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Abstract— In this paper, we investigate the effect of imperfect
channel estimation on the bit error rate (BER) performance of
orthogonal space-time block codes (OSTBCs). The multiple-input
multiple-output (MIMO) propagation channel is assumed to be
affected by uncorrelated flat Rayleigh block fading. We consider a
mismatched maximum-likelihood (ML) receiver, which estimates
the channel matrix from known pilot symbols according to a
minimum mean-square error (MMSE) criterion, and uses the
channel estimate in the symbol-by-symbol detection algorithm
as if it were the true channel matrix. For both PAM and QAM
constellations and OSTBCs satisfying a proposed criterion, we
present simple exact closed-form expressions for the BER of the
mismatched receiver and the corresponding BER degradation as
compared to a receiver that knows the true channel matrix. For
OSTBCs that do not satisfy this criterion, a simple approximation
of the BER and the associated BER degradation is derived,
assuming PAM and QAM constellations. By means of computer
simulations, this approximation is shown to be very accurate.

I. INTRODUCTION

In wireless applications, spatial diversity is achieved by
using multiple antennas at the transmitter and/or receiver
side. These so-called multiple-input multiple-output (MIMO)
communication systems can achieve a maximum diversity
order of NtNr (with Nt and Nr denoting the number of
transmit and receive antennas, respectively), provided that
proper space-time coding is used. In 1998, Alamouti invented
a simple coding scheme for data transmission using two
transmit antennas [1], with the remarkable benefit that the
maximum-likelihood decoding algorithm reduces to symbol-
by-symbol detection, based only on linear processing at the
receiver. Tarokh et al. generalized Alamouti’s scheme to an
arbitrary number of transmit antennas by introducing the
concept of orthogonal space-time block coding [2], [3]. As
the orthogonal space-time block codes (OSTBCs) achieve full
spatial diversity, and require only linear processing at the
receiver, these codes are a very attractive transmit diversity
technique.

Tarokh et al. [4] demonstrated, by means of simulations, that
significant gains can be achieved by increasing the number of
transmit antennas at the expense of almost no extra decod-
ing complexity. Kim et al. [5] presented exact closed-form
bit error rate (BER) expressions of OSTBCs for phase-shift
keying (PSK) constellations. In [6], exact BER expressions
of OSTBCs with square quadrature amplitude modulation
(QAM) constellations in slow Rayleigh fading channels were
derived. Exact closed-form BER equations for pulse amplitude

modulation (PAM), QAM en PSK constellations in correlated
Rayleigh MIMO channels, were derived in [7].

However, it is important to note that the above BER results
were derived under the assumption that the channel state
information (CSI) of the propagation channel is known at the
receiver. In practical wireless applications, the receiver has to
estimate the channel response, which inevitably results in a
performance penalty. In [8], the effect of channel estimation
errors on the BER was demonstrated by means of simulations.
In [9], expressions for the exact decoding error probability
(DEP) were obtained for the case of square OSTBCs and PSK
constellations. The symbol error rate (SER) of OSTBCs in
presence of channel estimation was studied in [10] and [11]. In
[12], analytical BER expressions as well as the tight Chernoff
bound were given for orthogonal space-time block coded sys-
tems employing M -PSK modulation. High-SNR expressions
for the pairwise error probability (PEP) were derived under
quite general conditions in [13], using an eigenvalue approach.
In [14], an exact closed-form expression for the PEP of both
orthogonal and non-orthogonal space-time codes in the case
of least-squares channel estimation was obtained by means
of characteristic functions. However, from the PEP one can
compute only an upper bound on the BER, which in a fading
environment does not converge to the true BER at high SNR.
To avoid this drawback, we consider in this paper the true BER
of OSTBCs, and present a simple closed-form expression for
the BER in case of PAM and QAM signal constellations and
minimum mean-square error (MMSE) channel estimation. We
investigate under which condition on the OSTBCs this BER
expression is exact, and point out that for OSTBCs that do
not satisfy this condition the BER expression provides a very
accurate approximation.

