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BER Analysis of Square OSTBCs with LMMSE Channel Estimation in
Arbitrarily Correlated Rayleigh Fading Channels
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Abstract—In this paper, we examine the bit error rate (BER)
performance of square orthogonal space-time block codes (OS-
TBCs) under arbitrarily correlated Rayleigh fading channels.
We consider a mismatched maximum-likelihood receiver that
obtains the channel state information through pilot-based linear
minimum mean-square error channel estimation. For PAM and
QAM constellations, a closed-form approximation of the BER is
presented, which yields very accurate BER results over a wide
range of signal-to-noise ratios.

Index Terms—Space-time block coding, imperfect channel
estimation, error analysis, correlated Rayleigh fading.

I. INTRODUCTION

ORTHOGONAL space-time block codes (OSTBCs) [1],
[2] have become a popular transmit diversity technique,

since they combine the ability to achieve full spatial diversity
with a remarkably simple symbol-by-symbol decoding algo-
rithm, based on linear processing at the receiver. For pulse
amplitude modulation (PAM), quadrature amplitude modula-
tion (QAM), and phase-shift keying (PSK) constellations, the
exact bit error rate (BER) of OSTBCs was derived in [3] under
the assumption of correlated Rayleigh fading channels with
perfect channel state information (PCSI). In practice, however,
PCSI is not available and the receiver has to estimate the
channel response. For independent and identically distributed
(i.i.d.) Rayleigh fading channels with linear minimum mean-
square error (LMMSE) channel estimation, an exact closed-
form BER expression was presented in [4] for PAM and QAM
constellations. A closed-form expression for the pairwise error
probability (PEP) of space-time block codes under arbitrarily
correlated Ricean fading channels with imperfect channel esti-
mation (ICE) was given in [5]. In this contribution, we extend
the result from [4] to arbitrarily correlated Rayleigh fading
channels. Introducing a high signal-to-noise ratio (SNR) ap-
proximation of the channel error covariance matrix, we obtain
a closed-form BER expression for OSTBCs with LMMSE
channel estimation, which we verify to be very accurate in
the range from low to high SNR. We denote by vec(X) the
vector that is obtained by stacking the columns of the matrix
X, and by A ⊗ B the Kronecker product of the matrices A
and B.
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II. SIGNAL MODEL

We consider a multiple-input multiple-output (MIMO) OS-
TBC system with 𝐿t transmit and 𝐿r receive antennas. Each
square OSTBC from a complex orthogonal design [1], [2] is
defined by an 𝐿t × 𝐿t coded symbol matrix C, the entries
of which are linear combinations of 𝑁s information symbols
𝑠𝑖 = 𝑠𝑖,R + 𝑗𝑠𝑖,I, 1 ≤ 𝑖 ≤ 𝑁s, with 𝑠𝑖,R and 𝑠𝑖,I denoting the
real and imaginary parts of 𝑠𝑖, respectively, and their complex
conjugate 𝑠∗𝑖 , such that

C =

𝑁s∑
𝑖=1

(
C𝑖 𝑠𝑖 +C

′
𝑖 𝑠

∗
𝑖

)
(1)

where the 𝐿t × 𝐿t matrices C𝑖 and C
′
𝑖 comprise the coeffi-

cients of 𝑠𝑖 and 𝑠∗𝑖 , respectively. Without loss of generaliza-
tion, we scale C in such way that it satisfies the following
orthogonality condition

C𝐻C = CC𝐻 = 𝜆 ∥s∥2 I𝐿t (2)

where 𝜆 ≜ 𝐿t/𝑁s, s = [𝑠1, 𝑠2, . . . , 𝑠𝑁s ]
𝑇 is the data symbol

vector, and I𝐿t denotes the 𝐿t × 𝐿t identity matrix.
We assume that each transmitted data frame consists of

𝐾p known pilot symbols and 𝐾 coded data symbols per
transmit antenna, with 𝐾 being a multiple of 𝐿t. In this way,
𝐾/𝐿t coded data matrices C(𝑘), with 1 ≤ 𝑘 ≤ 𝐾/𝐿t, are
sent within one frame. Furthermore, we use orthogonal pilot
sequences, i.e., the 𝐿t × 𝐾p pilot matrix Cp has orthogonal
rows such that

CpC
𝐻
p = 𝐾pI𝐿t . (3)

We represent the 𝐿 ≜ 𝐿t 𝐿r MIMO channel coefficients
by the 𝐿r × 𝐿t complex-valued random matrix H, which is
assumed to remain constant during the length of one frame of
𝐾 + 𝐾p symbols, such that the receiver separately observes
the 𝐿r × 𝐿t matrices

