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Abstract— In this contribution, we present a novel closed-form
approximation of the bit error rate (BER) for square orthogonal
space-time block codes (OSTBCs) under arbitrarily correlated
Rayleigh fading with imperfect channel estimation. Although
derived for a mismatched maximum-likelihood receiver that
obtains the channel state information through pilot-based linear
minimum mean-square error (LMMSE) channel estimation, the
presented expression is shown to yield very accurate BER results
for both LMMSE and least-squares channel estimation, over a
wide range of signal-to-noise ratios. The information symbols are
assumed to belong to a pulse amplitude modulation or square
quadrature amplitude modulation constellation.

I. INTRODUCTION

The exponential growth in wireless communication services

has triggered an ever increasing demand for higher data rates

and better error performance. By using multiple antennas

at the transmitter and receiver side, multiple-input multiple-

output (MIMO) wireless systems can significantly increase

the capacity of a radio link [1], [2]. In order to improve the

error performance of MIMO systems, they are often combined

with space-time coding, which takes advantage of both spatial

and temporal diversity. Particularly appealing is the transmit

diversity technique of orthogonal space-time block coding

[3]–[5], which achieves full spatial diversity and leads to

a remarkably simple symbol-by-symbol decoding algorithm,

based on linear processing at the receiver.

Owing to the beneficial properties of orthogonal space-

time block codes (OSTBCs), their error performance has been

studied extensively in the past. Exact bit error rate (BER)

expressions for pulse amplitude modulation (PAM), quadrature

amplitude modulation (QAM), and phase-shift keying (PSK)

constellations were presented in [6], under the assumption

of correlated Rayleigh fading channels with perfect channel

state information (PCSI). In [7], asymptotic error-rate formulas

were derived for arbitrarily correlated Rician MIMO channels,

in terms of the diversity and coding gains. In practical wireless

applications, however, the assumption of PCSI is not valid and

the receiver has to estimate the channel response. For square

OSTBCs, an exact closed-form BER expression was presented

in [8] for PAM and QAM constellations operating over in-

dependent and identically distributed (i.i.d.) Rayleigh fading

channels with linear minimum mean-square error (LMMSE)

channel estimation. In [9], a closed-form expression for the

pairwise error probability (PEP) of space-time block codes

was derived for arbitrarily correlated Ricean fading channels

with imperfect channel estimation (ICE). In this contribution,

we extend the result from [8] to arbitrarily correlated Rayleigh

fading with imperfect channel estimation. Introducing a high

signal-to-noise ratio (SNR) approximation of the channel error

covariance matrix, we derive a novel closed-form BER ex-

pression for a mismatched maximum-likelihood (ML) receiver

that obtains the channel state information through pilot-based

LMMSE channel estimation. Moreover, we show that the

presented expression yields very accurate BER results for both

LMMSE and least-squares (LS) channel estimation, over a

wide range of signal-to-noise ratios. The information symbols

are assumed to belong to a PAM or square QAM constellation.

We denote by vec(X) the vector that is obtained by stacking

the columns of the matrix X, and by A ⊗ B the Kronecker

product of the matrices A and B. The norm of a vector a is

denoted by ‖a‖.

II. SIGNAL MODEL

Let us consider a wireless MIMO communication system

with Lt transmit and Lr receive antennas, employing square

OSTBCs from complex orthogonal designs [4], [5]. In this

way, each transmitted code matrix is defined by an Lt × Lt

coded symbol matrix C, the entries of which are linear

combinations of Ns information symbols si = si,R + jsi,I,

1 ≤ i ≤ Ns, with si,R and si,I denoting the real and imaginary

parts of si, respectively, and their complex conjugate s∗i , such

that

C =

Ns∑

i=1

(
Ci si + C

′

i s∗i

)
, (1)

where the Lt × Lt matrices Ci and C
′

i comprise the coeffi-

cients of si and s∗i , respectively. Since scaling does not affect

the orthogonality of the code matrix C, we assume that C is

scaled in such way that it satisfies the following orthogonality

condition

C
H
C = CC

H = λ ‖s‖2
ILt

, (2)

where λ , Lt/Ns, s = [s1, s2, . . . , sNs
]T is the data symbol

vector, and ILt
denotes the Lt × Lt identity matrix.



