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ABSTRACT

In multiple antenna systems, channel estimation is of critical im-
portance. In this paper, we investigate the effect of imperfect
channel estimation on the performance of both uncoded single-
input multiple-output (SIMO) systems and multiple-input multi-
ple-output (MIMO) systems using Alamouti space-time block
codes. To this end we consider a mismatched receiver and a pro-
pagation channel that is affected by flat Rayleigh block fading.
The receiver estimates the channel from known pilot symbols
which are transmitted among the data. An analytical expression
for the bit error rate (BER) with imperfect channel estimation is
derived. Given a number of data symbols we find the optimal
number of pilot symbols that minimizes the BER degradation,
for both uncoded SIMO communication and Alamouti space-
time block coded MIMO communication. For best performance
the number of data symbols in one transmission block is to be
taken as high as possible, provided that the duration of a block
does not exceed the channel coherence time. Analytical results
are confirmed by computer simulations.

1. INTRODUCTION

The performance of wireless communication systems is
strongly limited by channel fading. The use of multiple
transmit and/or receive antennas serves as a convenient
means to improve the reliability and throughput on fading
channels. These so-called MIMO communication systems
can exploit the spatial dimension to combine high data
rates with low bit error rates [1]. However, in order to
realize these beneficial prospects, the channel state infor-
mation (CSI) needs to be known at the receiver.
In realistic wireless applications this CSI is not a priori
known and the receiver has to estimate the channel re-
sponse. Channel estimation, however, is never perfect in
practice, which results in a performance penalty. In the
current paper, we investigate to what extent this imper-
fect channel estimation deteriorates the performance of
both uncoded single-input multiple-output (SIMO) sys-
tems and space-time coded MIMO systems with Alamouti
space-time block codes (STBCs). A performance analysis

of space-time coded systems with channel estimation er-
rors has also been carried out in [3]. However, in contrast
to the work from [3], the current paper presents closed-
form expressions for the degradation caused by channel
estimation errors and for the optimal training sequence
length that minimizes this degradation.

2. PILOT-BASED CHANNEL ESTIMATION

We consider a wireless communication system with Nt

transmit antennas and Nr receive antennas. The propa-
gation channel is assumed to be a Rayleigh block fading
flat MIMO channel that is approximately constant over
Ncoh symbol intervals; Ncoh denotes the channel coher-
ence time (measured in symbol intervals). Since the CSI is
not known by the receiver, we assume that the transmitter
sends a sequence of P known pilot symbols at each trans-
mit antenna among the K data symbols of one transmis-
sion block, in order to enable channel estimation. Within
one block of N = K + P symbols transmitted at each
antenna, the general MIMO signal model holds:

Rtot = [RP R] = H [AP A] + W, (1)

where we assume N < Ncoh. The Nr × N matrix Rtot

comprises the received complex signals at each receive an-
tenna. The Nt×N matrix [AP A] consists of the transmit-
ted symbols at each transmit antenna, and can be decom-
posed into a Nt × P pilot matrix AP and a Nt ×K data
matrix A. The channel is represented by the Nr×Nt com-
plex random matrix H, whose elements are independent
identically distributed (i.i.d.) zero-mean circularly sym-
metric complex Gaussian (ZMCSCG) random variables
with unit variance (i.e., each channel coefficient has in-
dependent real and imaginary parts with zero mean and
variance 1/2). The Nr × N matrix W describes additive
spatially and temporally white noise and consists of i.i.d.
ZMCSCG random variables with variance N0.
The average data symbol energy Es is given by

Es =
1

NtK
E[‖A‖2], (2)



where ‖.‖ denotes the Frobenius norm. The average pilot
symbol energy is EP . The receiver can estimate H using
RP and the known pilot matrix AP . In this contribution
we consider the minimum mean-square error (MMSE) es-
timate which is given by [7]

Ĥ = RP AH
P

(
N0INt

+ AP AH
P

)−1
, (3)

where (.)H denotes the Hermitian transpose. We assume
orthogonal training sequences, i.e., the matrix AP has or-
thogonal rows such that AP AH

P = PEP INt . In this way,
the above equation simplifies to

Ĥ =
1

N0 + PEP
RP AH

P . (4)

Defining the channel estimation error as

∆̂ = H− Ĥ. (5)

The following properties can be derived from (4):

• Ĥ and ∆̂ are Gaussian and statistically indepen-
dent;

• The components of Ĥ are i.i.d. ZMCSCG random
variables with

σ2
Ĥ

= E

[∣∣∣Ĥm,n

∣∣∣2] =
PEP

N0 + PEP
; (6)

• The components of ∆̂ are i.i.d. ZMCSCG random
variables with

σ2
∆̂

= E

[∣∣∣∆̂m,n

∣∣∣2] =
N0

N0 + PEP
. (7)

