analysis, microscopy,
focusing, wavelet transforms

1. INTRODUCTION

All optical imaging systems have a limited depth of eld. Parts of a
3D object that fall outside the region that is within the focusing range
of the imaging system, appear blurred in the image. This problem
is particularly prevalent in conventional light microscopy. There,
the object under investigation is often thicker that the depth of eld
of the microscope. By moving the object along the optical axis of
the microscope, all parts of the object can be consecutively moved
into the in-focus region of the microscope. In this way, a stack of
images is produced, each containing blurred and in-focus parts of
the objects. It is desirable to transform this stack to one single im-
age that contains all the in-focus parts of the image stack. This can
be achieved through fusion of the images in the stack (also called
slices).

Many image fusion algorithms exist. An overview can be found
in [1]. In this work as well as in [2], it is shown that wavelet-based
approaches generally perform better than other methods for extended
depth of eld processing of images. Forster et al. developed a very
promising technique based on the complex wavelet transform rather
than on the real wavelet transform [3]. Using complex wavelets
allows to distinguish between the detail information of the images
(represented by the phase of the complex wavelet coef cients) and
the weighting of this detail information (encoded in the magnitude of
the wavelet coef cients). In this work, the importance of the choice
of the image transform was illustrated.

In recent years, many novel geometric image transforms have
been developed, such as the ridgelet transform [4], the wedgelet
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transform [5] and the contourlet transform [6], just to name a few.
These new transforms capture the geometric information present in
images, and in this sense overcome the limitations of classical wave-
lets. Among these, a mathematically elegant method entitled the
curvelet transform has gained increasing popularity [7]. Curvelets
are directional basis functions that are highly localized, both in space
and frequency. We refer the reader to [7] for a comprehensive de-
scription of the curvelet transform.

We propose an image fusion technique that exploits the excel-
lent ability of the curvelet transform to separate high and low fre-
quency image content. Because of the high directional sensitivity
of the curvelet transform, all high frequency information present in
an image, regardless of its orientation, is contained in the highest
frequency curvelet sub-bands. These sub-bands are processed with
a maximum absolute value selection rule similar to the one used
in wavelet-based image fusion methods. For the remaining low-
frequency sub-band, we propose a novel selection method that is
based on inter-sub-band consistency.

The remainder of this paper is organized as follows. In Section
2, some practical background information on the curvelet transform
is presented. In Section 3, we explain our curvelet-based image fu-
sion method. Results are summarized in Section 4. We end with
some concluding remarks in Section 5.

2. THE CURVELET TRANSFORM

Conceptually, the curvelet transform is a multi-scale pyramid with
many directions and positions at each length scale [7]. Although it
is originally a continuous transform [8], it has several digital imple-
mentations. The two most recent ones are introduced in [7]. There,
one implementation is based on unequally-spaced fast Fourier trans-
forms (USFFT), while the other one is based on the wrapping of spe-
cially selected Fourier samples [7]. We will use the latter throughout
this paper. However, the use of the USFFT-based digital curvelet
transform would lead us to similar results and conclusions.

The curvelet transform decomposes the image in several fre-
quency scales. At the coarsest scale, isotropic wavelets are used as
basis functions. At ner scales, curvelets take over this role.

Fig. 1b shows the curvelet decomposition of the test image in
Fig. 1a into 4 frequency scales with 8 orientations at the coarsest
curvelet scale. The low-pass image is located at the center of the
representation. The curvelet coef cients are arranged around it. For
representation purposes, we display the magnitudes of the coef -
cients. Those with value zero are marked in white, whereas coef-
cients with large magnitudes are dark. From the prevalent white
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color of Fig. 1b, it is clear that the curvelet decomposition of this
image is extremely sparse.

The curvelet coef cients are grouped according to orientation
and scale. The concentric coronae represent the different scales,
starting with the lowest scale (low frequencies) in the center. Sub-
bands of the same scale are ordered within these coronae so that the
orientation suggested by their position matches the spatial frequen-
cies they represent. E.g., a horizontal line will produce high curvelet
coef cients in the sub-bands that are located directly above and be-
low the low-pass image.

(a) Test image (b) Curvelet Decomposition

Fig. 1. (a) A 256 × 256 test image. (b) Its curvelet decomposition
into 4 scales and with 8 orientations at the coarsest scale. The low-
pass image is located at the center of the representation. Curvelet co-
ef cients with value zero are marked in white, whereas coef cients
with a large magnitude are dark.

3. CURVELET-BASED IMAGE FUSION

To select the in-focus image parts throughout an image stack of a 3D
object, we must be able to distinguish between in-focus and out-of-
focus regions. Conceptually, edges and details appear to be ‘smeared
out’ in blurred image regions. Mathematically, this means that a
blurry image region contains less high frequencies than an in-focus
one.

