
Exact BER Analysis for QAM Transmission on
Arbitrary Fading Channels with Maximal-Ratio
Combining and Imperfect Channel Estimation

Lennert Jacobs and Marc Moeneclaey
Ghent University, TELIN Department, DIGCOM Group

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{Lennert.Jacobs,Marc.Moeneclaey}@telin.ugent.be

Abstract— In this contribution, we investigate the effect of
imperfect channel estimation on the bit error rate (BER) per-
formance of uncoded quadrature amplitude modulation (QAM)
with maximal-ratio combining (MRC) multichannel reception.
The propagation channels from the transmitter to each of the
Nr receive antennas are assumed to be affected by (possibly
correlated) flat block fading with an arbitrary fading distribution.
The MRC receiver makes use of estimated channel coefficients,
obtained from known pilot symbols sent among the data. The
resulting average BER for QAM can easily be written as an
expectation over 4Nr random variables, but the computing
time needed for its numerical evaluation increases exponentially
with Nr. We point out that the BER can be expressed in
terms of the distribution of the norm of the channel vector,
rather than the joint distribution of all channel coefficients. This
allows to reduce the BER expression to an expectation over
only 4 random variables, irrespective of the number of receive
antennas. Moreover, we show that for real-valued constellations
and/or real-valued channels, the BER expression reduces to an
expectation over less than 4 variables. For practical BER levels,
the numerical evaluation of the BER is much less time-consuming
than a straightforward computer simulation. The presented BER
expression is useful not only when the fading distribution is given
in closed form, but also when only experimental data (e.g. a
histogram) on the fading are available.

I. INTRODUCTION

To combat the detrimental effect of small-scale fading on the
performance of wireless communication systems, several di-
versity techniques have been proposed to provide the receiver
with independent replicas of the signal. Receive diversity
is realized by using multiple antennas at the receiver side,
which are sufficiently separated from each other to achieve
uncorrelated fading. When the channel state information (CSI)
is known at the receiver, Brennan showed that maximal-ratio
combining (MRC) is the optimal way to combine the multiple
received signals into a single signal with improved signal-to-
noise ratio (SNR) [1]. A unified approach for the computation
of the exact symbol error rate (SER) of linearly modulated sig-
nals over generalized fading channels with MRC is presented
in [2]. The resulting expression involves a single finite-range
integral, which can be easily computed numerically.

However, in practice the CSI is not a priori available, so
the receiver has to estimate the diversity channels. The effect

of estimation errors on the SNR of maximal-ratio combiners
in Rayleigh fading channels was examined in [3] and [4].
The symbol error probability (SEP) of antenna subset diversity
(SSD), including the case of MRC, was studied in [5] for M -
ary quadrature amplitude modulation (M -QAM) and phase-
shift keying (M -PSK) on Rayleigh fading channels with
imperfect channel estimation (ICE). The exact bit error rate
(BER) for square/rectangular QAM with MRC and ICE in
non-identical Rayleigh fading channels was given in [6]. A
similar analysis for Rician fading channels was provided in
[7]. In [8], approximate BER expressions were given for M -
QAM with both MRC and equal-gain combining (EGC) in
Nakagami fading channels with ICE. In [9], the exact bit error
probability (BEP) for MRC diversity systems utilizing binary
phase-shift keying (BPSK) was derived for arbitrary fading
channels with ICE. The resulting BEP expression requires the
evaluation of a single finite-range integral provided that one
can obtain the moment generating function (MGF) of the norm
square of the channel vector. However, since the analysis in
[9] is based on the result of [10, Appendix B], it cannot be
extended to non-binary signaling constellations.