R(𝑘) =
√

𝐸s HC(𝑘) +W(𝑘) (4a)

with 1 ≤ 𝑘 ≤ 𝐾/𝐿t, and the 𝐿r ×𝐾p matrix

Rp =
√

𝐸p HCp +Wp (4b)

where the channel noise matrices W(𝑘) and Wp consist of
i.i.d. zero-mean (ZM) circularly symmetric complex Gaussian
(CSCG) random variables (RVs) with variance 𝑁0. Taking
(2) and (3) into account and using a normalized symbol
constellation, i.e., 𝔼

[∥𝑠𝑖∥2] = 1, 𝐸s and 𝐸p in (4a) and (4b)
denote the average data and pilot symbol energy, respectively.
Defining h ≜ vec(H), the elements of h are arbitrarily
correlated ZM CSCG RVs with a positive definite covariance
matrix 퓡hh ≜ 𝔼[hh𝐻 ].
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Using the 𝐿-dimensional column vectors r ≜ vec(R) and
w ≜ vec(W), and rp ≜ vec(Rp) and wp ≜ vec(Wp),
respectively, and omitting the block index 𝑘 in (4a) for
notational convenience, (4a) and (4b) are equivalent to [5]

r =
√

𝐸s Bh+w (5a)

rp =
√

𝐸p Bp h+wp (5b)

where B ≜ C𝑇 ⊗I𝐿r and Bp ≜ C𝑇
p ⊗I𝐿r . Note that B𝐻B =

BB𝐻 = 𝜆 ∥s∥2 I𝐿 and B𝐻
p Bp = 𝐾pI𝐿.

III. MISMATCHED RECEIVER

Using the vector channel model (5b), the LMMSE channel
estimate is given by [5]

ĥ =

√
𝐸p

𝑁0

(
I𝐿 +

𝐾p𝐸p

𝑁0
퓡hh

)−1

퓡hhB
𝐻
p rp (6)

Defining the channel estimation error as 𝜺 = h − ĥ, the
following properties can be derived from (6):

∙ ĥ and 𝜺 are Gaussian and statistically independent.
∙ The components of ĥ are ZM CSCG RVs, the covariance

matrix of which is given by

퓡ĥĥ ≜ 𝔼

[
ĥ ĥ𝐻

]
=

𝐾p𝐸p

𝑁0
퓡hh퓡hh

(
I𝐿 +

𝐾p𝐸p

𝑁0
퓡hh

)−1

. (7)

∙ The components of 𝜺 are ZM CSCG RVs, the covariance
matrix of which is given by

퓡𝜺𝜺 ≜ 𝔼[𝜺 𝜺𝐻 ] =

(
I𝐿 +

𝐾p𝐸p

𝑁0
퓡hh

)−1

퓡hh. (8)

Note that for high SNR, the elements of the channel noise
vector 𝜺 can be considered as i.i.d. ZM CSCG RVs with
variance 𝑁0/(𝐾p𝐸p), since 퓡𝜺𝜺 becomes

퓡𝜺𝜺 ≈ 𝑁0

𝐾p𝐸p
I𝐿,

𝐾p𝐸p

𝑁0
≫ 1. (9)

Accurate channel estimation can be obtained by allocating a
large total energy 𝐾p𝐸p to pilot symbols. However, this leads
inevitably to a reduction of the symbol energy 𝐸s available for
data transmission. With 𝐸b, 𝛾 ≜ 𝐸p/𝐸s, 𝑀 , and 𝜌 ≜ 𝑁s/𝐿

2
t

denoting the energy per information bit, the ratio of 𝐸p to 𝐸s,
the constellation size, and the code rate, respectively, it can
be shown that

𝐸s =
𝐾

𝐾 + 𝛾𝐾p
𝜌 log2(𝑀)𝐸b. (10)

We consider a mismatched maximum-likelihood (ML) re-
ceiver that uses the estimated channel (6) instead of the true
channel. Taking (2) into account, it is readily verified that the
detection algorithm for the information symbols 𝑠𝑖 reduces to
symbol-by-symbol detection

𝑠𝑖 = argmin
𝑠

∣𝑢𝑖 − 𝑠∣ , 1 ≤ 𝑖 ≤ 𝑁s (11)

where the decision variable 𝑢𝑖 is given by

𝑢𝑖 =
ĥ𝐻 (C∗

𝑖 ⊗ I𝐿r) r+ r𝐻
(
C

′
𝑖

𝑇 ⊗ I𝐿r

)
ĥ

𝜆
√
𝐸s∥ĥ∥2

. (12)

