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Abstract—Multiple-input multiple-output (MIMO) systems
employing adaptive modulation have been widely used for their
potential to optimize the spectral efficiency while keeping the bit
error probability (BEP) under a certain target level. In this paper,
we examine a MIMO system using square orthogonal space-
time block codes (OSTBCs) with rate-adaptive M -QAM and
operating over arbitrarily correlated Rayleigh fading channels
with imperfect channel estimation. Assuming finite-rate feedback
without delay, we derive accurate closed-form expressions for
the average BEP, spectral efficiency and bit error outage of
our system. The presented expressions allow to easily study the
impact of channel estimation errors and fading correlation on
the performance of rate-adaptive MIMO OSTBC systems.

I. INTRODUCTION

It is well understood that multiple-input multiple-output

(MIMO) systems employing space-time coding enhance the

performance of wireless communication systems by taking

advantage of the spatial diversity [1]. By providing the trans-

mitter with information about the channel state, the effect of

time-varying fading can be mitigated by adapting transmission

parameters such as the constellation size, the coding rate or

the transmit power [2].

Due to its high spectral efficiency (SE), M -ary quadrature

amplitude modulation (M -QAM) has been adopted in various

standards, e.g., DVB, WLAN and LTE. In [3], closed-form

expressions for the average bit error probability (BEP) and

SE are derived for a rate-adaptiveM -QAM system employing

orthogonal space-time block coding with outdated, finite-rate

feedback over independent and identically distributed (i.i.d.)

flat Rayleigh fading channels. Closed-form expressions for

the average SE of two rate-adaptive MIMO schemes, i.e.,

orthogonal space-time block codes (OSTBCs) and spatial

multiplexing with zero-forcing receiver were derived in [4]

for i.i.d. Rayleigh fading channels with imperfect channel state

information (CSI). It also considers a novel adaptation scheme

that enables the receiver to switch between OSTBCs and

spatial multiplexing. In [5], a similar analysis was given for

the case of spatially correlated Rayleigh fading channels with

transmit correlation and perfect CSI. Closed-form expressions

of the average BEP, SE and outage probability of rate-adaptive

OSTBC systems were given in [6] for spatially correlated

Rayleigh channels with and without perfect CSI. However, in

[6] the instantaneous BEP is approximated by an exponential

function, which simplifies the analysis significantly but can

be not sufficiently accurate for the performance evaluation in

fading channels. Bounds and approximations for the BEP of

QAM systems with diversity are analyzed in [7].

In this paper, we present a novel and accurate closed-form

expression for the average BEP of a rate-adaptive MIMO

OSTBC system with imperfect CSI in arbitrarily correlated

Rayleigh fading channels. For the case of i.i.d. Rayleigh

fading channels, an exact closed-form expression is provided.

In addition, we provide a simple approximate closed-form

expression for the average BEP, which yields more accurate

results than the approximate expression from [6]. To guar-

antee a fair comparison between different channel estimation

scenarios, the performance is compared given a fixed total

energy for both data and pilot symbols, and the achieved

spectral efficiency (ASE) is considered rather than the SE.

Our analysis enables system designers to choose appropriate

system parameters considering the trade-off between SE and

outage for a given target BEP.

II. SYSTEM MODEL

A. Transmitter

We consider a MIMO OSTBC system with Lt transmit

and Lr receive antennas. A square OSTBC from a complex

orthogonal design [1] is defined by an Lt ×Lt coded symbol

matrix C, the entries of which are linear combinations of

Ns information symbols si, 1 ≤ i ≤ Ns, and their complex

conjugate s∗i , such that

C =

Ns
∑

i=1

(

Ci si +C
′

i s
∗
i

)