In this contribution, we provide an exact BER analysis
for M -QAM signals sent over arbitrary (possibly correlated)
flat-fading channels, with ICE and MRC at the receiver.
In section II we describe the observation model which in-
cludes the Nr arbitrary fading channels. Section III presents
a generic pilot-based channel estimation method (with least-
squares estimation and linear minimum mean-square error
(MMSE) estimation as special cases), and derives the sta-
tistical properties of the channel estimate. The mismatched
receiver with MRC detection is briefly outlined in section IV.
The main part of our contribution is in section V, where the
exact BER expression is reduced to an expectation over (at
most) 4 variables, which allows numerical evaluation with a
computing time that is independent of the number (Nr) of
receive antennas. In section VI the results obtained from the
numerical evaluation of our BER expression are confirmed
by computer simulations, assuming i.i.d. Nakagami-m fading
channels. Finally, conclusions are drawn in section VII. The
main conclusion is that the presented BER expression can be
used when the fading distribution is available in closed form
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or as an experimentally obtained histogram, and allows for a
faster evaluation than by means of straightforward computer
simulation.

Throughout this paper, the superscripts T and H represent
the vector (matrix) transpose and conjugate transpose, respec-
tively. �{x}, �{x}, sgn(x) and E[x] denote the real part,
the imaginary part, the sign and the expected value of x,
respectively, while ‖X‖ refers to the Frobenius norm of X.

II. SIGNAL MODEL

Let us consider a wireless single-input multiple-output
(SIMO) communication system with 1 transmit antenna and
Nr receive antennas. We assume the propagation channels
between the transmit antenna and each of the receive antennas
to be affected by flat fading with an arbitrary distribution.
Transmission is organized in frames consisting of Kp known
pilot symbols and K uncoded data symbols. The pilot symbols
are used by the receiver to estimate the channel, which is
assumed to be constant within one frame of Nfr = K + Kp

symbols and changes independently from one frame to another
(block fading). The Nr × Nfr received signal matrix Rtot is
given by

Rtot = [Rp R] = h
[√

Epap

√
Esa

]
+ [Wp W] , (1)

where the 1 × Kp pilot vector ap and the 1 × K data vector
a consist of the pilot symbols and the information symbols,
respectively. We assume a normalized M -QAM constellation
for the information symbols (E

[|a(i)|2] = 1, 1 ≤ i ≤ K),
such that Es denotes the average transmitted energy for the
information symbols. Similarly, Ep denotes the energy of
the transmitted pilot symbols. The propagation channel is
represented by the Nr × 1 complex random vector h. We
consider an arbitrary joint pdf p(h) of the (possibly correlated)
Nr complex fading gains. The Nr × Nfr matrix [Wp W]
describes additive spatially and temporally white noise and
consists of i.i.d. zero-mean circularly symmetric complex
Gaussian (ZMCSCG) random variables with variance N0.

III. PILOT-BASED CHANNEL ESTIMATION

The receiver estimates the channel vector h from the known
pilot vector ap and the corresponding received signal matrix
Rp. We assume linear channel estimates of the form

ĥ =
α

Kp

√
Ep

RpaH
p , (2)

with α ∈ R, such that ĥ can be decomposed into the sum of
two statistically independent contributions:

ĥ = αh + n, (3)

where the entries of n =
(
α/(Kp

√
Ep)

)
WpaH

p are ZM-
CSCG random variables; the real and imaginary parts of
the entries of n have a variance σ2

n = α2N0/(2KpEp).
Hence, when conditioned on h, the channel estimate ĥ is
a complex Gaussian random variable with mean αh and
diagonal covariance matrix with diagonal elements 2σ2

n. Both

least-squares and linear MMSE estimation satisfy (2) with
α = 1 and α = KpEp/(KpEp + N0), respectively [11].

Allocating a large total energy KpEp to pilot symbols yields
an accurate channel estimate, but on the other hand gives rise
to a reduction of the symbol energy Es. When Eb denotes the
energy per information bit and γ � Ep/Es is the ratio of the
pilot energy to the data energy, we have

Es =
K

K + γKp
log2(M)Eb, (4)

where M denotes the number of constellation points. Hence,
Es decreases when the number of pilot symbols Kp is in-
creased.

