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Exact Error-Rate Analysis of Diversity 16-QAM
With Channel Estimation Error

Lingzhi Cao, Member, IEEE, and Norman C. Beaulieu, Fellow, IEEE

Abstract—The bit-error rate (BER) performance of multilevel
quadrature amplitude modulation with pilot-symbol-assisted mod-
ulation channel estimation in static and Rayleigh fading channels is
derived, both for single branch reception and maximal ratio com-
bining diversity receiver systems. The effects of noise and estimator
decorrelation on the received BER are examined. The high sen-
sitivity of diversity systems to channel estimation error is investi-
gated and quantified. The influence of the pilot-symbol interpola-
tion filter windowing is also considered.

Index Terms—Diversity, estimation error, fading channels,
maximal ratio combining (MRC), pilot-symbol-assisted modula-
tion (PSAM), quadrature amplitude modulation (QAM).

I. INTRODUCTION

HE performances of multilevel quadrature amplitude

modulation (M-QAM) in different wireless environments
have been studied by several authors. [1] gives the bit-error rate
(BER) of 16-QAM and 64-QAM over both the additive white
Gaussian noise (AWGN) channel and the Rayleigh fading
channel without diversity. A recursive algorithm for computing
the BER of M-QAM constellations over an AWGN channel
was given in [2]. Much work has focused on the derivation
of the symbol-error rate (SER) when diversity techniques are
used to compensate for the fading caused by the multipath
propagation. [3] presented the SER of M-QAM with maximal
ratio combining (MRC) diversity and selection combining (SC)
diversity in Rayleigh fading channels. In [4], precise analytical
expressions for the SER of MRC and equal gain combining
(EGC) in Nakagami fading channels were derived. [5] gave
a thorough study of the performances of two-dimensional
signaling schemes. The SER of 16-QAM on Rayleigh, Ricean,
and Nakagami fading channels with MRC, EGC, and SC was
derived. The SER for M-QAM with MRC reception was given
in terms of alternate forms of the @Q-functions, widely used in
communication theory in [6].

References [1]-[6] assume that perfect channel state infor-
mation (CSI) is available to the receivers. Meanwhile, the per-
formances of coherent demodulation and coherent combining
can be severely degraded if good fading CSI is not available, as
shown in [7]. Study of a variable-rate, variable-power M-QAM
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in [8] also showed the sensitivity of the error rate of M-QAM to
estimation error.

Pilot-symbol-assisted modulation (PSAM) has proved to
be an effective method for channel estimation [9], [10]. Some
previous work has considered the performance of M-QAM
when using PSAM for channel estimation. [11] gives simple
upper bounds for the SER of M-QAM over a Rayleigh fading
channel in the presence of channel estimation error, and the
approximate BER of M-QAM with imperfect channel estima-
tion has been derived in [12]. None of [7], [8], [11], or [12]
considered diversity QAM. In this paper, we derive the BER
of 16-QAM using PSAM to provide estimates of the channel
amplitude and phase in the receiver demodulation process for
AWGN and Rayleigh fading channels, and for MRC diversity
systems, in which case, the PSAM is used to provide CSI for
both the demodulation process and the diversity combining.
Though we consider specifically 16-QAM, the analysis is
general and can be applied to general M-QAM with minor
modifications, but more cumbersome definitions, notations,
and development.

This paper is organized as follows. In Section II, the system
model as well as the 16-QAM modulation are described, and
some parameters used in the later sections are derived. The BER
performance of 16-QAM in AWGN and in fading is derived in
Section III and the limitations of previous work are clarified. In
Section IV, the BER of 16-QAM with MRC diversity is derived.
Some examples calculated using our theoretical results are pre-
sented and discussed in Section V. Simulation results are also
presented for verification. Section VI concludes the paper.

II. SYSTEM AND CHANNEL MODELS
A. PSAM

The PSAM system structure considered here is identical to
that considered in [12], and the reader is referred to [12, Figs. 1,
3, and 7]. A block diagram of the PSAM system structure con-
sidered here is shown in [12, Fig. 1]. The transmitter period-
ically inserts the known pilot symbols into the data sequence
via a multiplexer. Let s} denote the /th symbol transmitted in
the kth data frame. The symbols are formatted into frames of L
symbols, with the first pilot symbol (I = 0) followed by (L — 1)
data symbols (1 < [ < L — 1), as depicted in [12, Fig. 7]. At
the receiver side, the pilot symbols are extracted and input to an
estimation/interpolator filter. Thus, knowledge of the channel
amplitude and phase at the times of the pilot symbols is used to
estimate the channel amplitude and phase at the times of other
symbols.
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Denote the symbol interval as 7" and assume perfect symbol
timing recovery. The received signal sample at the /th symbol
in the kth frame, 7%, is given by

rt = glsh +nk (1)