IV. BIT ERROR RATE ANALYSIS

For a mismatched receiver, the received signal (5a) can be
decomposed as

r =
√

𝐸s Bĥ+
√

𝐸s B 𝜺+w (13)

where
√
𝐸s Bĥ is the useful component, w is the Gaussian

channel noise, and
√
𝐸s B 𝜺 is additional noise caused by

the channel estimation error; the latter noise is Gaussian
when conditioned on the data symbol vector s. Using (13),
expanding (12) yields 𝑢𝑖 = 𝑠𝑖 + 𝑛𝑖, 1 ≤ 𝑖 ≤ 𝑁s, where the
disturbance term 𝑛𝑖 contains contributions from the channel
noise w and the channel estimation error 𝜺, and is Gaussian
when conditioned on s. When PCSI is available at the receiver,
i.e., 𝜺 = 0, 𝑛𝑖 is a ZM CSCG RV independent of s with
variance 𝑁0/(𝜆𝐸s ∥h∥2). In this section, we derive the BER
of a mismatched ML receiver using LMMSE channel esti-
mation. We consider square 𝑀 -QAM transmission with Gray
mapping, which reduces to

√
𝑀 -PAM transmission for both

the in-phase and quadrature-phase information bits. Therefore,
the BER for 𝑀 -PAM with Gray mapping can be obtained in
a similar manner.

For square 𝑀 -QAM and equally likely symbol vectors s,
the BERs related to the in-phase and quadrature-phase bits of
𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑁s, can be shown to be equal, and independent of
the index 𝑖. Hence, the average BER equals the BER related
to the in-phase information bits of 𝑠𝑖, irrespective of 𝑖, and a
decision error will occur when the real part of (12) is located
inside the decision area of a QAM symbol 𝑏 ∕= 𝑠𝑖. The
projection on the real axis of the decision area of the QAM
symbol 𝑏 = 𝑏R + 𝑗𝑏I, with 𝑏R and 𝑏I denoting the real and
imaginary parts of 𝑏, respectively, is denoted as the decision
region of 𝑏R. We write the BER as

BER =
1

𝑀𝑁s

∑
s∈Ψ𝑁s

∑
𝑏R∈ΨR

𝑑H(𝑠𝑖,R, 𝑏R)
1
2 log2 𝑀

𝔼ĥ

[
𝑃𝑖,R(s, 𝑏R, ĥ)

]
(14)

where Ψ and ΨR denote the sets of the 𝑀 -QAM constellation
points and their real parts, respectively, 𝑑H(𝑠𝑖,R, 𝑏R) is the
Hamming distance between the in-phase bits allocated to 𝑠𝑖
and 𝑏, and 𝑃𝑖,R(s, 𝑏R, ĥ) is the probability that the real part
of (12) is located inside the decision area of 𝑏R, when s and
ĥ are known. With 𝑑1(𝑠𝑖,R, 𝑏R) and 𝑑2(𝑠𝑖,R, 𝑏R) denoting the
distances between 𝑠𝑖,R and the boundaries of the decision area
of 𝑏R, with 𝑑1(𝑠𝑖,R, 𝑏R) < 𝑑2(𝑠𝑖,R, 𝑏R) (we set 𝑑2(𝑠𝑖,R, 𝑏R) =
∞ if 𝑏 is an outer constellation point), 𝑃𝑖,R(s, 𝑏R, ĥ) reduces
to

𝑃𝑖,R(s, 𝑏R, ĥ) = 𝑄

(
𝑑1(𝑠𝑖,R, 𝑏R)

𝜎𝑖,R(s, ĥ)

)
−𝑄

(
𝑑2(𝑠𝑖,R, 𝑏R)

𝜎𝑖,R(s, ĥ)

)
(15)

where 𝜎𝑖,R(s, ĥ) denotes the standard deviation of the real
part of 𝑛𝑖 and 𝑄(.) is the Gaussian 𝑄-function. Assuming
that the high-SNR approximation (9) is valid, it can be shown
that 𝜎2

𝑖,R(s, ĥ) is given by

𝜎2
𝑖,R(s, ĥ) =

𝑁0

2𝜆𝐸s∥ĥ∥2
(
1 +

𝜆∥s∥2
𝛾𝐾p

)
. (16)
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Fig. 1. BER of Alamouti’s code with 𝑀 -QAM transmission, for correlated
and i.i.d. Rayleigh fading, and for LMMSE channel estimation and PCSI.