(1)

where Ci and C
′

i are Lt × Lt matrices that comprise the

coefficients of si and s∗i , respectively. C is assumed to be

scaled in such way that it satisfies

C
H
C = CC

H = λ ‖s‖2 ILt
(2)
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where the superscript H denotes the conjugate transpose

operator, λ , Lt/Ns, s = [s1, s2, . . . , sNs
]T is the data symbol

vector, and ILt
denotes the Lt × Lt identity matrix. The

transmitter uses data frames consisting of K/Lt code matrices

C, with K being a multiple of Lt. In this way, K coded data

symbols per transmit antenna are sent within one frame. To

estimate the channel, Kp pilot symbols per transmit antenna

are transmitted prior to the data frame. We consider orthogonal

pilot sequences, i.e., the Lt ×Kp pilot matrix Cp satisfies

CpC
H
p = KpILt

. (3)

B. Channel model

The MIMO channel is represented by the Lr×Lt complex-

valued random matrixH, which is assumed to remain constant

during the transmission of Kp pilot symbols and K infor-

mation symbols. When stacking the elements of H into the

vector h , vec(H) of dimension L = LtLr, the elements of h

are arbitrarily correlated zero-mean (ZM) circularly symmetric

complex Gaussian (CSCG) random variables (RVs) with a

positive definite covariance matrix Rhh , E[hh
H ]. The

receiver observes the (LrKp)-dimensional column vector

rp =
√

Ep Bp h+wp (4a)

from which the channel is estimated, and an L-dimensional
column vector r for each transmitted code matrix C, given by

r =
√

Es Bh+w (4b)

where the vectors wp and w consist of i.i.d. ZM CSCG RVs

with variance N0; Bp and B are defined as Bp , C
T
p ⊗

ILr
and B , C

T ⊗ ILr
, respectively, with ⊗ denoting the

Kronecker matrix product. Assuming that E
[

‖si‖2
]

= 1, Ep

and Es in (4a) and (4b) denote the average pilot and data

symbol energy, respectively.

Note that LtKp pilot symbols and LtK coded data symbols

are required to transmit NsK/Lt information symbols. Let Ed

be the average total energy needed to transmit one information

symbol, such that the average total energy devoted to the trans-

mission of one data frame is given by Etot , (NsK/Lt)Ed.

By allocating a large fraction of Etot to pilot symbols, very

accurate channel estimation can be obtained. However, the

more energy is devoted to pilot symbols, the less energy

remains available for data transmission, calling for a trade-off

between resources dedicated to pilot and data symbols for a set

of target performance metrics [8], [9]. The relation between

Es and Ed is given by

Es =
K

K + εKp

ρEd, (5)

where ε , Ep/Es and ρ , Ns/L
2
t denote the ratio of Ep to

Es and the code rate, respectively.

C. Mismatched receiver

Using the vector channel model (4a), the linear minimum

mean-square error (LMMSE) channel estimate is given by [9]

ĥ =
1

Kp

√

Ep

(

N0

KpEp

IL +Rhh

)−1

RhhB
H
p rp. (6)

The components of ĥ are shown to be ZM CSCG RVs with

covariance matrix given by [10]

R
ĥĥ

, E

[

ĥ ĥ
H
]

= RhhRhh

(

N0

KpEp

IL +Rhh

)−1

.

(7)

We consider a mismatched maximum-likelihood (ML) receiver

that uses the estimated channel (6) instead of the true channel.

Taking (2) into account, it is readily verified that the detection

algorithm for the information symbols si reduces to symbol-

by-symbol detection

ŝi = argmin
s̃

|ui − s̃| , 1 ≤ i ≤ Ns (8)

where the minimization is over the symbols s̃ belonging to

the considered constellation and the decision variables ui are

given by

ui =
ĥ
H (C∗

i ⊗ ILr
) r+ r

H
(

C
′

i

T ⊗ ILr

)

ĥ

λ
√
Es‖ĥ‖2

. (9)

III. ADAPTIVE MODULATION SCHEMES

We consider a rate-adaptive MIMO OSTBC system, where

the receiver selects a constellation size Mj to be used

by the transmitter from a finite set of candidates M =
{M0,M1, . . . ,MJ} with Gray mapping, and sends this in-

formation back to the transmitter over a perfect feedback

channel without delay. When fast adaptive modulation (FAM)

is applied, the constellation size Mj is chosen depending on

the value of the estimated instantaneous SNR γ̂ = ‖ĥ‖2 Es

N0
.