-nl . .
where g = al el is the complex channel gain sample with

Rayleigh-distributed amplitude sample, o ' and phase sample
¢} uniformly distributed on [0 2m); st is the transmitted
16 QAM signal sample, and nk is the AWGN sample with
variance o, in both the real and imaginary parts. The channel
estimate for the kth pilot symbol, py, is given by
0
Pr =P+ —E 2)
Sp
where py, is the complex channel gain corresponding to the pilot
symbol in the kth frame, and s, is the known pilot symbol in
the kth frame. The fading at the /th symbol in the kth frame is
estimated from K adjacent pilot symbols with k; pilot symbols
from previous frames, one from the current frame, and k- pilot
symbols from subsequent frames, where k1 + ko + 1 = K. The
estimate is given by

kot+k

N A1 _j6t 1

Gi=ape’ = " bl 3)
m=—ki+k

where !, 1 =0,1,....L—1,m = —ki+k,...,0,... ko+k
are the interpolation coefficients of the estimation filter [10].

Since the channel fading and the noise are independent
complex Gaussian random variables, the channel estimate
f}fc, which is a weighted sum of zero-mean complex jointly
Gaussian random variables, is also a zero-mean complex
Gaussian random variable [13, Ch. 8], [14, Ch. 6]. Since gfc
and g,i are correlated complex Gaussian random variables, the
joint probability density function (jpdf) of their amplitudes,
al and &L, and their phase difference, ¢k, can be derived
following the discussion given in [13, Ch. 8]. The subscripts for
the complex channel gain and its estimate have been omitted
in the following discussion when ambiguity can not arise, for
notational simplicity. Similarly, the dependence on T, the time
difference between two samples, has also been suppressed
for notational brevity. The jpdf, p(«, &, ¢), given in [13, eq.
(8-102)], is with the notation used here

pla, b, @) =
ad [a%az—l— 02&’-2R.adb cos o —2R.sad sin 4,0]
2A172 P {‘ 2N/ }
(4a)
where

o = Elgf] = Elgg] (4b)
os = B[g7] = E[g3) (40)
R. = Elgrgi1] = El9qdq] (4d)
Res = Elg19q]l = —El9q41] (4e)
|A|=[0202 — R? — R2)? (4f)

The second-order joint central moments, R, and R.s, are de-
rived in Section II-B, and 02 is derived in Section II-C.
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B. Derivation of the Covariance Between g and §

The complex fading gain can be expressed in terms of quadra-
ture components as

9(t) = g1(t) + jgQ(?). Q)
In an omnidirectional scattering Rayleigh fading channel, the
autocorrelation and cross-correlation are given by [15]

R(7) = Ry, (1) = Ry (1) = 02 Jo(2nfpT)  (6)

and

Riq(r) = Elgr(t)9o(t +7)] = 0 ™

respectively, where Jy(-) is the zeroth-order Bessel function of
the first kind [16] and fp is the maximum Doppler frequency.

Using (2), (3), (6), and (7) in (4d) and (4e), the covariances,
R. and R, are determined as

0
R. =Elg1g1] = Z hi B { <P1k+Re{ﬂ}>}
k=—k, 5p
ko
= Y o2hiJo(2n fplkL - I|T}) (82)
k=—k:
no
R.; =Elg1jo] = Z hLE [g; (ka + Im{—k}ﬂ =0.
k=—Fk, 5p
(8b)

. . 2
C. Derivation of o3

The variance of each component of the complex Gaussian
fading estimate is obtained by using the definition (4c) with (2)
and (3). It is given by

o} = Elg7] = E[gg)
2

= Z Z hihincov(preprm) + Z(hl )ﬂ:ﬁ- ©)

From (6)
cov(preprm) = R(|k — m|LT,) = 02Jo (27 fp|k — m|LT,)

(10
and assuming that the pilot-symbol energy F, is equal to the
average data symbol energy E, one can rewrite (9) as

Zthh (|k — m|LT,) +th

J2
= H,RH| + |H, |2 .

o2
E,

(11

The results of (8a), (8b), and (11) are used in the jpdf (4a) of
the amplitudes and phase difference of the channel fading and
its estimate.