II. SIGNAL MODEL

Consider an orthogonal space-time block coded commu-
nication system with Nt transmit antennas and Nr receive
antennas, and a flat Rayleigh fading propagation channel.
Transmission is organized in frames: in one frame, each
transmit antenna sends Kp known pilot symbols and K coded
data symbols; the pilot symbols enable channel estimation at
the receiver. Within one frame of Nfr = K +Kp symbols, the
channel is assumed to be constant (block fading). The Nr×Nfr

received signal matrix Rtot is given by

Rtot = [Rp,R] = H [Ap,A] + W, (1)
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where the Nt × Kp pilot matrix Ap and the Nt × K data
matrix A consist of the pilot symbols and the coded data
symbols, respectively, transmitted at each transmit antenna.
The propagation channel is represented by the Nr × Nt

complex random matrix H, whose elements are independent
identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables with unit
variance (i.e., each channel coefficient has independent real
and imaginary parts with zero mean and variance 1/2). The
Nr×Nfr matrix W represents additive spatially and temporally
white noise and consists of i.i.d. ZMCSCG random variables
with variance N0.

An orthogonal space-time block code transforms a block
s(k) of Ns information symbols si(k), 1 ≤ i ≤ Ns, into
a Nt × Kc coded symbol matrix C(k), with k denoting
the block index. Hence, assuming that K is a multiple of
Kc, the transmitted data symbol matrix is given by A =√

Es [C(1), · · · ,C(K/Kc)]. Restricting our attention to OS-
TBCs from complex linear processing orthogonal designs [2],
the entries of the symbol matrices are linear combinations of
the information symbols and their complex conjugate, such
that C can be written as (we drop the index k for notational
convenience)

C =
Ns∑
i=1

(
Cisi + C

′
is

∗
i

)
. (2)

The Nt × Kc matrices Ci and C
′
i comprise the coefficients

of si and s∗i in the matrix C, respectively. Without loss of
generality, we may assume that the matrices C are scaled
in such way that they satisfy the following orthogonality
condition:

CCH =

(
λ

Ns∑
i=1

|si|2
)

INt , (3)

where (·)H denotes the Hermitian transpose, λ = Kc/Ns and
INt is the Nt × Nt identity matrix. In this way, considering
a normalized information symbol constellation (E[|si|2] = 1),
the above property yields

1
NtKc

E

[
‖C‖2

]
= 1, (4)

where ‖.‖ denotes the Frobenius norm. From this, it follows
that the average energy of the transmitted coded symbols is
given by Es:

1
NtK

E

[
‖A‖2

]
= Es. (5)

Similarly, the average energy of the pilot symbols is Ep.

III. PILOT-BASED CHANNEL ESTIMATION

The receiver can estimate H using Rp and the known pilot
matrix Ap. Assuming orthogonal training sequences, i.e., the
matrix Ap has orthogonal rows such that ApAH

p = KpEpINt ,
the MMSE channel estimate [15] is given by

Ĥ =
1

N0 + KpEp
RpAH

p . (6)

Defining the channel estimation error as Δ̂ = H − Ĥ, the
following properties can be derived from (6):

• Ĥ and Δ̂ are Gaussian and statistically independent;
• The components of Ĥ are i.i.d. ZMCSCG random vari-

ables with

σ2
Ĥ

= E

[∣∣∣Ĥm,n

∣∣∣2] =
KpEp

N0 + KpEp
; (7)

• The components of Δ̂ are i.i.d. ZMCSCG random vari-
ables with

σ2
Δ̂

= E

[∣∣∣Δ̂m,n

∣∣∣2] =
N0

N0 + KpEp
. (8)

Allocating a large total energy KpEp to pilot symbols yields
an accurate channel estimate (see (8)), but on the other hand
gives rise to a reduction of the symbol energy Es. Denoting
by Eb the energy per information bit and writing Ep = γEs,
we have

Es =
K

K + γKp
ρ log2(M)Eb, (9)

where ρ = Ns/(NtKc) and M denote the code rate and the
number of constellation points, respectively.

IV. ML DETECTION ALGORITHM

If H is known by the receiver, maximum-likelihood (ML)
detection of the data symbol matrix C(k) reduces to

Ĉ(k) = arg min
C̃(k)

∥∥∥R′(k) −
√

EsHC̃(k)
∥∥∥2

, (10)

where R′(k) is the received signal matrix corresponding to the
transmitted symbol matrix C(k), and the minimization is over
the valid code matrices satisfying (2). Since only the estimated
channel matrix Ĥ is known instead of H, we consider a
receiver that uses Ĥ in the same way an ML receiver would
apply H (we omit the index k for notational convenience):

Ĉ = arg min
C̃

∥∥∥R′ −
√

EsĤC̃
∥∥∥2

. (11)

This type of receiver is often called a mismatched receiver.
Taking (3) into account, the detection algorithm (11) for

the information symbols si reduces to symbol-by-symbol
detection:

ŝi = arg min
s̃i

|ui − s̃i| , 1 ≤ i ≤ Ns. (12)

In (12), the decision variable ui is given by

ui =
tr

(
CH

i ĤHR′ + R′HĤC
′
i

)
λ
√

Es

∥∥∥Ĥ∥∥∥2 , (13)

where tr(·) denotes the trace.



