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Square Orthogonal Space-Time Block Coding with Channel Estimation”
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Abstract—In a recent paper [1], Garg et al. present an expres-
sion for the exact decoding error probability (DEP) of square
orthogonal space-time block codes (OSTBCs) with imperfect
channel estimation. We show that their DEP expression is only
asymptotically correct and point out how to obtain the exact
result for arbitrary signal-to-noise ratio.

Index Terms—Space-time block coding, fading channels, chan-
nel estimation, error analysis.

IN [1], Garg et al. provide a general expression for the
decoding error probability (DEP) of square linear orthog-

onal space-time block codes (OSTBCs) with ℳ-ary phase-
shift keying (ℳ-PSK) signal constellations, on flat fading
channels. Considering a wireless communication system with
𝑁 transmit antennas and 𝑀 receive antennas, the received
𝑀 × 𝑁 signal matrix R corresponding to the transmitted
square OSTBC matrix C is given by

R = HC+N, (1)

where the 𝑀 ×𝑁 random channel matrix H and the 𝑀 ×𝑁
additive white Gaussian noise matrix N consist of i.i.d. zero-
mean circularly symmetric complex Gaussian (ZMCSCG)
random variables with variances Ω and 2𝑁0, respectively.
The entries of the 𝑁 × 𝑁 code matrix C depend linearly
on 𝐾 information symbols 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝐾 and their complex
conjugates, in such a way that

C𝐻C = CC𝐻 = ∥s∥2 I𝑁 , (2)

where I𝑁 is the 𝑁 ×𝑁 identity matrix and the symbol vector
s = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝐾 ]𝑇 comprises the 𝐾 information symbols.

Assuming least-squares (LS) or linear minimum mean-
square error (MMSE) channel estimation from orthogonal
pilot sequences (CpC

𝐻
p = 𝛽I𝑁 ), it is shown in [1] that the

channel estimate Ĥ is given by

Ĥ = 𝑞H+ 𝑞Ne, (3)

where the entries of Ne are i.i.d. ZMCSCG random variables
with variance 2𝑁0/𝛽, and 𝑞 depends on the channel estimation
strategy: 𝑞 = 1 for LS estimation, and 𝑞 = (1+2𝑁0/(Ω𝛽))

−1

for linear MMSE estimation.
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Maximum-likelihood (ML) detection boils down to the
minimization of the objective function ∥R−ĤC(s)∥2𝐹 over all
possible symbol vectors s, with ∥⋅∥𝐹 denoting the Frobenius
norm. Replacing in this objective function the channel estimate
Ĥ by (3) and the signal matrix R by HC(̃s) + N (with s̃
denoting the symbol vector actually transmitted), gives rise to
the decision variable𝐷s(̃s, 𝑞) to be minimized over s;𝐷s(̃s, 𝑞)
can be expressed as

𝐷s(̃s, 𝑞) = ∥s̃− 𝑞s +w(s, 𝑞)∥2

− ∥w(s, 𝑞)∥2 +
𝑁∑
𝑙=1

∥u𝑙(s, 𝑞)∥2 . (4)

Note that (4) is equivalent to [1, eq. (48)], with z(s, 𝑞) ∥H∥−2
𝐹

and v𝑙(s, 𝑞) ∥H∥−1
𝐹 replaced by w(s, 𝑞) and u𝑙(s, 𝑞), re-

spectively, and the factor ∥H∥2𝐹 (which does not affect the
decision) removed. In (4), the entries of the vectors u𝑙(s, 𝑞)
and w(s, 𝑞), conditioned on H, are i.i.d. ZMCSCG random
variables, with variances depending on the considered symbol
vector s through ∥s∥ only. Hence, when considering ℳ-PSK
constellations, these variances are independent of s.

Our main comment pertains to an invalid simplification of
the decision variable 𝐷s(̃s, 𝑞) which has been carried out in
[1]. Considering that the variances of the ZMCSCG entries of
u𝑙(s, 𝑞) and w(s, 𝑞) are independent of s, Garg et al. neglect
the dependency of the values of u𝑙(s, 𝑞) and w(s, 𝑞) on s.
Therefore, they make the following simplifications.

1) They drop the second and third terms in (4)
2) They replace w(s, 𝑞) in the first term in (4) by a vector

w(𝑞), whose value does not depend on s; the variances
of the entries in w(s, 𝑞) and w(𝑞) are the same.

Based on the above approximations, the decision variable (4)
is reduced to [1, eq. (51)]:

𝐷s(̃s, 𝑞) = ∥s̃− 𝑞s+w(𝑞)∥2 , (5)

which allows to obtain the simple expression [1, eq. (52)]
for the symbol error rate (SER), conditioned on H. However,
although their statistics are independent of s, the respective
values of u𝑙(s, 𝑞) and w(s, 𝑞) do depend on s; therefore,
their dependency on s should be preserved when minimizing
𝐷s(̃s, 𝑞) over s. Hence, the approach from [1] does not yield
the exact error performance.

