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Effect of MMSE Channel Estimation on BER Performance of
Orthogonal Space-Time Block Codes in Rayleigh Fading Channels
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Abstract—We present a simple closed-form expression for
the BER of orthogonal space-time block codes (OSTBCs) with
MMSE channel estimation, assuming PAM and QAM constel-
lations and flat Rayleigh block fading. The BER expression is
exact for a certain class of OSTBCs, and provides a very accurate
approximation for other OSTBCs.

Index Terms—Bit error rate (BER), channel estimation,
Rayleigh fading, multiple-input multiple-output (MIMO), orthog-
onal space-time block codes (OSTBCs).

I. INTRODUCTION

IN order to enable reliable communication over rapidly
time-varying channels, multiple-input multiple-output

(MIMO) wireless communication systems exploit spatial
diversity by using multiple transmit and/or receive antennas.
A maximum diversity order of NtNr can be achieved
(with Nt and Nr denoting the number of transmit and
receive antennas, respectively), provided that proper space-
time coding is used. Orthogonal space-time block codes
(OSTBCs) [1]–[3] are considered a very attractive transmit
diversity technique, since they achieve full spatial diversity,
and the maximum-likelihood decoding algorithm reduces to
symbol-by-symbol detection, based only on linear processing
at the receiver. Owing to the simple detection algorithm, bit
error rate (BER) expressions for OSTBCs are easily derived
when perfect channel knowledge (PCK) is assumed (e.g.
[4]–[7]).

In practice, however, the channel state information (CSI)
is not a priori known and errors resulting from imperfect
channel estimation degrade the system performance. In [8],
the effect of channel estimation errors on the BER of space-
time block codes was demonstrated by means of simulations.
In [9] and [10], the symbol error rate (SER) of OSTBCs
in presence of imperfect channel estimation was examined.
High-SNR expressions for the pairwise error probability (PEP)
were derived under quite general conditions in [11], using an
eigenvalue approach. In [12], an exact closed-form expression
for the PEP of both orthogonal and non-orthogonal space-
time codes in the case of least-squares channel estimation
was obtained by means of characteristic functions. In a fading
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environment, however, the BER upper bound resulting from
the PEP does not converge to the true BER at high SNR.
Therefore, in this paper we assess the true BER of OSTBCs.
For OSTBCs satisfying a particular condition, we derive a
simple closed-form expression for the exact BER in case of
pulse amplitude modulation (PAM) and quadrature amplitude
modulation (QAM) signal constellations. For OSTBCs that do
not satisfy this condition, we point out that the BER expression
provides a very accurate approximation.

Throughout this paper, the superscript H denotes the con-
jugate matrix transpose. tr(X) and ‖X‖ refer to the trace and
the Frobenius norm of X, respectively.

II. SIGNAL MODEL

We consider a MIMO communication system with Nt

transmit antennas and Nr receive antennas, and a flat Rayleigh
fading propagation channel. Transmission is organized in
frames: in one frame, each transmit antenna sends Kp known
pilot symbols and K coded data symbols. The pilot symbols
are used by the receiver to estimate the channel, which is
assumed to be constant within one frame of Nfr = K + Kp

symbols and changes independently from one frame to another
(block fading). The Nr × Nfr received signal matrix Rtot is
given by

Rtot = [Rp,R] = H [Ap,A] + W, (1)

where the Nt × Kp pilot matrix Ap and the Nt × K data
matrix A consist of the pilot symbols and the coded data
symbols, respectively, transmitted at each transmit antenna.
The propagation channel is represented by the Nr × Nt

complex random matrix H, whose elements are independent
identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables with unit
variance (i.e., each channel coefficient has independent real
and imaginary parts with zero mean and variance 1/2). The
Nr × Nfr matrix W represents additive spatially and tem-
porally white noise and consists of i.i.d. ZMCSCG random
variables with variance N0.

An orthogonal space-time block code transforms a vector
s(k) of Ns information symbols si(k), 1 ≤ i ≤ Ns,
into a Nt × Kc coded symbol matrix C(k), with k de-
noting the block index. Assuming that K is a multiple of
Kc, the transmitted data symbol matrix is given by A =√

Es [C(1), · · · ,C(K/Kc)]. In this paper, we restrict our at-
tention to OSTBCs from complex linear processing orthogonal
designs [1], such that the entries of the symbol matrices
are linear combinations of the information symbols and their
complex conjugate. Hence, the code matrix C can be written
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as (we drop the index k for notational convenience)

C =
Ns∑
i=1

(
Cisi + C

′
is

∗
i

)
, (2)

where the Nt × Kc matrices Ci and C
′
i comprise the coef-

ficients of si and s∗i in the matrix C, respectively. Without
loss of generality, we may assume that the matrices C are
scaled in such way that they satisfy the following orthogonality
condition:

CCH =

(
λ

Ns∑
i=1

|si|2
)

INt , (3)

where λ = Kc/Ns and INt is the Nt × Nt identity matrix.
Considering a normalized information symbol constellation
(E[|si|2] = 1), it follows from (3) that the average energy
of the transmitted coded symbols is given by Es. Similarly,
the average energy of the pilot symbols is given by Ep.