3. ML DETECTION ALGORITHM

If H is known by the receiver, ML decision of the data
symbol matrix A reduces to

Â = arg min
A

‖R−HA‖2
. (8)

Since only the estimated channel matrix Ĥ is known in-
stead of H, we consider a receiver that uses Ĥ in the same
way an ML receiver would apply H

Â = arg min
A

∥∥∥R− ĤA
∥∥∥2

. (9)

This type of receiver is often called a mismatched receiver.
For a mismatched receiver that assumes Ĥ to be the cor-
rect channel matrix, the received signal R that corresponds
to the data matrix A can be decomposed as:

R = ĤA + ∆̂A + W, (10)

where ĤA is the useful component, W is the Gaussian
channel noise, and ∆̂A is additional Gaussian noise caused
by the channel estimation error. As compared to a receiver
with perfect CSI, the detection performance of the mis-
matched receiver is degraded: the useful component is re-
duced (because it follows from (6) that σ2

Ĥ
≤ 1) and the

total noise variance is increased.

3.1. Uncoded SIMO

For SIMO systems, the channel matrix reduces to a Nr×1
column vector h. When the data symbols are uncoded, (9)
simplifies to symbol-by-symbol detection, with the detec-
tion of a(k) involving only the k-th column r(k) of R.
Suppressing for notational convenience the time index k,
the detection for uncoded SIMO reduces to

â = arg min
a
|u− a|2 , (11)

with

u =
ĥHr∥∥∥ĥ∥∥∥2 . (12)

3.2. Alamouti space-time block code

The Alamouti space-time block code [6], that has been
designed for two transmit antennas, transforms two infor-
mation symbols c1(k) and c2(k) into a 2×2 coded symbol
matrix C(k), given by

C(k) =
[

c1(k) −c∗2(k)
c2(k) c∗1(k)

]
. (13)

Hence, assuming that an even number K of information
symbols is sent, the transmitted data symbol matrix is gi-
ven by A = [C(1), ...,C(K/2)]. Denoting by [r1 r2] the
Nr × 2 observation matrix corresponding to a coded sym-
bol matrix C (we omit the time index for notational conve-
nience) and writing H = [h1 h2], the detection algorithm
for the information symbols c1 and c2 reduces to symbol-
by-symbol detection :

ĉi = arg min
ci

|ui − ci| , i = 1, 2, (14)

with

u1 =
ĥH

1 r1 + ĥT
2 r∗2∥∥∥ĥ1

∥∥∥2

+
∥∥∥ĥ2

∥∥∥2 (15)

u2 =
ĥH

2 r1 − ĥT
1 r∗2∥∥∥ĥ1

∥∥∥2

+
∥∥∥ĥ2

∥∥∥2 . (16)



4. BIT ERROR RATE COMPUTATION

Taking into account the properties of the MMSE chan-
nel estimate and the associated estimation error, we show
that the BER resulting from the mismatched receiver in
the cases of uncoded SIMO and Alamouti STBC can be
easily derived from the BER expressions that hold for the
receiver with perfect channel knowledge (PCK). BER ex-
pressions for the PCK receiver can be obtained from the
literature (e.g., [4, 5, 2])

4.1. Uncoded SIMO

The observation model for a SIMO receiver with PCK is

r = ha + w, (17)

where h and w consist of i.i.d. ZMCSCG random vari-
ables with variances σ2

H (= 1) and N0, respectively. The
resulting BER can be expressed as

BERSIMO−PCK = fSIMO

(
Esσ

2
H

N0

)
, (18)

where fSIMO(.) is a function depending on the symbol
constellation type and on the number of receive antennas.
The argument of fSIMO(.) in (18) denotes the SNR re-
lated to the PCK receiver.
For the mismatched SIMO receiver, the relevant observa-
tion model is

r = ĥa + ∆̂a + w. (19)

The vectors ĥ and ∆̂a consist of i.i.d. ZMCSCG random
variables with variances σ2

Ĥ
(see (6)) and Esσ

2
∆̂

(see (7)),
respectively. Hence, the BER of the mismatched SIMO
receiver is given by

BERSIMO = fSIMO

(
Esσ

2
Ĥ

N0 + Esσ2
∆̂

)
. (20)

The argument of fSIMO(.) in (20) denotes the SNR re-
lated to the mismatched receiver.