V. BIT ERROR RATE ANALYSIS

For a mismatched receiver that assumes Ĥ to be the correct
channel matrix, the received signal R′ that corresponds to the
data matrix C can be decomposed as

R′ =
√

EsĤC +
√

EsΔ̂C + W′, (14)

where
√

EsĤC is the useful component, W′ is the Gaussian
channel noise, and

√
EsΔ̂C is additional noise caused by the

channel estimation error; the latter noise is Gaussian when
conditioned on C. As compared to a receiver with perfect
channel knowledge (PCK), the detection performance of the
mismatched receiver is degraded: the useful component is
reduced (because it follows from (7) that σ2

Ĥ
≤ 1) and the

total noise variance is increased.
When the mismatched receiver and the PCK receiver

achieve some target BER at Eb/N0 = (Eb/N0)MMSE and
Eb/N0 = (Eb/N0)PCK, respectively, the BER degradation of
the mismatched receiver as compared to the PCK receiver is
expressed as 10 log10((Eb/N0)MMSE/(Eb/N0)PCK) [dB].

Expanding (13) yields ui = si + ni, 1 ≤ i ≤ Ns,
where the disturbance term ni contains contributions from
the channel noise W′ and the channel estimation error Δ̂,
and is Gaussian when conditioned on C. When the CSI is
known at the receiver (i.e., Δ̂ = 0), ni is a ZMCSCG random
variable independent of C with variance N0/(λEs ‖H‖2).
Owing to the simple symbol-by-symbol detection algorithm
of the information symbols, analytical BER expressions for
the PCK receiver can be easily obtained (e.g., [16], [17], [6]).
However, in this paper we investigate the effect of channel
estimation errors on the BER of a mismatched receiver.

A. M-PAM constellation

In a fading environment, the BER is obtained by averaging
the conditional BER (conditioned on the channel matrix) over
the channel statistics. Here, we take the average over the
statistics of the estimated channel:

BERM−PAM = EĤ

[
BERM−PAM(Ĥ)

]
. (15)

Since the code matrix C of an OSTBC comprises Ns infor-
mation symbols si, represented by the transmitted information
symbol vector s = (s1, · · · , sNs), the BER conditioned on the
estimated channel matrix is given by

BERM−PAM

(
Ĥ

)
= Ei

[
BERM−PAM,i(Ĥ)

]
(16)

=
1

Ns

Ns∑
i=1

BERM−PAM,i(Ĥ), (17)

where BERM−PAM,i(Ĥ) is the BER corresponding to the
information symbol si, conditioned on Ĥ. A decision error
occurs when the decision variable ui is inside the decision
area of a symbol b which is different from the transmitted

symbol si. Hence, BERM−PAM,i(Ĥ) is given by

BERM−PAM,i

(
Ĥ

)
= Es

[∑
b∈Ψ

N(si, b)
log2 M

Pi(s, b, Ĥ)

]

=
1

MNs

∑
s∈ΨNs

∑
b∈Ψ

N(si, b)
log2 M

Pi(s, b, Ĥ), (18)

where Ψ denotes the normalized M -PAM constellation and
N(si, b) represents the Hamming distance between the binary
representations of the transmitted symbol si and the decoded
symbol b. Pi(s, b, Ĥ) is the probability that ui is located in
the decision area of the constellation point b (when the trans-
mitted symbol vector and the channel estimate are known).
With d1(si, b) and d2(si, b) denoting the distances between
the transmitted constellation point si and the boundaries of
the decision area of b, with d1(si, b) < d2(si, b) (we set
d2(si, b) = ∞ if b is an outer constellation point), Pi(s, b, Ĥ)
reduces to

Pi(s, b, Ĥ) = Q

(
d1(si, b)

σRi
(s, Ĥ)

)
− Q

(
d2(si, b)

σRi
(s, Ĥ)

)
, (19)

where σRi
(s,H) denotes the standard deviation of the real

part of ui and Q(.) is the Gaussian Q-function, defined as

Q(x) � 1√
2π

∫ ∞

x

exp
(
−x2

2

)
dx. (20)