IV. MAXIMAL-RATIO COMBINING

When the CSI is known by the receiver, ML detection of
the transmitted data yields optimum performance:

â = arg min
ã

∥∥∥R −
√

Eshã
∥∥∥2

. (5)

Here, ã ranges over all possible symbol vectors of length K.
Writing R = [r1 · · · rK ], it can be easily verified that the ML
algorithm (5) reduces to symbol-by-symbol detection for the
elements of the data vector a:

âk = arg min
ã

|uk − ã| , 1 ≤ k ≤ K, (6)

where the decision variable uk is given by

uk =
hHrk√
Es |h|2

. (7)

Hence, the ML detection algorithm reduces to multichannel
reception with MRC [2]. Since the CSI is not known by the
receiver, we assume a mismatched receiver which uses the
estimated channel vector ĥ in the same way an MRC receiver
with perfect channel knowledge (PCK) would use the actual
channel vector h. In this way, the decision variable becomes

uk =
ĥHrk√
Es

∣∣ĥ∣∣2 . (8)

In this paper, we consider square M -QAM transmission
with Gray mapping, which is equivalent to

√
M -PAM trans-

mission for both the in-phase and quadrature information bits.
The in-phase (quadrature) bits corresponding to the transmitted
information symbol a (we omit the time index k for notational
convenience), are detected correctly when the real (imaginary)
part of the decision variable u is located inside the projection
of the decision area of a on the real (imaginary) axis. Hence,
we can compute the BER as the average of the BERs for the
in-phase and the quadrature bits.

V. BIT ERROR RATE ANALYSIS

Let us first concentrate on the BER related to the in-phase
information bits, which is obtained by averaging the condi-
tional BER (conditioned on the channel h and the channel
estimate ĥ):

BERR = Eh,ĥ

[
BERR(h, ĥ)

]
. (9)



BERR(h, ĥ) from (9) can be expressed in terms of
BERR(a,h, ĥ), the BER conditioned on the transmitted sym-
bol (a), the true channel vector (h), and the estimated channel
vector (ĥ):

BERR(h, ĥ) =
1
M

∑
a∈Ψ

BERR(a,h, ĥ), (10)

where Ψ denotes the normalized M -QAM constellation. An
in-phase decision error occurs when the real part uR of the
decision variable u is inside the projection (on the real axis) of
the decision area of a QAM symbol b for which the in-phase
component bR is different from the in-phase component aR of
the transmitted symbol a; this projection will be referred to
as the decision region of bR. In this way, BERR(a,h, ĥ) is
given by

BERR(a,h, ĥ) =
∑

bR∈ΨR

N(aR, bR)
1
2 log2 M

P (a, bR,h, ĥ), (11)

where N(aR, bR) represents the Hamming distance between
the in-phase bits of the transmitted symbol a and the in-phase
bits of the detected symbol b. P (a, bR,h, ĥ) is the probability
that the real part of the decision variable u is located inside the
decision area of bR, when the symbol a has been transmitted,
and the channel h and the channel estimate ĥ are known:

P (a, bR,h, ĥ) = Pr
[
âR = bR

∣∣a,h, ĥ
]
. (12)

Expanding the real part of the decision variable (8) yields:

uR = u′
R +

�
{
ĥHw

}
√

Es

∣∣ĥ∣∣2 , (13)

with

u′
R = aR

�
{
ĥHh

}
|ĥ|2 − aI

�
{
ĥHh

}
|ĥ|2 . (14)

The first term in (14) is the useful term, while the second
term represents interference from the quadrature component
aI. Note that in case of PCK (ĥ = h), the interference term is
zero and u′

R = aR. When the boundaries of the decision region
of bR are denoted g1(bR) and g2(bR), with g1(bR) < g2(bR)
(we set g1(bR) = −∞ (g2(bR) = ∞) if b is a left (right) outer
constellation point), the probability (12) reduces to

P (a, bR,h, ĥ) = Q1 − Q2, (15)

where the functions Qi, i ∈ {1, 2}, are given by

Qi = Q

(√
2

Es

N0
|ĥ| (gi(bR) − u′

R)

)
. (16)

In (16), Q(.) is the Gaussian Q-function, defined as

Q(x) � 1√
2π

∫ ∞

x

exp
(
−x2

2

)
dx. (17)

Hence, (9) can be expressed as

BERR =
∫

BERR(h, ĥ)p(ĥ
∣∣h)p(h)dĥdh, (18)

where p(ĥ
∣∣h) is the joint Gausian pdf of Nr complex-valued

random variables, with mean αh and diagonal covariance
matrix with diagonal elements 2σ2

n, and p(h) represents the
arbitrary fading distribution. Note that this general description
also allows to assess correlated channels. Taking into account
that the components of h and ĥ are complex-valued, the
evaluation of (18) requires taking the expectation over 4Nr

real-valued variables. Hence, despite its conceptual simplicity,
(18) is not well suited for numerical evaluation, since the
associated computing time increases exponentially with the
number Nr of receive antennas.