The sub-bands in the curvelet decomposition of an image can be
considered as band-pass ltered versions of this image. Thus, high
and low frequency image content are separated by this transform.
The same is achieved by the wavelet transform, but only to a lesser
extent. Indeed, as was mentioned before, the curvelet decomposition
of a natural image is extremely sparse (a consequence of its high di-
rectional sensitivity). Every image feature is represented by a very
limited number of non-zero curvelet coef cients. Virtually all infor-
mation about high frequency image features is contained in the high
frequency sub-bands of the decomposition. This means that blur-
ring will primarily have an effect on the high frequency sub-bands,
and the distinction between in-focus and out-of-focus image regions
must thus be made here. Therefore, a curvelet decomposition into
a small number of scales suf ces to identify the in-focus image re-
gions within the stack. In this work, we have used a decomposition
into 3 scales (including the low-pass image). Image fusion based on
a wavelet decomposition of the images into an equally small number
of scales would lead to very poor results.

We will now discuss the different parts of our image fusion al-
gorithm.

3.1. Processing of the high frequency sub-bands

To process the high frequency sub-bands, we reason as follows. We
know that big curvelet coef cients in the high-frequency sub-bands
correspond to image features with a high spatial frequency (resolu-
tion). We assume these features lie in an in-focus image region. By
selecting the coef cients throughout the stack with the highest abso-
lute value at each position, orientation and scale, we assure that the
most salient image features throughout the stack are preserved. This
maximum absolute value selection rule is similar to the one used in
many wavelet-based image fusion schemes (see [1, 2, 3]).

3.2. Processing the low-pass image

By de nition, the low-pass image contains only low frequency fea-
tures. These features are not affected as strongly by blurring as
high frequency image content. Therefore, the distinction between in-
focus and out-of-focus image regions cannot be made at this scale,
and the above-mentioned rationale to select the in-focus image parts
throughout the stack by selecting the curvelet coef cients with the
highest absolute value does not apply. Because we use only a very
limited number of scales, a correct selection of the low-pass coef -
cients is very important, and therefore, we propose a novel strategy
to perform this task.

This new strategy is based on the assumption of inter-sub-band
consistency: all curvelet coef cients corresponding to a feature at
a speci c spatial location in the image should in theory be taken
from the same slice, regardless of their scale and orientation. This
means that the curvelet coef cients in the low-pass image should be
taken from the same slice as the corresponding curvelet coef cients
in the high-frequency sub-bands. As no such inter-sub-band consis-
tency check was performed for the high-frequency sub-bands, not all
corresponding curvelet coef cient will have been selected from the
same slice. However, as an approximation, one can select the slice
from which the majority of corresponding coef cients was selected.
This assures that at each spatial position in the low-pass image, the
curvelet coef cient from the correct, in-focus slice is selected.

3.3. Image fusion algorithm

Our curvelet-based image fusion technique can be summarized as
follows:

1. All images of the image stack are decomposed into their com-
plex curvelet coef cients ci,j,z(x, y), where z denotes the
slice index, i the scale and j the orientation within the scale.
x and y are spatial coordinates.

2. For each point in every sub-band, the curvelet coef cient with
the highest absolute value over all the slices in the stack is
selected:

pi,j(x, y) = ci,j,argmaxz(|cz,i,j(x,y)|)(x, y). (1)

3. The low-pass image is processed (see Section 3.2).

4. The inverse curvelet transform of the curvelet coef cients
pi,j(x, y) is calculated.

3.4. Pre- and Post-processing

As a pre-processing step, multi-channel images are rst converted
into gray-scale images by a weighted linear combination of the dif-
ferent channels: sz(x, y) =

P
k wks

(k)
z (x, y). As was proposed
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by Forster et al., the weights wk are obtained from a principal com-
ponent analysis with the Karhunen-Loève transform (KLT). In this
way, images with a predominant color will lead to gray-scale images
with more contrast and saliency than if xed weights were used [3].

After the inverse curvelet transform, the fused image may con-
tain false gray-scale values. These are gray-scale values that were
not present in any of the images of the image stack and thus may
introduce artifacts. Forster et al. suggested to remove them through
‘reassignment’. Multi-channel reassignment for each channel k can
be expressed as [3]:

qk(x, y) = sk
argminz|p(x,y)−s(x,y;z)|(x, y). (2)

4. RESULTS

To evaluate our curvelet-based image fusion method, we compare it
with the complex wavelet-based method of Forster et al. [3], and
with a pixel domain variance-based one. We test the methods both
on arti cially generated test data and on real microscopy images.

For all methods, the images are pre- and post-processed as de-
scribed in Section 3.4.