In order to clearly illustrate the impact of these approxi-
mations we consider the simple example of uncoded single-
input single-output (SISO) binary phase-shift keying (BPSK)
(ℳ = 2) transmission with LS channel estimation (𝑞 = 1).
In this case, the received signal (1) corresponding to the
transmitted symbol 𝑠, and the LS channel estimate (3) reduce
to 𝑟 = ℎ𝑠+𝑛 and ℎ̂ = ℎ+𝑛e, respectively. For this example,
it is easily verified that the correct version (4) of the decision
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variable reduces to

𝐷𝑠(𝑠) = ∣𝑠− 𝑠+ 𝑤(𝑠)∣2 , (6)

with
𝑤(𝑠) =

𝑛− 𝑛e𝑠

ℎ
. (7)

Clearly, the value of 𝑤(𝑠) from (6) depends on 𝑠, although its
variance is independent of 𝑠. Taking the BPSK constellation
into account, 𝐷𝑠(𝑠) has to be minimized over 𝑠 ∈ {𝑠,−𝑠}.
Hence, a symbol error occurs if

𝐷𝑠(𝑠) > 𝐷−𝑠(𝑠), (8)

which reduces to the condition

ℜ{𝑠𝑤∗(−𝑠)} < −∣𝑠∣2 + ∣𝑤(𝑠)∣2 − ∣𝑤(−𝑠)∣2
4

. (9)

When neglecting the 𝑠-dependency of 𝑤(𝑠), the decision
variable (6) is approximated by (see [1, eq. (38)])

𝐷s(𝑠) = ∣𝑠− 𝑠+ 𝑤∣2 , (10)

and the condition for a symbol error to occur then becomes

ℜ{𝑠𝑤∗} < −∣𝑠∣2, (11)

where 𝑤 has the same variance as 𝑤(𝑠) in (9). It is readily
verified from (9) and (11) that neglecting the 𝑠-dependency of
𝑤(𝑠) corresponds to neglecting the noise×noise contribution
(i.e., the terms involving ∣𝑤(𝑠)∣2 and ∣𝑤(−𝑠)∣2) from (9).

Fig. 1 shows the SER for SISO transmission with BPSK
signaling in case of LS channel estimation with 𝛽 = 1 versus
the average SNR per diversity branch, which is defined as (see
[1, eq. (60)])

Γ ≜ ∥s∥2
𝐾

Ω

2𝑁0
, (12)

and reduces to Γ = ∣𝑠∣2Ω/(2𝑁0) for uncoded SISO trans-
mission. The following results are displayed: the correct SER
according to (9), the approximate SER according to (11),
and the SER that corresponds to perfect channel estimation
(PCE); for each case, both analytical results and simulations
are shown. From the figure we observe that the exact and
the approximate SER curves for LS channel estimation differ
mainly for low and moderate Γ, whereas they coincide for
large Γ. This behavior at large Γ is consistent with our finding
that the difference between (9) and (11) is in the noise×noise
contribution, which becomes negligible at large Γ.

Now we point out how the correct SER can be obtained
without any approximations in the case of Rayleigh fading.
Let us decompose the channel H as

H = 𝜇Ĥ+N′
e, (13)

such that the additive white Gaussian noise term N′
e and the

channel estimate Ĥ are statistically independent; it is readily
verified that 𝜇 = (1 + 2𝑁0/(Ω𝛽))

−1 for LS estimation, and
𝜇 = 1 for linear MMSE estimation. The entries of N′

e are
i.i.d. ZMCSCG random variables with variance 2𝑁0Ω/(Ω𝛽+
2𝑁0), irrespective of the channel estimation strategy. In this
way, the received signal (1) becomes [2]

R = 𝜇ĤC+N′
eC+N, (14)
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Fig. 1. SER for uncoded BPSK transmission on SISO Rayleigh fading
channel with LS channel estimation (𝛽 = 1). The following results are
displayed: the correct SER according to (9), the approximate SER according
to (11), and the SER that corresponds to PCE; for each case, both analytical
results (ana) and simulations (sim) are shown.

where N′
eC represents extra noise caused by imper-

fect channel estimation. Because of (2), the entries of
N′

eC are i.i.d. ZMCSCG random variables with variance
2𝑁0Ω ∥s∥2 /(Ω𝛽 + 2𝑁0); for ℳ-PSK constellations, this
variance is independent of the transmitted symbol vector s.
Expanding the objective function ∥R− ĤC(s)∥2𝐹 taking (14)
into account, and keeping only terms that depend on s, yields

∥R− ĤC(s)∥2𝐹 ∝
− 2ℜ{tr(C𝐻(s)H𝐻

eq(HeqC(̃s) +Neq))}, (15)

where s̃ is the symbol vector actually transmitted, and ℜ{⋅}
and tr(⋅) denote the real part and the trace, respectively.
The entries of Heq = 𝜇Ĥ and Neq = N′

eC(̃s) + N are
i.i.d. ZMCSCG random variables not depending on s, with
respective variances 𝜎2

Heq
and 𝜎2

Neq
given by

𝜎2
Heq

=
Ω2𝛽

Ω𝛽 + 2𝑁0
, (16)

and

𝜎2
Neq

=
2𝑁0Ω ∥s̃∥2
Ω𝛽 + 2𝑁0

+ 2𝑁0. (17)

In the case of PCE, the objective function still satisfies (15),
but with Heq and Neq replaced by H and N from (1). Hence,
ML detection of the symbol vector s̃ reduces to

ŝPCE = argmax
s

(
ℜ{tr (C𝐻(s)H𝐻 (HC(̃s) +N)

)})
.