III. PILOT-BASED CHANNEL ESTIMATION

The receiver can estimate the channel H using Rp and
the known pilot matrix Ap. Assuming orthogonal training
sequences, i.e., the matrix Ap has orthogonal rows such that
ApAH

p = KpEpINt , the linear minimum mean-square error
(MMSE) channel estimate [13] is given by

Ĥ =
1

N0 + KpEp
RpAH

p . (4)

Defining the channel estimation error as Δ̂ = H − Ĥ, the
following properties can be derived:

• Ĥ and Δ̂ are statistically independent Gaussian random
matrices;

• The components of Ĥ are independent and identically
distributed (i.i.d.) ZMCSCG random variables with vari-
ance σ2

Ĥ
= KpEp/(N0 + KpEp);

• The components of Δ̂ are i.i.d. ZMCSCG random vari-
ables with variance σ2

Δ̂
= N0/(N0 + KpEp).

Allocating a large total energy KpEp to pilot symbols yields
an accurate channel estimate, but on the other hand gives rise
to a reduction of the symbol energy Es. When Eb denotes the
energy per information bit and γ � Ep/Es is the ratio of the
pilot energy to the data energy, we have

Es =
K

K + γKp
ρ log2(M)Eb, (5)

where ρ = Ns/(NtKc) and M denote the code rate and
the number of constellation points, respectively. Hence, Es

decreases when the number of pilot symbols Kp is increased.

IV. BIT ERROR RATE ANALYSIS

We consider a mismatched receiver that uses the estimated
channel matrix Ĥ in the same way a maximum-likelihood
(ML) receiver would use the actual channel matrix H. In this
way, the detection algorithm reduces to symbol-by-symbol
detection. Denoting by R′ the received signal matrix corre-
sponding to the transmitted symbol matrix C, the decision

variable ui related to the symbol si, 1 ≤ i ≤ Ns, is given by

ui =
tr
(
CH

i ĤHR′ + R′HĤC
′
i

)
λ
√

Es

∥∥Ĥ∥∥2 . (6)

Expanding (6) yields ui = si + ni, 1 ≤ i ≤ Ns, where the
disturbance term ni contains contributions from the channel
noise and the channel estimation error Δ̂, and is Gaussian
when conditioned on C.

A. M-PAM constellation

We obtain the BER from the conditional BER of the i-
th information symbol (conditioned on the estimated channel
matrix and the transmitted information symbol vector s =
(s1, · · · , sNs)):

BERM−PAM = Ei,s,Ĥ

[∑
b∈Ψ

N(si, b)
log2 M

Pi(s, b, Ĥ)

]

=
1

Ns

1
MNs

Ns∑
i=1

∑
s∈ΨNs

∑
b∈Ψ

N(si, b)
log2 M

EĤ

[
Pi(s, b, Ĥ)

]
. (7)

In (7), Ψ denotes the normalized M -PAM constellation,
N(si, b) represents the Hamming distance between the binary
representations of the transmitted symbol si and the decoded
symbol b, and Pi(s, b, Ĥ) is the probability that ui is located in
the decision area of the constellation point b (when the trans-
mitted symbol vector and the channel estimate are known).
When d1(si, b) and d2(si, b) denote the distances between
the transmitted constellation point si and the boundaries of
the decision area of b, with d1(si, b) < d2(si, b) (we set
d2(si, b) = ∞ if b is an outer constellation point), the latter
probability is given by

Pi(s, b, Ĥ) = Q

(
d1(si, b)
σRi(s, Ĥ)

)
− Q

(
d2(si, b)

σRi(s, Ĥ)

)
, (8)

where σRi(s,H) denotes the standard deviation of the real part
of ui and Q(.) is the complementary cumulative distribution
function of a zero-mean Gaussian random variable with unit
variance. Let the Nt × Nt matrix CRi(s), 1 ≤ i ≤ Ns, be
defined as

CRi(s) � C
(
Ci + C

′
i

)H

, (9)

which is a function of the information symbol vector s through
the code matrix C (see (2)). It can be shown that

σ2
Ri

(s, Ĥ)

=
N0

2λEs

∥∥∥Ĥ∥∥∥2

⎛
⎜⎝1 +

σ2
Δ̂

N0

Es

∥∥∥ĤCRi(s)H
∥∥∥2

λ
∥∥∥Ĥ∥∥∥2

⎞
⎟⎠ . (10)

Since the expression between parentheses in (10) depends on
Ĥ, the expectation of (8) over Ĥ is difficult to compute. How-
ever, this dependence is removed if the considered OSTBC
satisfies the following criterion for 1 ≤ i ≤ Ns:

CRi(s)
HCRi(s) = βRi(s) INt , (11)
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where βRi(s) = ‖CRi(s)‖2 /Nt. For OSTBCs satisfying (11),
the variance (10) simplifies to

σ2
Ri

(s, Ĥ) =
N0

2λEs

∥∥Ĥ∥∥2

(
1 +

σ2
Δ̂

N0

EsβRi(s)
λ

)
, (12)

and the averaged Q-functions in (8) reduce to [14]

EĤ

[
Q

(
dj(si, b)

σRi(a, Ĥ)

)]

= Ω

⎛
⎝ 2λd2

j(si, b)

1 + βRi
(s)

λγKp
+ 1

γKp

N0
Es

Es

N0

⎞
⎠ , (13)

for j ∈ {1, 2}. In (13), the function Ω(θ) is defined as

Ω(θ) �
[
1 − μ

2

]L L−1∑
k=0

(
L − 1 + k

k

)[
1 + μ

2

]k

, (14)

where L = NrNt denotes the spatial diversity achieved by the
OSTBC, and μ =

√
θ/(2 + θ).