Since 𝜎2
𝑖,R(s, ĥ) depends on ĥ through ∥ĥ∥2 only, a closed-

form expression for (14) can be obtained by averaging the 𝑄-
functions in (15) over the statistics of ∥ĥ∥2. Using a moment
generating function (MGF) approach, it is readily verified that
the PDF of ∥ĥ∥2 is given by [6]

𝑝∥ĥ∥2(𝑥) =

𝜅∑
𝑚=1

𝑐𝑚∑
𝑛=1

𝐷𝑚,𝑛

𝑥𝑛−1 exp
(
− 𝑥

𝜆𝑚

)
(𝑛− 1)! (𝜆𝑚)𝑛

(17)

where 𝑥 ≥ 0 and 𝜆𝑚’s, 𝑚 = 1, 2, . . . , 𝜅, are the distinct
eigenvalues of 퓡ĥĥ given by (7), with corresponding algebraic
multiplicities 𝑐𝑚. In (17), the parameters 𝐷𝑚,𝑛 are given by

𝐷𝑚,𝑛 =
(𝜆𝑚)𝑛−𝑐𝑚

(𝑐𝑚 − 𝑛)!

[
d𝑐𝑚−𝑛

d𝑠𝑐𝑚−𝑛
Ψ𝑚(𝑠)

] ∣∣∣
𝑠=− 1

𝜆𝑚

(18)

where

Ψ𝑚(𝑠) =

𝜅∏
𝑙=1
𝑙 ∕=𝑚

(1 + 𝜆𝑙 𝑠)
−𝑐𝑙 . (19)

Using (17) and the result from [7, Eq. (14.4-15)], it is easily
shown that averaging the 𝑄-functions in (15) over the statistics
of ∥ĥ∥2 yields

𝔼ĥ

[
𝑄

(
𝑑𝑞(𝑠𝑖,R, 𝑏R)

𝜎𝑖,R(s, ĥ)

)]
=

𝜅∑
𝑚=1

𝑐𝑚∑
𝑛=1

𝐷𝑚,𝑛

×
[
1− 𝜇𝑚

2

]𝑛 𝑛−1∑
𝑘=0

(
𝑛− 1 + 𝑘

𝑘

)[
1 + 𝜇𝑚

2

]𝑘
(20)

where 𝑞 = {1, 2}, and 𝜇𝑚 is given by

𝜇𝑚 ≜

⎡
⎢⎣ 𝜆𝑑2𝑞(𝑠𝑖,R, 𝑏R)

𝐸s

𝑁0

(
1 + 𝜆∥s∥2

𝛾𝐾p

)−1

𝜆𝑚

1 + 𝜆𝑑2𝑞(𝑠𝑖,R, 𝑏R)
𝐸s

𝑁0

(
1 + 𝜆∥s∥2

𝛾𝐾p

)−1

𝜆𝑚

⎤
⎥⎦

1
2

. (21)

V. NUMERICAL RESULTS

To obtain our numerical results, we consider Alamouti’s
code [1] (𝐿t = 𝑁s = 2), which is given by

𝒞 =

(
𝑠1 −𝑠∗2
𝑠2 𝑠∗1

)
(22)

and we assume 𝐸p = 𝐸s and a mismatched dual-antenna
receiver (𝐿r = 2) performing LMMSE channel estimation.
For 4-QAM and 64-QAM, Fig. 1 shows the BER curves for
Alamouti’s code under correlated and uncorrelated Rayleigh
fading, for 𝐾 = 100 and 𝐾p = 14. Also shown are the BER
results for PCSI, with 𝐾 = 100 and 𝐾p = 0. For correlated
fading, the covariance matrix 퓡hh is assumed to be given by
퓡hh = 퓡t ⊗퓡r, where 퓡t and 퓡r are given by

퓡t =

(
1 0.2 + 𝑗0.3

0.2− 𝑗0.3 1

)
(23a)

퓡r =

(
1 0.5− 𝑗0.7

0.5 + 𝑗0.7 1

)
. (23b)

Monte-Carlo simulations indicate that the presented BER
expression is not only asymptotically exact but also yields very
accurate BER results for low to moderate SNR. We observe
from the figure that antenna correlation and LMMSE channel
estimation both give rise to a horizontal shift of the BER
curve at high SNR, with respect to the case of i.i.d. fading
and PCSI. Moreover, the amount of degradation caused by
LMMSE channel estimation is essentially independent of the
amount of correlation.

VI. CONCLUSIONS

In this work, we investigated the effect of LMMSE channel
estimation on the BER performance of square orthogonal
space-time block codes under arbitrarily correlated Rayleigh
fading channels. We presented a closed-form BER expression
which is asymptotically exact and yields very accurate BER
results also in the low to moderate SNR region.
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