(18)
For imperfect channel estimation (ICE), the ML detection
algorithm can be written as

ŝICE = argmax
s

(
ℜ{tr (C𝐻(s)H̄𝐻

(
H̄C(̃s) +

√
𝛾N̄
))})

,

(19)
where we have introduced the matrices H̄ =

√
𝜉Heq and N̄ =

Neq/
√
𝜓, with 𝛾 = 𝜉𝜓. Moreover, as the entries in each of

the matrices Heq, H, Neq and N are i.i.d. ZMCSCG random
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Fig. 2. SER for Alamouti’s code on MIMO Rayleigh fading channel, with
𝑁 = 2, 𝐾 = 2, 𝑀 = 2, QPSK signaling and imperfect channel estimation
(𝛽 = 4). Both LS and linear MMSE channel estimation are considered. Also
shown is the SER in the case of PCE. For each case, both analytical results
(ana) and simulations (sim) are shown.

variables with known variances, the scaling factors 𝜉 and 𝜓
can be chosen in such a way that the statistics of H̄ and N̄
are identical to the statistics of H and N, respectively. For
this selection of 𝜉 and 𝜓, 𝛾 can easily be shown to reduce to

𝛾 = 1 +
∥s̃∥2
𝛽

+
2𝑁0

Ω𝛽
, (20)

which does not depend on s̃ for ℳ-PSK constellations.
Let us denote by SERPCE(Γ) the SER resulting from

(18) as a function of Γ. An analytical SER expression for
square OSTBCs with ℳ-PSK signaling and perfect channel
estimation is easily obtained (e.g., following a similar analysis
as in [1, Sect. IV]):

SERPCE(Γ) =
1

𝜋

∫ (ℳ−1)𝜋
ℳ

0

(
1 + Γ

sin2
(

𝜋
ℳ
)

sin2 𝜙

)−𝑀𝑁

𝑑𝜙.

(21)
Since H̄ and N̄ in (19) are identically distributed as H and
N in (18), respectively, it is easily seen that the SER in the
case of imperfect channel estimation is given by

SERICE(Γ) = SERPCE(Γ/𝛾), (22)

with 𝛾 according to (20). As 𝛾 does not depend on 𝑞, both
channel estimation strategies (LS, MMSE) yield the same SER
(this is because a real-valued scaling of the channel estimate
does not affect the decision in case of ℳ-PSK constellations).
For increasing Γ, 𝛾 converges to 1 + (∥s̃∥2/𝛽).

Now we consider the approach from [1]. Expansion of the
objective function ∥R − ĤC(s)∥2𝐹 , using (3) and neglecting
the dependency of NeC(s) on s yields (15), with Heq =
H and Neq denoting a Gaussian matrix whose entries have
the same variance as those from N− 𝑞NeC(s); this variance
equals 2𝑁0(1 + 𝑞2 ∥s∥2 /𝛽). Hence, the approach from [1]
gives rise to SERICE(Γ) = SERPCE(Γ/𝛾

′), with 𝛾′ given by

𝛾′ = 1 +
𝑞2 ∥s∥2
𝛽

. (23)

Note that 𝛾′ depends on 𝑞 and is different from 𝛾 in (20) for
both LS and linear MMSE channel estimation. Nevertheless,
taking into account that 𝑞 = 1 in the case of LS estimation, and
𝑞 → 1 when Γ → ∞ in the case of linear MMSE estimation,
it is readily verified that 𝛾′ converges to 𝛾 for increasing Γ,
for both estimation strategies. This indicates that the error
performance results from [1] are asymptotically correct for
both LS and linear MMSE channel estimation.

Fig. 2 shows the SER curves for Alamouti’s code [3]
(𝑁 = 𝐾 = 2) with quaternary phase-shift keying (QPSK)
(ℳ = 4) signaling, operating over a 2 × 2 MIMO Rayleigh
fading channel (𝑀 = 2). For both LS and linear MMSE
channel estimation (𝛽 = 4), the correct SER according to
(22) and the approximate SER from [1] are displayed. Also
shown in the figure is the SER that corresponds to perfect
channel estimation (PCE). For each case, both analytical
results and simulations are shown. From the figure we observe
that the exact SER curves for LS and linear MMSE channel
estimation coincide, as expected for ℳ-PSK constellations.
The SER curves resulting from [1], however, are different for
LS and MMSE channel estimation and clearly differ from the
exact SER for low and moderate Γ. Nevertheless, for large
Γ the approximate and the exact curves converge, which is
consistent with (20) and (23).

Since the DEP follows directly from the SER [1, eq. (54)],
the above comments and conclusions also pertain to the DEP
expressions resulting from [1]. The exact DEP for square
OSTBCs with ℳ-PSK constellations and imperfect channel
estimation is easily obtained from (22).
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