Let the Nt × Nt matrix CRi
(s), 1 ≤ i ≤ Ns, be defined as

CRi
(s) � C

(
Ci + C

′
i

)H

, (21)

which is a function of the information symbol vector s through
the code matrix C (see (2)). It can be shown that

σ2
Ri

(s, Ĥ)

=
N0

2λEs

∥∥Ĥ∥∥2

(
1 +

σ2
Δ̂

N0

Es

∥∥ĤCRi
(s)H

∥∥2

λ
∥∥Ĥ∥∥2

)
. (22)

The expectation of (19) over Ĥ is difficult to compute,
because the expression between parentheses in (22) depends
on Ĥ. However, this dependence is removed if the considered
OSTBC satisfies the following criterion for 1 ≤ i ≤ Ns:

CRi
(s)HCRi

(s) = βRi
(s) INt , (23)

where βRi
(s) = ‖CRi

(s)‖2
/Nt. When (23) holds, the vari-

ance (22) simplifies to

σ2
Ri

(s, Ĥ) =
N0

2λEs

∥∥Ĥ∥∥2

(
1 +

σ2
Δ̂

N0

EsβRi
(s)

λ

)
, (24)

and the averaged Q-functions in (19) reduce to [16]

EĤ

[
Q

(
dj(si, b)

σRi
(a, Ĥ)

)]

= Ω

⎛⎝ 2λd2
j (si, b)

1 + βRi
(s)

λγKp
+ 1

γKp

N0
Es

Es

N0

⎞⎠ , (25)



for j ∈ {1, 2}. In (25), the function Ω(θ) is defined as

Ω(θ) �
[
1 − μ

2

]L L−1∑
k=0

(
L − 1 + k

k

)[
1 + μ

2

]k

, (26)

with L = NrNt denoting the spatial diversity achieved by the
OSTBC, and μ =

√
θ/(2 + θ).

Taking (9) into account, the ratio of the BER of the
mismatched receiver to the BER with PCK (Kp = 0) is easily
derived (at high Eb/N0):

BERM−PAM,MMSE

BERM−PAM,PCK
=

(
1 +

γKp

K

)L

×

Ei,s

[(
1 + βRi

(s)

λγKp

)L

ξ(si)
]

Es [ξ(s)]
, (27)

where the function ξ(s) is defined as

ξ(s) �
∑
b∈Ψ

N(s, b)
(

1
d2L
1 (s, b)

− 1
d2L
2 (s, b)

)
. (28)

Given that the ratio (27) does not depend on Eb/N0, it follows
that the PCK receiver and the mismatched receiver give rise
to the same diversity order (which equals NrNt for OSTBCs),
as observed in [15]. As stated before, the mismatched receiver
must have a larger Eb/N0 ratio than the PCK receiver, in
order that both receivers have the same BER. Taking into
account that a diversity order of L = NrNt is achieved (BER
∝ (Eb/N0)−L), the amount (in dB) by which the Eb/N0 ratio
of the mismatched receiver should be increased to obtain the
same BER as the PCK receiver is given by

10
L

log10

(
BERM−PAM,MMSE

BERM−PAM,PCK

)
. (29)

For OSTBCs that do not satisfy criterion (23), replacing
the variance (22) by its average over the entries of Ĥ, when
conditioned on

∥∥Ĥ∥∥2
, also results in (24). In this way, (25)

and (27) provide simple approximations of the BER and the
BER degradation of the mismatched receiver.

B. M-QAM constellation

Now we consider square M -QAM transmission with Gray
mapping, which is equivalent to

√
M -PAM transmission for

both the in-phase and quadrature information bits. An in-phase
(quadrature) decision error occurs when the real (imaginary)
part of the decision variable ui, corresponding to the transmit-
ted information symbol si, is located outside the projection of
the decision area of si on the real (imaginary) axis. Since
the BER can be computed as the average of the BERs for
the in-phase and quadrature information bits, the computation
follows the same lines as for PAM.