4.2. Alamouti space-time block code

The observation model for the Alamouti receiver with PCK
is

[r1 r2] = [h1 h2]C + [w1 w2] , (21)

with C given by (13). The 2 × 2 matrices [h1 h2] and
[w1 w2] consist of i.i.d. ZMCSCG random variables with
variances σ2

H (= 1) and N0, respectively. The resulting
BER can be expressed as

BERAlam−PCK = fAlam

(
Esσ

2
H

N0

)
, (22)

where fAlam(.) is a function depending on the symbol
constellation type and on the number of receive antennas.
The argument of fAlam(.) in (22) denotes the signal-to-
noise ratio (SNR) related to the PCK receiver.
For the mismatched Alamouti receiver, the relevant obser-
vation model is

[r1 r2] =
[
ĥ1 ĥ2

]
C + ∆̂C + [w1 w2] . (23)

The matrix [ĥ1 ĥ2] consist of i.i.d. ZMCSCG random vari-
ables with variances σ2

Ĥ
(see (6)). The matrix ∆̂C is sta-

tistically independent of [ĥ1 ĥ2], and consists of ZMC-
SCG random variables with the following correlation :

E

[(
∆̂C

)
m,k

(
∆̂C

)∗
m′,k′

]
=
∑
n,n′

E
[
∆̂m,k∆̂∗

m′,k′

]
Cn,kC∗

n′,k′

= σ2
∆̂

(
CHC

)
k′,k

δm−m′ . (24)

From (13) it follows that CHC = (|c1|2+|c2|2)I2, so that
the components of ∆̂C are i.i.d. with variance 2Esσ

2
∆̂

.
Hence, the BER of the mismatched Alamouti receiver is
given by

BERAlam = fAlam

(
Esσ

2
Ĥ

N0 + 2Esσ2
∆̂

)
. (25)

The argument of fAlam(.) in (25) denotes the SNR related
to the mismatched receiver.

5. OPTIMAL TRAINING STRATEGY

In this section we determine the optimal training strategy,
such that the BER degradation of the mismatched receiver
as compared to the PCK receiver is minimal. Allocating a
large total energy PEP to pilot symbols yields an accurate
channel estimate (see (7)), but on the other hand gives rise
to a reduction of the symbol energy Es. Denoting by Eb

the energy per information bit, we have

KEs + PEP = KρEb log2(M), (26)

where ρ and M denote the code rate and the number of
constellation points, respectively (ρ = 1 for uncoded trans-
mission, ρ = 1/2 for Alamouti STBC). Hence, for given
Eb and K, the energy per data symbol Es decreases with
increasing PEP . Further, denoting by Rs the symbol rate
per transmit antenna, the information bitrate is given by

Rb =
K

K + P
Nt log2(M)ρRs, (27)



which indicates that the addition of pilot symbols reduces
the bandwidth efficiency.
In the following we take EP = γEs, in which case (27)
yields

Es =
K

K + γP
ρ log2(M)Eb. (28)

5.1. Uncoded SIMO

For given K and Eb, we compare the SNRs of the PCK
receiver (with P = 0) and the mismatched receiver. Con-
sidering (28) and taking the ratio of the arguments of the
function fSIMO(.) in (18) (with P = 0) and (20) yields

SNRSIMO−PCK

SNRSIMO
=

K + γP

K

�
1+

1

γP
+

K + γP

γPK log2 M

No

Eb

�

(29)

Note that (29) depends on γP , rather than on γ and P
separately. For large Eb/N0 and EP = Es (γ = 1), (29)
reduces to

SNRSIMO−PCK

SNRSIMO
=

K + P

K

1 + P

P
. (γ = 1) (30)

Hence, in order that the PCK receiver and the mismatched
receiver have the same BER, the latter receiver must have
a larger Eb/N0 ratio than the former receiver, by an amount
indicated by (30). This indicates that the PCK receiver and
the mismatched receiver give rise to the same diversity or-
der (which equals Nr for SIMO), as observed in [7].
From (30), we find the optimal number P of pilot symbols
for a given number K of data symbols

Popt =
√

K. (γ = 1) (31)

The minimal degradation then becomes

SNRSIMO−PCK

SNRSIMO
=

(
1 +

√
K
)2

K
, (γ = 1) (32)

which for large K asymptotically approximates 1 (or 0dB).
For best performance we should take K as high as possi-
ble, taking into account that K + P must not exceed the
coherence interval Ncoh. Since P in (29) only occurs in
combination with γ, we can obtain the same degradation
(32) by taking P =

√
K/γ and EP = γEs. An advantage

of this degree of freedom is that we can reduce the num-
ber of pilot symbols P <

√
K to increase the information

bitrate. However, the lower P , the larger EP : higher peak
transmit powers are needed at the transmitter side to main-
tain optimal performance.