Another approach consists in adaptingMj based on tracking of

large-scale fading. Analysis of fast and slow adaptive modula-

tion with diversity is given in [11]. Here, the modulation level

Mj is selected when γ̂ falls in the interval [γ̂?
j , γ̂

?
j+1), where

γ̂?
J+1 = ∞ and the switching thresholds γ̂?

j , j = 0, . . . , J , are
chosen to provide a given instantaneous target BEP P ?

b

Pb(γ̂
?
j ,Mj) = P ?

b (10)

where Pb(γ̂,Mj) denotes the BEP for Mj-QAM with im-

perfect channel estimation as a function of the estimated

instantaneous SNR γ̂. When even the smallest constellation

size M0 does not meet the target BEP, i.e., when γ̂ < γ̂?
0 , no

data are transmitted and the system is in outage.

IV. PERFORMANCE EVALUATION

In this section, we derive closed-form expressions for the

resulting average BEP, ASE, and BEO of a rate-adaptive

MIMO OSTBC system with LMMSE channel estimation.

In [10], it is shown that for square M -QAM constellations

with equally likely symbol vectors s, the instantaneous BEP

Pb,j(γ̂) can be calculated as

Pb(γ̂,M) =
2

MNs

∑

s∈ΨNs

∑

bR∈ΨR

dH(si,R, bR)

log2 M
Pi,R(s, bR, γ̂)

(11)

where Ψ and ΨR represent the sets of the M -QAM constella-

tion points and their real parts, respectively, and dH(si,R, bR)
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I(a, b, c, β, L) , Q
(

√

βa
)

exp
(

−a

c

)

L−1
∑

k=0

1

k!

(a

c

)k

−Q
(

√

βb
)

exp

(

−b

c

) L−1
∑

k=0

1

k!

(

b

c

)k

−
√

βc

2 + βc
(Q(t1)−Q(t2))

L−1
∑

k=0

1

2k

(

2k

k

)

1

(2 + βc)k

− 1√
2π

√

βc

2 + βc

[

L−1
∑

k=1

1

2k

(

2k

k

)

1

(2 + βc)k

k
∑

i=1

2i−1 (i− 1)!

(2i− 1)!

(

exp

(

− t21
2

)

t2i−1
1 − exp

(

− t22
2

)

t2i−1
2

)

]

. (12)

denotes the Hamming distance between the in-phase bits

allocated to si and a QAM symbol b = bR+jbI. Pi,R(s, bR, γ̂)
is the probability that the real part of the decision variable

(9) is located inside the projection on the real axis of the

decision area of b, when s and γ̂ are known. With d1(si,R, bR)
and d2(si,R, bR) denoting the distances between si,R and the

boundaries of the projection of the decision area of b, with
d1(si,R, bR) < d2(si,R, bR), Pi,R(s, bR, γ̂) is given by

Pi,R(s, b, γ̂) = Q

(

d1(si,R, bR)

σi,R(s, γ̂)

)

−Q

(

d2(si,R, bR)

σi,R(s, γ̂)

)

(13)

where Q(.) is the Gaussian Q-function. For i.i.d. Rayleigh
fading, σ2

i,R(s, γ̂) is given by [12]

σ2
i,R(s, γ̂) =

1

2λγ̂

(

1 +
λ‖s‖2

N0

Es
+ εKp

)

(14)

whereas it is shown in [10] that for arbitrarily correlated

Rayleigh fading and εKp
Es

N0
� 1, σ2

i,R(s, γ̂) results in

σ2
i,R(s, γ̂) ≈

1

2λγ̂

(

1 +
λ‖s‖2
εKp

)

. (15)

For a given target BEP, the switching thresholds can be com-

puted off-line by substituting (11) into (10) and numerically

solving the resulting equation.