Defining the matrix CIi
(s) as

CIi
(s) � C

(
Ci − C

′
i

)H

, (30)

the exact BER for both the in-phase and quadrature informa-
tion bits can be computed analytically if the OSTBC satisfies
the following criterion for 1 ≤ i ≤ Ns:⎧⎨⎩CRi

(s)HCRi
(s) = ‖CRi

(s)‖2

Nt
INt

CIi
(s)HCIi

(s) = ‖CIi (s)‖2

Nt
INt

, (31)

where CRi
(s) is given by (21). For OSTBCs satisfying (31),

the high-SNR ratio of the BER of the mismatched receiver
to the BER with PCK (Kp = 0), using a normalized QAM
constellation Φ with Gray mapping, is given by

BERM−QAM,MMSE

BERM−QAM,PCK
=

(
1 +

γKp

K

)L

×

Ei,s

[(
1 + βRi

(s)

λγKp

)L

ξR(si) +
(
1 + βIi (s)

λγKp

)L

ξI(si)
]

Es [ξR(s) + ξI(s)]
, (32)

where the functions ξR(s) and ξI(s) are defined as⎧⎨⎩ξR(s) �
∑

b∈ΦR
NR(s, b)

(
1

d2L
1,R(s,b)

− 1
d2L
2,R(s,b)

)
ξI(s) �

∑
b∈ΦI

NI(s, b)
(

1
d2L
1,I(s,b)

− 1
d2L
2,I(s,b)

) , (33)

where ΦR and ΦI denote the projection of Φ on the real axis
and the imaginary axis, respectively. The quantities Np(s, b),
d1,p(s, b) and d2,p(s, b) are defined in a similar way as
N(s, b), d1(s, b) and d2(s, b) for PAM, with p = R and p = I
referring to the in-phase and quadrature signals, respectively.
Examples of OSTBCs that satisfy (31) are given in [1], [2, eq.
(38),(40)] and [3, eq. (62)].

For OSTBCs not satisfying (31), the resulting expressions
yield simple approximations of the actual BER and the BER
degredation of the mismatched receiver.

VI. NUMERICAL RESULTS

The code matrix of Alamouti’s code [1] (Nt = Kc = Ns =
2), the simplest and best-known OSTBC, is given by

H =
(

s1 −s∗2
s2 s∗1

)
. (34)

Given that Alamouti’s code satisfies (31), with ‖CRi
(s)‖2 =

‖CIi
(s)‖2 = Nt

(|s1|2 + |s2|2
)

for i ∈ {1, 2}, the exact
BER curves for PAM and QAM constellations can be derived
analytically. Fig. 1 shows the exact BER curves for QPSK
transmission employing Alamouti’s code, for both the mis-
matched receiver and the PCK receiver (we assume Ep = Es);
also shown are computer simulation results for the mismatched
receiver that confirm the analytical result. The corresponding
BER degradation amounts to 1.15 dB, irrespective of Nr.

The OSTBC (Nt = 3,Kc = 4, Ns = 3) given by [2, eq.
(39)]

G =

⎛⎜⎜⎝
s1 −s∗2

s∗
3√
2

s∗
3√
2

s2 s∗1
s∗
3√
2

−s∗
3√
2

s3√
2

s3√
2

−s1−s∗
1+s2−s∗

2
2

s2+s∗
2+s1−s∗

1
2

⎞⎟⎟⎠ , (35)
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Fig. 1. BER of Alamouti’s code, QPSK
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Fig. 2. BER of OSTBC given by [2, eq. (39)], 16-QAM

does not satisfy criterion (31). Fig. 2 illustrates the BER for a
16-QAM constellation, resulting from the PCK receiver (exact
result) and the mismatched receiver (analytical approxima-
tion and simulation result). The simulations indicate that the
approximation for the mismatched receiver is very accurate.
The BER degradation amounts to 1.04 dB, 1.06 dB or 1.09 dB
when Nr equals 1, 2 or 3, respectively.

VII. CONCLUSIONS

In this work, we investigated the effect of MMSE channel
estimation on the BER performance of orthogonal space-time
block codes. We considered a mismatched receiver and a
MIMO propagation channel that is affected by uncorrelated flat
Rayleigh block fading. MMSE channel estimation is carried
out, based on known pilot symbols sent among the data.
The mismatched receiver utilizes in the symbol-by-symbol
detection algorithm the estimated channel matrix as if it were
the true channel.

For a class of OSTBCs, specified by a proposed criterion,
we derived simple closed-form expressions of the exact BER
and the associated BER degradation, which depend on the
number of pilot symbols, data symbols, transmit antennas and
receive antennas, on the considered constellation and on some
specific properties of the OSTBC.

For OSTBCs that do not belong to this specific class, we
derived a simple approximation of the BER and the BER
degradation caused by channel estimation errors for both PAM
and QAM symbol constellations. Simulations show that these
approximations are very accurate.
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