5.2. Alamouti space-time block code

Here we make a similar reasoning as for uncoded SIMO
to obtain the degradation in the case of the mismatched
receiver for the Alamouti code. From (22) and (25) we
obtain

SNRAlam−PCK

SNRAlam
=

K + γP

K

�
1+

2

γP
+

K + γP

γPK log2 M

No

Eb

�
,

(33)

which for large Eb/N0 and EP = Es (γ = 1) reduces to

SNRAlam−PCK

SNRAlam
=

K + P

K

2 + P

P
. (γ = 1) (34)

Hence, the PCK receiver and the mismatched receiver give
rise to the same diversity order (which equals 2Nr for the
Alamouti code), as observed in [7].
From (34), we find the optimal number P of pilot symbols
at each transmit antenna for a given number K of data
symbols

Popt =
√

2K. (35)

The minimal degradation then becomes

SNRSIMO−PCK

SNRSIMO
=

(√
2 +

√
K
)2

K
, (γ = 1) (36)

which for large K asymptotically approximates 1 (or 0dB).
Again, we can obtain the degradation (36) with an arbi-
trary number of pilot symbols by taking γP =

√
2K and

adjusting EP accordingly.

6. NUMERICAL RESULTS

To obtain our numerical results, we consider QPSK trans-
mission over a MIMO channel affected by independent
flat Rayleigh block fading.
Denoting by BERQPSK(Es/N0, L) the BER resulting
from diversity reception of QPSK symbols over L inde-
pendent flat Rayleigh fading channels with channel vari-
ances 1, the BER for the PCK receiver with Nr receive
antennas is given by

BERQPSK−SIMO−PCK(Es/N0, Nr)
= BERQPSK(Es/N0, Nr) (37)
BERQPSK−Alam−PCK(Es/N0, Nr)
= BERQPSK(Es/N0, 2Nr) (38)

The expression for BERQPSK(Es/N0, L) is available
from the literature (e.g., [4]). Using (20) and (25) in (37)
and (38), the BER expressions for the mismatched re-
ceivers are easily obtained.



Figure 1 shows the minimal degradations (32) and (36) of
the SNR, as a function of the number K of data symbols.
For high Eb/N0, this degradation manifests itself in a hor-
izontal shift of the BER curve of the mismatched receiver
as compared to the PCK receiver, by an amount indicated
in Figure 1. For a given number K of data symbols, the
degradation is always larger for Alamouti coded commu-
nication than for uncoded SIMO communication. Never-
theless, for large K the degradation is negligible in both
cases, provided that the coherence time of the considered
channel is sufficiently long to allow large K. Throughout
the remainder of this section we assume that the same en-
ergy is allocated to pilot and data symbols (EP = Es) and
that K = 100. Under these assumptions, we know from
(31) that the optimal number of pilot symbols for uncoded
SIMO communication is P = 10.
Figure 2 illustrates the BER for uncoded SIMO communi-
cation with MMSE channel estimation from the optimum
number of pilot symbols. The solid lines show the analyti-
cal BER result, whereas the markers are obtained through
simulation. The dashed lines show the BER in case of
perfect channel knowledge. In accordance with (32), the
degradation of the SNR amounts to 0.83dB, irrespective
of the number of receive antennas.
Figure 3 illustrates the BER for the Alamouti STBC in
case of MMSE channel estimation with P = 14. In ac-
cordance with (36), the degradation of the SNR amounts
to 1.15dB.
Figure 4 shows the BER versus the number of pilot sym-
bols for the Alamouti code at Eb/N0 = 10dB. Again, the
solid lines show the analytical result whereas the markers
are obtained through simulation. The dashed lines show
the BER in case of perfect channel knowledge. It is clear
from the figure that selecting the optimal number of pilot
symbols is not a very critical issue.

7. CONCLUSIONS

In this work, we investigated the effect of imperfect chan-
nel estimation on the performance of both uncoded SIMO
systems and MIMO systems with Alamouti space-time
block codes. In both cases we considered a mismatched
receiver and a propagation channel that is affected by flat
Rayleigh block fading. Channel estimation was done from
known pilot symbols sent among the data. We found that
the channel estimation errors generate extra noise terms at
the decision unit, which degrade the signal-to-noise ratio
and thus deteriorate the performance of the communica-
tion system.
Further we derived an analytical expression for the bit er-
ror rate for QPSK transmission with imperfect channel es-
timation. For both uncoded SIMO communication and
Alamouti space-time block coded MIMO communication

Figure 1: Minimal degradation of the SNR (in dB).

Figure 2: Bit error rate for uncoded SIMO.

Figure 3: Bit error rate for Alamouti space-time block
code.



Figure 4: Bit error rate versus number of pilot symbols
for Alamouti coded MIMO communication (K = 100,
Eb/N0 = 10dB).

we found the optimal number of pilot symbols that mini-
mizes the BER degradation, given a number of data sym-
bols. For best performance the number of data symbols in
one transmission block should be taken as high as possi-
ble, provided that the duration of one block does not ex-
ceed the channel coherence time. Selecting the optimal
number of pilot symbols turns out not to be a very critical
issue.
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