Since the constellation size is selected based on the esti-

mated instantaneous SNR γ̂, the average BEP is given by

BEP =

∑J

j=0 Rj

∫ γ̂?
j+1

γ̂?
j

Pb(x,Mj) pγ̂(x) dx

∑J

j=0 Rj

∫ γ̂?
j+1

γ̂?
j

pγ̂(x) dx
. (16)

where Rj , log2(Mj) and pγ̂(x) is the probability density

function (PDF) of γ̂. The ASE is defined as η times the

SE, where η , K/(K + Kp) represents the fraction of

the resources that is used for the transmission of the data-

dependent portion of the frame [13]. Hence, the average ASE

(in bits/s/Hz) is obtained as

ASE =
K

K +Kp

Ns

Lt

J
∑

j=0

Rj

∫ γ̂?
j+1

γ̂?
j

pγ̂(x) dx. (17)

Since the BEO is given by the probability that the BEP exceeds

a target value P ?
b [6], [14], [15], it results in

BEO =

∫ γ̂?
0

0

pγ̂(x) dx. (18)

Using a moment generating function (MGF) approach, the

PDF pγ̂(x) of the estimated instantaneous SNR is easily

obtained as [16]

pγ̂(x) =

κ
∑

m=1

cm
∑

n=1

Dm,n

xn−1 exp

(

− x

λm
Es
N0

)

(n− 1)!
(

λm
Es

N0

)n (19)

where x ≥ 0 and λm’s, m = 1, 2, . . . , κ, are the distinct

eigenvalues ofR
ĥĥ

given by (7), with corresponding algebraic

multiplicities cm. In (19), the parameters Dm,n are given by

Dm,n =
(λm)n−cm

(cm − n)!

[

dcm−n

dscm−n
Ψm(s)

]

∣

∣

∣

s=− 1
λm

(20)

where

Ψm(s) =

κ
∏

l=1
l 6=m

(1 + λl s)
−cl . (21)

In order to obtain the numerator of (16), we present the

following closed-form solution, which to the best of our

knowledge has not appeared in the literature before

1

cn(L− 1)!

∫ b

a

Q
(

√

βy
)

yL−1 exp
(

−y

c

)

dy

= I(a, b, c, β, L), (22)

where I(a, b, c, β, L) is defined in (12), with t1 ,
√

βa+ 2a/c and t2 ,
√

βb + 2b/c. In this way, a closed-

form expression for the integral in the numerator of (16) can

be obtained from (11)-(15) and (19). Closed-form expressions

for the integrals in the denominator of (16) and in (17)-(18)

can be obtained using (19) and the lower incomplete gamma

function γ(s, x), which is defined as

γ(s, x) ,

∫ x

0

ts−1 exp (−t) dt. (23)

The complexity of the resulting closed-form expression for

the average BEP can be further reduced by replacing ‖s‖2 in
(14) or (15) by its expectation E[‖s‖2] = Ns. In this way,

the summation over the data symbol vector s in (11) reduces

to a summation over si,R, which reduces the computational

complexity of both the instantaneous and average BEP consid-

erably. The impact of this approximation on the accuracy of the

resulting average BEP expression is illustrated in Section V.
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V. NUMERICAL RESULTS

We report numerical results for a rate-adaptive MIMO

OSTBC system using Alamouti’s code [1] (Lt = Ns = 2).
We assume that Ep = Es, and that the constellation set is

given by M = {4, 16, 64}. To maximize the ASE for a given

target BEP, the number of pilot symbols Kp is optimized with

respect to the number of coded data symbols K . With larger

Kp, more accurate CSI can be obtained, which reduces the

BEO and enables larger constellations to meet the target BEP.

However, as mentioned in Section II-B, increasing Kp also

reduces Es and the ASE, according to (17), because more

resources are wasted on pilot symbols. Hence, Kp needs to

be carefully selected. We choose K = 20 and Kp = 4, which
can be shown to be a good trade-off between BEO and SE.