To test the complex wavelet method, the arti cial data is pro-
cessed both with and without sub-band and majority consistency
checks. The real microscopy images are processed without perform-
ing these checks, because, as Forster et al. pointed out in [3], these
checks prove to be very costly with respect to storage space and com-
putation time and are therefore best set aside for the processing of
real microscopic stacks.

In the variance method, the distinction between in-focus and out-
of-focus image regions is made based on the local variance. This
local variance is calculated in a 3 × 3 window around every pixel
in every slice. At each spatial position in the fused image, the pixel
from the slice with the highest local variance throughout the slice is
selected.

4.1. Arti cial Test Data

To test our method in a quantitative way, we generated some arti cial
image stacks. The images used for this are displayed in Figure 2.
The images Eggs and Algae are 512 × 512 gray-scale microscopy
images, the other images are 512 × 512 color images of textures
taken from the MIT Vision Texture Database. Each arti cial stack is
composed of three images. An example can be seen in Figure 3. In
each of the three images, another part is left unblurred. The blurring
is introduced through convolution with a 5 × 5 Gaussian blurring
kernel with standard deviation 1. Each stack is processed with the
three fusion methods mentioned above. The result is compared with
the original image. The resulting PSNR-values are grouped in Table
1.

From Table 1, we can see that for these stacks, the curvelet-
based method outperforms the other methods. The average gain
in PSNR over the variance method is 8.74 dB. Surprisingly, the
complex wavelet method performs better without than with consis-
tency checks, but also without checks, it lags behind the curvelet
method by 3.02 dB on average. It is interesting to notice that the
curvelet-based method performs particularly well for the Eggs im-
age, which has many very sharp edges. On the contrary, the vari-
ance method produces a particularly poor result for this image. In-
deed, the curvelet transform is particularly well suited for piecewise
smooth images, whereas the variance method tends to introduce ar-
tifacts around abruptly-changing image structures. For the Clouds
image, roles are reversed and the variance method even outperforms
both multi-resolution methods.

(a) Eggs (b) Algae (c) Clouds

(d) Leaves (e) Metal (f) Fabric

Fig. 2. The test images used for the creation of arti cial test data.

Fig. 3. Example of an arti cial image stack.

4.2. Real Test Data

We now test the methods on a stack of 15 512 × 512 color micro-
scopic images of Peyer plaques from the intestine of a mouse1. The
same images are used in [3]. Some slices are shown in Figure 4.

Fig. 4. Some slices of a stack of 15 microscopic images of Peyer
plaques from the intestine of a mouse.

The image fusion results of the three tested methods are shown
in Figure 5. As no ground-truth image is available, only a visual
evaluation of the results is possible. We can see that in the image
produced by the variance method, sharp edges are surrounded by
artifacts. The complex wavelet-based method leaves some image
regions blurred (see delineated regions). The curvelet-based method
leads to a complete in-focus image, without introducing artifacts.
This demonstrates that curvelets can be successfully used for image
fusion of real microscopy image stacks.

1The images are courtesy of Jelena Mitic, Laboratoire d’Optique
Biomédicale at EPF Lausanne, Zeiss and MIM at ISREC Lausanne.
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Table 1. Image fusion results for different gray-scale and color im-
age stacks, using the variance method, the complex wavelet-based
method of Forster et al. [3] and the newly developed curvelet-based
method.

Variance Complex Complex Db6 Curvelets

Db6 with checks

Eggs 47.76dB 59.80dB 59.73dB 65.82dB

Algae 53.34dB 62.17dB 58.77dB 63.92dB

Clouds 54.79dB 49.26dB 49.21dB 52.73dB

Leaves 28.75dB 39.20dB 34.97dB 41.27dB

Metal 32.50dB 41.24dB 36.62dB 44.18dB

Fabric 41.47dB 41.25dB 35.50dB 43.14dB

5. CONCLUSION

In this paper we have demonstrated that the directional sensitivity of
the curvelet transform and its excellent ability to separate high and
low frequency image content can be turned to good account to ex-
tend the depth of eld of imaging systems. The proposed frequency-
adaptive method produces high quality fusion results, both on real
microscopy data and on arti cially generated image stacks. Our
method outperforms state-of-the-art fusion algorithms. The average
performance gain is 3.02 dB over the complex wavelet-based tech-
nique of [3] and 8.74 dB over the discussed variance-based method.
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(a) Fusion result of the variance method.

(b) Fusion result of the complex wavelet-based method [3].

(c) Fusion result of the new curvelet-based method.

Fig. 5. Image fusion results of the three tested methods. In the image
produced by the variance method, sharp edges are surrounded by
artifacts. The complex wavelet-based method leaves some image
regions blurred (see delineated regions). The curvelet-based method
leads to a complete in-focus image, without introducing artifacts.
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