Data transmission is organized in frames consisting of Kp

known pilot symbols and K coded data symbols per transmit

antenna, with K being a multiple of Lt. In this way, K/Lt

coded data matrices C(k), 1 ≤ k ≤ K/Lt, are sent within

one frame. To recover the channel state information we use

orthogonal pilot sequences, i.e., the Lt ×Kp pilot matrix Cp

has orthogonal rows such that

CpC
H
p = KpILt

. (3)

The L , Lt Lr MIMO channel coefficients are represented

by the Lr × Lt complex-valued random matrix H, which is

assumed to remain constant during the length of one frame of

K + Kp symbols. Hence, the receiver separately observes the

Lr × Lt matrices

R(k) =
√

Es HC(k) + W(k), (4a)

with 1 ≤ k ≤ K/Lt, and the Lr × Kp matrix

Rp =
√

Ep HCp + Wp, (4b)

where the additive channel noise matrices W(k) and Wp

affecting the transmission of the data and pilot symbols,

respectively, consist of i.i.d. zero-mean (ZM) circularly sym-

metric complex Gaussian (CSCG) random variables (RVs)

with variance N0. In the remainder of the paper, we will

omit the block index k in (4a) for notational convenience.

Using a normalized symbol constellation, i.e., E
[
‖si‖2

]
= 1,

it follows from (2) and (3) that Es and Ep in (4a) and (4b)

denote the average data and pilot symbol energy, respectively.

Stacking the elements of the channel matrix H into the column

vector h , vec(H), the elements of h are arbitarily correlated

ZM CSCG RVs with a positive definite covariance matrix

Rhh , E[hh
H ].

Introducing the L-dimensional column vectors r , vec(R)
and w , vec(W), and rp , vec(Rp) and wp , vec(Wp),
respectively, allows us to construct a vector signal model

which is equivalent to (4a) and (4b) [9]

r =
√

Es Bh + w, (5a)

rp =
√

Ep Bp h + wp, (5b)

where B , C
T ⊗ ILr

and Bp , C
T
p ⊗ ILr

. From (2) and (3),

it follows that B
H
B = BB

H = λ ‖s‖2
ILt

and B
H
p Bp =

KpIL, respectively.

III. IMPERFECT CHANNEL ESTIMATION

By increasing the number of pilot symbols Kp and/or

the pilot energy Ep, very accurate channel estimation can

be obtained. However, the more energy is allocated to the

pilot symbols, the less energy remains available for data

transmission. With Eb, γ , Ep/Es, M , and ρ , Ns/L2
t

denoting the energy per information bit, the ratio of Ep to Es,

the constellation size, and the code rate, respectively, it can be

shown that

Es =
K

K + γKp

ρ log2(M)Eb, (6)

which is a decreasing function of Kp.

A. LMMSE channel estimation

Using the vector signal model (5b), the LMMSE channel

estimate is given by [9]

ĥMMSE =

√
Ep

N0

(
IL +

KpEp

N0

Rhh

)−1

Rhh B
H
p rp. (7)

It is readily verified that the channel vector h can be written

as the sum of the LMMSE channel estimate ĥMMSE and a

noise term ε that is statistically independent of ĥMMSE:

h = ĥMMSE + ε. (8)

Moreover, the following properties can be derived for ĥMMSE

and ε:

• The components of ĥ are ZM CSCG RVs, the covariance

matrix of which is given by with

R
ĥĥ

, E

[
ĥMMSE ĥ

H
MMSE

]

= RhhRhh

(
Rhh +

N0

KpEp

IL

)−1

. (9)

• The components of ε are ZM CSCG RVs, the covariance

matrix of which is given by

Rεε , E[ε ε
H ] = Rhh

(
IL +

KpEp

N0

Rhh

)−1

. (10)

Note that for high SNR, R
ĥĥ

reduces to Rhh and the

elements of the channel noise vector ε can be considered as

i.i.d. ZM CSCG RVs with variance N0/(KpEp), since Rεε

becomes

Rεε ≈ N0

KpEp

IL,
KpEp

N0

>> 1. (11)

B. LS channel estimation

Contrary to the LMMSE channel estimate, the LS channel

estimate does not make use of the a priori channel statistics

and is given by [9]

ĥLS =
B

H
p rp

Kp

√
Ep

. (12)

Note that the LMMSE channel estimate (7) reduces to the LS

channel estimate (12) in case of high SNR. More specifically,

LS and LMMSE channel estimation will yield similar perfor-

mance as long as the diagonal elements of Rhh multiplied by

KpEp/N0 are much larger than 1.