D. Modulation and Demodulation of Square QAM

[1] describes the modulation and demodulation of square
M-QAM. The signaling constellation and the Gray code
mapping of the transmitted bits is shown in [12, Fig. 3]. The
transmitted bits are first split into in-phase (I) and quadrature
(Q) bit streams to modulate the I and Q carriers. The demodu-
lation of the received signal is implemented by extracting the
I and Q components separately, and deciding the transmitted
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Fig. 1. 16-QAM I and Q bit demappings (after [12, Fig. 5]).

bits according to the decision boundaries. In the 16-QAM
constellation, every symbol is represented by four bits in the
sequence of i1, q1, %2, q2, where i; and i are the in-phase
bits and ¢; and ¢ are the quadrature bits. The I and Q bit
streams are Gray encoded by assigning the bits 01, 00, 10, 11
to the levels 3d, d, —d, and —3d, respectively, where d is the
decision distance, shown in Fig. 1. Due to the symmetry of
the constellation, the demodulation scheme is same for the I
and Q components. Each symbol has two most significant bits
(MSBs) i3 and g1, and two least significant bits (LSBs) 72 and
q2- Following the analysis in [1], we calculate the MSB BER
Py, and the LSB BER Py, separately. Then, the BER P, of
16-QAM is the average of Pys and Pr,. That is

1
PEZE(P]\I—i_PL)- (12)

The BER with channel estimation error is derived in the next
section.

III. BER PERFORMANCE ANALYSIS

The BER of 16-QAM with channel estimation error is deter-
mined by averaging the conditional error rate, conditioned on
the channel amplitude, channel amplitude estimate, and channel
phase estimate error, across the channel amplitude, channel am-
plitude estimate, and channel phase estimate error. The infor-
mation symbols are assumed to be transmitted with the same
probability. By symmetry, the BERs for the I and Q bit streams
are the same. We consider estimation that is both corrupted by
AWGN and by decorrelations between an information symbol
and the pilot symbols caused by the time-varying fading. We
also account for the cross-quadrature-carrier intersymbol inter-
ference (ISI) that occurs because of the phase error.

In the case of perfect channel estimation, the receiver can
construct the decision boundaries perfectly. However, in the
case of imperfect channel estimation, the decision boundaries
are set with the imperfect channel estimate. The situation is
shown in Fig. 2, where it is illustrated that the phase error
causes rotation of the decision boundaries. Further clarification
is provided in Fig. 3; the true phase is # and the estimated
phase is d; so, there is a phase error ¢. The phase error causes
a signal amplitude degradation, replacing, for example, 3ad by
3adcos ¢. The phase error also causes cross-quadrature ISI
with values +3da sin ¢ or £da sin ¢. Note further that due to
the symmetries and sign changes of (+3da sin ¢, —3dasin ¢)
and (+dasin @, —dasinp), it suffices to include only the
values (3dasin ¢, dasin ) in the BER averaging.
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Fig.2. New decision boundaries set by the imperfect estimate. The coordinates
are those relative to the rotated signal constellation.

b Received bts
\ \ 4 //’?\

Channel Estimate

e \

P
- E@dﬁ“‘ ~a0d cos®
e o

In-phase Component \

an@ Transmitted bit

o g'\\ﬂPﬂ'd

Cross-quadrature \
interference

Quadrature Component

Fig. 3. Cross-quadrature interferences due to imperfect estimation.

It is informative to compare these with the decision bound-
aries shown in Fig. 1 for the case of perfect channel estimation.
As seen in Fig. 1, the decision boundary for the MSB bits is zero
with perfect estimation. This decision boundary is the same with
imperfect estimation, as the fading amplitude does not affect the
decision boundary in the MSB case, as also seen in Fig. 2. The
BER of the MSB conditioned on «, &, and ¢, and accounting
for the ISI from the cross-quadrature components, is

PM(8|0¢»5¢7 90)
1 d .
=1 Q| —(3acosp + 3asin )

S .

+ Q| —(3acosp + asinp)
i .

+ Q| —(acosp + 3asinp)
i |

+ Q| —(acosp+ asinyp) (13)
on

where Q(x),z > 0 is the complementary error function [17],
[18]; when 2 < 0, Q(z) = 1 — Q(]z|). As seen in Fig. 1, the
decision boundaries for the LSBs are located at +2a.d under the
assumption that the channel information is perfectly known. In
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the presence of channel estimation error, the decision bound-
aries are located at £2&d, as shown in Fig. 2. If a demodulated
quadrature sample amplitude is greater than |2&d|, it is mapped
to “17; if it is greater than —2a&d and less than +2ad, it is
mapped to “0”. Thus, when a logical “1” is transmitted, the con-
ditional BER can be expressed as Q[(3ad cos ¢ — 2ad)/o,] —
Q[(Bad cos ¢ + 2ad)/oy,]; when a logical “0” is transmitted,
the conditional BER is given by Q[(2&d — adcos ¢)/oy] +
Q[(24d + adcos ) /oy]. The BER of the LSB conditioned on
«, &, and ¢ and accounting for the cross-quadrature interfer-
ence, is then