In order to avoid the computational complexity of evaluating
(18), we will manipulate (18) into an expectation over only 4
variables. Therefore, we introduce the following real-valued
vectors: ⎧⎪⎨

⎪⎩
ĥ

′
=
[
ĥT

R, ĥT
I

]T
h

′
1 =

[
hT

R,hT
I

]T
h

′
2 =

[
hT

I ,−hT
R

]T , (19)

where ĥ = ĥR + jĥI and h = hR + jhI. It is readily
verified that h

′
1 and h

′
2 are orthogonal. Also, we introduce

an orthonormal coordinate system defined by the unit vectors
{ei, i = 1, · · · , 2Nr}, with e1 and e2 directed along h

′
1 and

h
′
2, respectively. The projection of ĥ

′
on ei is denoted xi, with

xi = ĥ′T ei, yielding |ĥ|2 = |ĥ′ |2 = x2
1 + x2

2 + z2, where

z2 =
2Nr∑
i=3

x2
i . (20)

Because of the specific directions of e1 and e2, it can be shown
that x1 and x2 are given by

x1 =
ĥ′T h

′
1

|h′
1|

=
�
{
ĥHh

}
|h| , (21)

x2 =
ĥ′T h

′
2

|h′
2|

=
�
{
ĥHh

}
|h| . (22)

Taking (14) and (16) into account, it follows that the condi-
tional BER (10) is a function of only 4 random variables, x1,
x2, z and |h|, which we denote BERR(x1, x2, z, |h|). Taking
(3) into account, it can be shown that x1, x2 and z (when
conditioned on |h|) are independent variables which satisfy
the following properties:

• x1 is a Gaussian random variable with mean α|h| and
variance σ2

n.
• x2 is a Gaussian random variable with zero-mean and

variance σ2
n.

• z/σn is distributed according to a chi distribution with
2Nr − 2 degrees of freedom [12].

According to the above properties, the in-phase BER (9) can
be obtained as

BERR =
∫

BERR(x1, x2, z, u)

p(x1, x2, z
∣∣|h| = u)p(u)dx1dx2dzdu, (23)



where p(u) is the pdf of the norm |h| of the channel vector
h. It is important to note that instead of the joint distribution
p(h) of the Nr complex-valued fading gains, we need only
the distribution of the norm |h|. Deriving in the same way as
above the BER related to the quadrature bits, the resulting
BER expression for QAM transmission is obtained as the
arithmetical average of the in-phase and quadrature BERs.
Hence, the BER for QAM involves an expectation over only
4 random variables.

The expectation (23) is evaluated numerically by approx-
imating the 4-fold integral by a 4-fold sum, running over
discretized versions of the continuous variables x1, x2, z
and u. Considering (10)-(12), (14)-(16) and the pdfs of the
independent variables x1, x2 and z (conditioned on |h|), the
integrand in (23) is, apart from p(u), the product of known
analytical functions. The pdf p(u) of |h| can be available either
in analytical form or obtained from experiments.

The number of random variables to be considered in the
expectation (23) is further reduced in the following cases:

1) In the case of single-input single-output (SISO) trans-
mission (Nr = 1), the dimension of ĥ′ is two, so the only
projections are x1 and x2. Hence the BER computation
involves averaging over only 3 variables, x1, x2 and |h|.

2) For PAM constellations, we have aI = 0, so that u′
R

from (14) does not depend on x2. Hence, the BER
(which equals the in-phase BER) is obtained by aver-
aging over only 3 variables, x1, z′ and |h|, where z′ is
obtained by changing in (20) the lower summation index
into 2. The variable z′/σn follows a chi distribution with
2Nr − 1 degrees of freedom.