IV. MISMATCHED ML RECEIVER

We consider a mismatched ML receiver that uses the

estimated channel instead of the true channel. In this way,

the ML detection rule of the matrix B in (5a) is given by

B̂ = arg min
eB

∥∥∥r −
√

EsB̃ĥ

∥∥∥
2

. (13)

Taking (2) into account, it is readily verified that the detection

algorithm (13) reduces to symbol-by-symbol detection for the

different information symbols si comprised in the matrix B:

ŝi = arg min
s̃

|ui − s̃| , 1 ≤ i ≤ Ns, (14)



where the minimization is over all symbols s̃ belonging to

the considered symbol constellation and the decision variable

ui = ui,R + jui,I, with ui,R and ui,I denoting the real and

imaginary parts of ui, respectively, is given by

ui =
ĥ

H (C∗
i ⊗ ILr

) r + r
H
(
C

′

i

T ⊗ ILr

)
ĥ

λ
√

Es‖ĥ‖2
. (15)

V. BIT ERROR RATE ANALYSIS

In this section, we derive a closed-form BER expression

for square OSTBCs under correlated Rayleigh fading with

LMMSE channel estimation, using the particular channel

decomposition (8) and the high-SNR approximation (11) of the

channel error covariance matrix (10). In section VI, however,

Monte-Carlo simulations show that this BER expression can

be used also to obtain very accurate BER results over a wide

range of SNRs, for both LMMSE and LS channel estimation.

Using (8) and denoting the LMMSE channel estimate (7)

by ĥ for notational convenience, the received signal (5a) can

be written as

r =
√

Es Bĥ +
√

Es B ε + w, (16)

where
√

Es Bĥ is the useful component, w is the Gaussian

channel noise, and
√

Es B ε is additional noise caused by the

channel estimation error. It can be shown that the additional

noise vector
√

Es B ε is Gaussian when conditioned on the

data symbol vector s. Using (16), the decision variable (15)

can be expanded as

ui = si + ni, 1 ≤ i ≤ Ns, (17)

where the disturbance term ni contains contributions from the

channel noise w and the channel estimation error ε, and is

Gaussian when conditioned on s and ĥ. In case of PCSI, the

channel estimation error ε = 0 and ni is a ZM CSCG RV

independent of s with variance N0/(λEs ‖h‖2
).

Let us focus our attention to square M -QAM transmission

with Gray mapping, which reduces to
√

M -PAM transmission

for both the in-phase and quadrature information bits. Due

to this fact, the BER for M -PAM with Gray mapping can

be obtained in a very similar way. It can be shown that for

square M -QAM and equally likely symbol vectors s, the BERs

related to the in-phase and quadrature bits of si, 1 ≤ i ≤ Ns,

are equal and independent of the index i. Hence, the average

BER of a square OSTBC can be calculated as the BER related

to the in-phase information bits of a data symbol si in the

transmitted code matrix C, regardless of i. A decision error

will occur when the real part ui,R of the decision variable (15)

is located inside the decision area of a QAM symbol b 6= si.

Denoting by bR and bI the real and imaginary parts of the

QAM symbol b, the projection on the real axis of the decision

area of the symbol b is referred to as the decision region of

bR. We can write the BER as

BER =
1

MNs

∑

s∈ΨNs

∑

bR∈ΨR

dH(si,R, bR)
1
2

log2 M

E
ĥ

[
Pi,R(s, bR, ĥ)

]
, (18)

where Ψ and ΨR are the sets of the M -QAM constellation

points and their real parts, respectively, dH(si,R, bR) is the

Hamming distance between the in-phase bits allocated to

the transmitted symbol si and the detected symbol b, and

Pi,R(s, bR, ĥ) is the probability that ui,R is located inside

the decision area of bR, when s and ĥ are known. When

d1(si,R, bR) and d2(si,R, bR) denote the distances between

si,R and the boundaries of the decision area of bR, with

d1(si,R, bR) < d2(si,R, bR), Pi,R(s, bR, ĥ) reduces to

Pi,R(s, bR, ĥ) = Q

(
d1(si,R, bR)

σi,R(s, ĥ)

)
− Q

(
d2(si,R, bR)

σi,R(s, ĥ)

)
,

(19)

where σi,R(s, ĥ) denotes the standard deviation of the real part

of ni and Q(.) is the Gaussian Q-function [10, Eq. (4.1)]. Note

that we set d2(si,R, bR) = ∞, when b is an outer constellation

point. Assuming that the high-SNR approximation (11) is

valid, it can be shown that the variance σ2
i,R(s, ĥ) of the real

part of ni is given by

σ2
i,R(s, ĥ) =

N0

2λEs‖ĥ‖2

(
1 +

λ‖s‖2

γKp

)
. (20)

Since σ2
i,R(s, ĥ) depends on the channel estimate ĥ through

its squared norm ‖ĥ‖2 only, a closed-form expression for (18)

can be derived by averaging the Q-functions in (19) over the

statistics of ‖ĥ‖2. Denoting by λm, m = 1, 2, . . . , κ, the m-th

distinct eigenvalue of R
ĥĥ

given by (9), with corresponding

algebraic multiplicity cm, the probability density function

(PDF) of ‖ĥ‖2 is given by [11]

p‖ĥ‖2(x) =
κ∑

m=1

cm∑

n=1

Dm,n

xn−1 exp
(
− x

λm

)

(n − 1)! (λm)n
, (21)

where x ≥ 0. In (21), the parameters Dm,n are given by

Dm,n =
(λm)n−cm

(cm − n)!