Taking (5) into account, the ratio of the BER of the
mismatched receiver to the BER with PCK (Kp = 0) is easily
obtained (at high Eb/N0):

BERM−PAM,MMSE

BERM−PAM,PCK

=
(

1 +
γKp

K

)L Ei,s

[(
1 + βRi

(s)

λγKp

)L

ξ(si)
]

Es [ξ(s)]
, (15)

where the function ξ(s) is defined as

ξ(s) �
∑
b∈Ψ

N(s, b)
(

1
d2L
1 (s, b)

− 1
d2L
2 (s, b)

)
. (16)

Given that the ratio (15) is not a function of Eb/N0, it follows
that the PCK receiver and the mismatched receiver achieve the
same diversity order, as observed in [13].

For OSTBCs that do not satisfy criterion (11), replacing
the variance (10) by its average over the entries of Ĥ, when
conditioned on

∥∥Ĥ∥∥2
, also results in (12). In this way, (13)

and (15) provide simple approximations of the BER and the
BER degradation of the mismatched receiver.

B. M-QAM constellation

Now we consider square M -QAM information symbols
with Gray mapping, which is equivalent to

√
M -PAM map-

ping for both the in-phase and quadrature information bits.
In this way, the BER for QAM transmission reduces to
the average of the BERs for the in-phase and quadrature
information bits. For the sake of conciseness we provide only
the QAM equivalent of criterion (11); the computation of the
BER and the associated BER degradation follows the same
lines as for PAM. Defining the matrix CIi(s) � C(Ci−C

′
i)

H ,
the exact BER for both the in-phase and quadrature bits can
be computed analytically if the OSTBC satisfies the following
criterion for 1 ≤ i ≤ Ns:⎧⎨

⎩CRi(s)HCRi(s) = ‖CRi
(s)‖2

Nt
INt

CIi(s)HCIi(s) = ‖CIi (s)‖2

Nt
INt

, (17)
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Fig. 1. BER of Alamouti’s code, 4-QAM.

where CRi(s) is given by (9). Examples of OSTBCs that
satisfy (17) are given in [15], [1, eq. (38),(40)] and [2, eq.
(62)]. For OSTBCs not satisfying (17), the resulting BER
expression is a simple approximation of the actual BER.

V. NUMERICAL RESULTS

Alamouti’s code [15] (Nt = Kc = Ns = 2), is given by

C(2×2) =
(

s1 −s∗2
s2 s∗1

)
, (18)

and satisfies criterion (17), with ‖CRi(s)‖2 = ‖CIi(s)‖2 =
Nt

(
|s1|2 + |s2|2

)
for i = 1, 2. Hence, the exact BER curves

for PAM and QAM constellations can be derived analytically.
Fig. 1 shows the exact BER curves for 4-QAM transmission
employing Alamouti’s code, for both the mismatched receiver
and the PCK receiver (we assume Ep = Es); also shown
are computer simulation results for the mismatched receiver
that confirm the analytical result. The corresponding BER
degradation amounts to 1.15 dB, irrespective of Nr.

The OSTBC given by [1, eq. (39)] (Nt = 3, Kc =
4, Ns = 3), does not satisfy criterion (17). Fig. 2 illustrates
the BER for a 16-QAM constellation, resulting from the PCK
receiver (exact result) and the mismatched receiver (analytical
approximation and simulation result). The simulations indicate
that the approximation for the mismatched receiver is very
accurate. The BER degradation amounts to 1.04 dB, 1.06 dB
or 1.09 dB when Nr equals 1, 2 or 3, respectively.

VI. CONCLUSIONS

In this contribution, we investigated the BER performance
of orthogonal space-time block codes under the assumption
of pilot-based MMSE channel estimation at the receiver. The
MIMO propagation channel was assumed to be affected by
uncorrelated flat Rayleigh block fading.

For a class of OSTBCs, specified by a proposed criterion,
we derived simple closed-form expressions of the exact BER
and the related BER degradation for both PAM and QAM sym-
bol constellations. These expressions depend on the number
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Fig. 2. BER of OSTBC given by [1, eq. (39)], 16-QAM.

of pilot symbols, data symbols, transmit antennas and receive
antennas, on the considered constellation and on some specific
properties of the OSTBC.

For OSTBCs not belonging to this specific class, we derived
simple approximations of the BER and the BER degradation
caused by channel estimation errors. According to simulations,
however, these approximations turn out to be very accurate.
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