In Section IV, we have shown how the average BEP can

be derived from the instantaneous BEP and the PDF of the

estimated instantaneous SNR γ̂. In Fig. 1, several analytical

average BEP curves are presented, corresponding to different

approximations of the instantaneous BEP Pb(γ̂,M): (a) the
closed-form expression (11) using the approximation in (15);

(b) the approximation of (11) discussed in the last paragraph

of Section IV; and (c) the exponential approximation of

Pb(γ̂,M), as used in [6]. The dots in the figure represent

brute-force simulation results, which show a good agreement

with the analytical curves. A mismatched single-antenna re-

ceiver (Lr = 1) with a covariance matrix given by

Rhh =

(

1 0.6
0.6 1

)

(24)

is considered. The results are shown for both a target BEP of

P ?
b = 10−3 and P ?

b = 10−4. From the brute-force simulation

results, it follows that the presented average BEP (a) resulting

from (11) and (15) is very accurate for moderate to high

average SNR, whereas the approximations of the instantaneous

BEP used to obtain (b) and (c) cause a shift of the resulting

average BEP curves. For a target BEP of P ?
b = 10−4, the

average BEP curve from (b) turns out to be more accurate than

the BEP (c) from [6], while both expressions have a similar

computational complexity. For low average SNR, the average

BEP curves from (a), (b), and (c) diverge from the simulations

because of the high-SNR approximations used to obtain (15)

or (11). In case of a rate-adaptive system, however, the low

SNR region is not of particular interest, as the BEO would be

very high and, consequently, the resulting average ASE very

low.

For the remaining numerical results, we will apply a target

BEP of P ?
b = 10−4. Fig. 2 shows the average BEP, ASE, and

BEO curves for several values of Lr under the assumption

of i.i.d. Rayleigh fading with Rhh = I2Lr
. Using (11) and

(14), the exact average BEP can be obtained. The performance

results are shown for both a receiver with perfect CSI and

a mismatched receiver with LMMSE channel estimation. It

is observed from the figure that both imperfect CSI and the

number of receive antennas Lr have a considerable impact

on the ASE and the BEO. Imperfect CSI reduces the ASE

significantly since channel estimation errors and the energy

5 10 15 20 25 30 35 40

10
−6

10
−5

10
−4

10
−3

Ed/No [dB]

B
E
P

Target BEP = 1e−3

Target BEP = 1e−4

(a) Average BEP from (11)

(b) Average BEP from approx. of (11)

(c) Average BEP from [6]

Simulations

Fig. 1. Average BEP of Alamouti’s code under correlated Rayleigh fading,
for both a target BEP of P ?

b
= 10

−3 and P ?

b
= 10

−4.

devoted to pilot symbols give rise to a degradation of the

instantaneous BEP, such that, compared to the case of perfect

CSI, often a smaller constellation has to be selected in order to

satisfy the target BEP constraint. Moreover, the transmission

of pilot symbols reduces the ASE by a factor K/(K + Kp)
because part of the resources that could be used for data

symbols are now occupied by pilot symbols. On the other

hand, increasing the number of receive antennas increases the

ASE since the provided spatial diversity mitigates fading, such

that often a larger constellation can be selected which still

satisfies the target BEP constraint.

Fig. 3 shows the average BEP, ASE and BEO for a dual-

antenna receiver (Lr = 2) under correlated Rayleigh fading

with Rhh = Rt ⊗Rr, where Rt and Rr are given by

Rt = Rr =

(

1 ρ
ρ 1

)

(25)

and ρ denotes the correlation factor. The results are shown for
both a receiver with perfect CSI and a mismatched receiver

with LMMSE channel estimation, and for ρ ∈ {0, 0.3, 0.8}.
Note that ρ = 0 corresponds to the case of i.i.d. fading. We

observe that for low correlation levels, i.e., ρ < 0.3, the impact
of correlation on the ASE and BEO is fairly negligible. For

high correlation, however, e.g., ρ = 0.8, the ASE and BEO

are clearly negatively affected by fading correlation.

VI. CONCLUSION

In this paper, we investigated the effect of imperfect channel

estimation and fading correlation on the performance of a

rate-adaptive MIMO OSTBC system. Assuming finite-rate

feedback without delay, we presented accurate closed-form

expressions for the average BEP, ASE, and BEO, which enable

the design of such adaptive communication systems.
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