[
dcm−n

dscm−n
Ψm(s)

] ∣∣∣
s=− 1

λm

, (22)

where

Ψm(s) =

κ∏

l=1
l 6=m

(1 + λl s)
−cl . (23)

Using the PDF (21) and the result from [12, 14.4-15], it is

easily shown that averaging the Q-functions in (19) over the

statistics of ‖ĥ‖2 yields

E
ĥ

[
Q

(
dq(si,R, bR)

σi,R(s, ĥ)

)]
=

κ∑

m=1

cm∑

n=1

Dm,n

×
[
1 − µm

2

]n n−1∑

k=0

(
n − 1 + k

k

)[
1 + µm

2

]k

, (24)

where q = {1, 2}, and µm is given by

µm ,




λd2
q(si,R, bR) Es

N0

(
1 + λ‖s‖2

γKp

)−1

λm

1 + λd2
q(si,R, bR) Es

N0

(
1 + λ‖s‖2

γKp

)−1

λm




1
2

. (25)



From (19) and (24), the closed-form BER expression for (18)

is easily obtained.

VI. NUMERICAL RESULTS

In this section, we present numerical results from evaluating

the presented closed-form BER expression under the assump-

tion that Ep = Es. Additionally, Monte-Carlo simulations

indicate that the BER expression is not only asymptotically

exact but also yields very accurate BER results for low to

moderate SNR, for both LMMSE and LS channel estimation.

Fig. 1 displays the BER for the 4× 4 OSTBC given by [5]

C4×4 =
2√
3




s1 −s∗2 −s∗3 0
s2 s∗1 0 −s∗3
s3 0 s∗1 s∗2
0 s3 −s2 s1


 , (26)

where the scaling factor 2√
3

is applied in order that (26)

satisfies (2). The BER curves are shown for 4-QAM and

64-QAM constellations under correlated and uncorrelated

Rayleigh fading, for K = 200 and Kp = 16. Also shown

are the BER results for PCSI, with K = 200 and Kp = 0.

We consider a single-antenna receiver and a covariance matrix

Rhh, which in case of correlated fading is given by

Rhh =




1 0.7 0.5 0.3
0.7 1 0.7 0.5
0.5 0.7 1 0.7
0.3 0.5 0.7 1


 . (27)

Note that Rhh has a Toeplitz structure, which corresponds to

the practical situation of an equally spaced linear antenna array

[13]. Monte-Carlo simulations for the mismatched receiver

with LMMSE channel estimation confirm the accuracy of the

presented BER expression. From the figure, we observe that

antenna correlation and ICE both give rise to a horizontal

shift of the BER curve at high SNR, and that the amount

of degradation due to ICE is more or less independent of the

antenna correlation and the constellation size.

Fig. 2 shows the BER results for the 2× 2 Alamouti code,

which is given by [3]

C2×2 =

(
s1 −s∗2
s2 s∗1

)
. (28)

Assuming a dual-antenna receiver (Lr = 2), Fig. 2 shows

the BER curves for square M -QAM transmission, with M ∈
{4, 16, 64, 256}, under correlated Rayleigh fading, for K =
100 and Kp = 14. Also shown are the BER results for

PCSI, with K = 100 and Kp = 0. For correlated fading,

the covariance matrix Rhh is assumed to be given by Rhh =
Rt ⊗ Rr, where Rt and Rr are given by

Rt =

(
1 0.3 + j0.1

0.3 − j0.1 1

)
, (29a)

Rr =

(
1 0.4 − j0.6

0.4 + j0.6 1

)
. (29b)

Monte-Carlo simulations conducted for a mimatched receiver

performing either LMMSE or LS channel estimation, indicate
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Fig. 1. BER of OSTBC given (26) by with M -QAM transmission, for
correlated and i.i.d. Rayleigh fading, and for LMMSE channel estimation and
PCSI.
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Fig. 2. BER of Alamouti’s code with M -QAM transmission, for correlated
Rayleigh fading, and for LMMSE channel estimation and PCSI. Monte-Carlo
simulations indicate the accuracy of the presented BER expression for both
LMMSE and LS channel estimation

that the presented BER expression yields very accurate BER

results for LMMSE and LS channel estimation, in the range

from low to high SNR.

VII. CONCLUSIONS

In this work, we examined the BER performance of square

orthogonal space-time block codes under arbitrarily correlated

Rayleigh fading channels with LMMSE channel estimation.

We presented a closed-form BER expression which is asymp-

totically exact and yields very accurate BER results also in

the low to moderate SNR region, for both LMMSE and LS

channel estimation.
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