Till now we have considered complex-valued channel gains.
In some applications (e.g., ultra wideband communication)
channel models with real-valued gains are more appropri-
ate. The BER result for PAM transmission over real-valued
channels is nearly the same as for PAM over complex-valued
channels (averaging over 3 variables, x1, z′ and |h|). The
variable z′/σn, however, is distributed according to a chi
distribution with Nr − 1 (instead of 2Nr − 1) degrees of
freedom. For specific cases, a further reduction of the number
of random variables can be obtained. In the case of binary
phase-shift keying (BPSK) transmission over a real-valued
SISO propagation channel, it can be shown that the BER is
given by

BER = Eh,ĥ

[
Q

(√
2

Es

N0
sgn(ĥ)h

)]
. (24)

Writing A1 =
√

2Es/N0 and A2 =
√

2KpEp/N0, it is easily
derived that (24) simplifies to:

BER = E|h|[Q(A1|h|) + Q(A2|h|)
− 2Q(A1|h|)Q(A2|h|)]. (25)

In this case, we need to take the expectation w.r.t. a single
variable only. Moreover, we obtain an exact closed-form
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Fig. 1. Complex-valued Nakagami-m fading channel, 16-QAM

expression for the BER for BPSK transmission over a real-
valued SISO propagation channel affected by Nakagami-m
fading with integer m [13], using the result from [14, eq. (6)].

VI. NUMERICAL RESULTS

In this section, we illustrate the exact BER analysis by
comparing several analytical BER curves resulting from nu-
merical evaluation with straightforward simulation results. We
assume linear MMSE channel estimation (Ep = Es) at the
receiver and Nr independent and identically distributed (i.i.d.)
Nakagami-m fading channels, with parameters m and Ω [13].

Fig. 1 shows the exact BER curves for 16-QAM transmis-
sion over a complex-valued SIMO channel, for both the mis-
matched receiver and the PCK receiver, and for several values
of m and Nr. It is easily derived that the norm |h| of the SIMO
channel is distributed according to a Nakagami-m distribution
with parameters Nrm and NrΩ. The curves corresponding to
the mismatched receiver represent the numerically computed
expectation over 4 variables resulting from (23), whereas the
BER of the PCK receiver involves the expectation over |h|
only. Also shown in the figure are straightforward computer
simulation results for the mismatched receiver that confirm the
result obtained from numerical averaging.

Fig. 2 illustrates the exact BER curves for BPSK transmis-
sion over a real-valued SISO channel, for both the mismatched
receiver and the PCK receiver, and for several values of m.
The curves corresponding to the mismatched receiver result
from the closed-form expression derived in Section V. The
BER of the PCK receiver can be computed in a similar manner.
Computer simulation results for the mismatched receiver again
confirm the analytical result.

VII. CONCLUSIONS AND REMARKS

In this contribution, we investigated the exact BER perfor-
mance of M -QAM with MRC multichannel reception under
the assumption of pilot symbol assisted channel estimation
at the receiver. The Nr propagation channels between the
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Fig. 2. Real-valued Nakagami-m fading channel (Nr = 1), BPSK

transmitter and each of the receive antennas were assumed
to be affected by (possibly correlated) flat block fading with
arbitrary pdf. The main conclusions are the following:

• A conceptually simple BER expression can be obtained in
the form of an expectation over 4Nr real-valued random
variables. However, the computing time needed for its
numerical evaluation increases exponentially with Nr.

• We have reduced the BER expression to an expectation
over only 4 variables, irrespective of the value of Nr. This
expression depends on the distribution of only the norm
of the channel vector, instead of the joint distribution of
all complex-valued channel gains. Moreover, for some
cases (SISO, real-valued channel, PAM constellation,
BPSK constellation, and combinations thereof) the num-
ber of variables involved in the expectation can be further
reduced.

• Evaluation of the reduced BER expression generally
requires a (4-fold or less) numerical integration. This
integration can be carried out when the pdf of the norm of
the channel vector is available in closed form or has been
obtained from experiments (histogram). Comparing the
computing times resulting from the numerical averaging
and from straightforward simulation, it turns out that the
numerical averaging is to be preferred for operating BER
values of practical interest.
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