1 d
Pre|la, b, p) = 1 {Q [—(3acoscp + 3asinp — 2&)]
on
[ d . .
— Q| —(3acosp + 3asinp + 24&)
[ d . )
+ Q| —(3acosp + asinp — 2d)
[ d . )
— Q| —(Bacosp+ asinp + 24)
On
[ d . .
+ Q| —(—acosp+ 3asinp + 24)
[ d . )
+ Q| —(acosy + 3asinp + 2d)
[ d . .
+ Q| —(—acosp + asinp + 24&)
on
[ d . .
+ Q| —(acosp + asin p + 24) (14a)
10d*> = E, (14b)
E, =4E, (14c)
202F,
Ty = o 14d
T =52 (14d)
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TABLE 1
COEFFICIENTS IN BER EXPRESSION (16) AND (37) FOR 16-QAM

411 (1| 1]010f 1 (-1|1]2

where the coefficients w;, x;, y;, 2; are listed in Table I. Define
the integral W1(x;,v;) = I(x;,v:,0). W1(x;,y;) can be sim-
plified into a single integration by integrating over « and &, as
shown in (17a) at the bottom of the page, where

2
9%
= W (17b)
2
01'
H2 = W (17¢)
R.
v = A |1/2 (17d)
b .
a=4/5 (2; cosp + y; sin @) (17e)
2
b2 = — M. (176)

412

When z; # 0, we introduce a different method for simplifica-
tion of the integration. We define the integral W2(z;,y;, z;) =
I(x;, i, 2;) and make a change of variables. Let & = rcosf,
& = rsinf, where 0 < 6 < 7/2,0 < r < oo; the corre-
sponding Jacobian transformation is .J = r. The simplified form
of W2(z;,y;, ;) is obtained by integrating over r

d\? L 2 m sin 26
2} = /4 = 28 14 .
<0n) o2 BoZ (14e) W2(zi,yi, i) / / pEpy |1/2 G(pi,q;)d0d¢ (18a)
) ) ) ) where, by definition
where E}, is the energy per bit and 7, is the average signal-to- 5
noise ratio (SNR) per bit. G _ (L 3q — 4 18b
. (p7 q) - 2 2 3/2 ( )
Define the integral (15) as shown at the bottom of the page. 202\ 2 4y/2p+q2  4(2p+q?)
Then, (15) combined with (12), (13), and (14) gives (62c0s2 0 + 02sin2 0) — R.sin 20cos ¢
pi == x (18¢)
12 2[A[/2
=1 I o7, R 16 2%
= gzwz (is Yis 2 Voo 1y Re) (16) G =c3 [cos f(z; cos p+y; sin )+ z; sin 0] . (18d)
1=1 (o
27 —
I(z,y,z, 9,7, Re) / / / l (zacosp + yasing + z4&) | p(a, &, p)dpdadi (15)
7r/2—arct:11171 yi/xi v cos
o [T (V7 1 J1 1 b a
Wi(z;,y;) = 0.5 — —— [ — = - —= | =t —— | ¢ d 17
(‘T Y ) 7 ./—w/?—arctan_l yi/xi 87['| A |1/2.u'2 M2 {4b3 4\/7_[' |:b3 " a b2(a2 + b2) 4 ( a)
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Combining (16) with (17) and (18), the BER for single-branch
16-QAM with decorrelation error can be expressed as

1 12
= g Z wll(le Yis Zi)
=1

4 8
Z w;W1l(zi,y;) + Z w;W2(xi,yi, 2i)
i=1 i=1
A more detailed derivation is available in [19]. The BER expres-
sion is then a combination of definite double and single integrals
with finite limits. It is simpler than the results in [12], which are
in the form of triple integrals and which take much longer to
evaluate, particularly for large SNR values.

For future comparisons, we derive the BER of 16-QAM in
Rayleigh fading with perfect channel estimation. The average
BER can be obtained by averaging the conditional BER (con-
ditioned on the SNR per bit) with respect to the SNR per bit,
according to

19)

Po= [ P s 0)
where P, is the average BER in slow fading, P.(7s) is the BER
conditioned on the SNR per bit, v;, and f () is the pdf of the
fading signal’s SNR per bit. The pdf f(~,) is given in [17, eq.
(14.3-5)]. Rewriting (13) and (14) under the condition of perfect
estimation, @ = « and ¢ = 0 gives

Py(elw) =Q <\/2Tb> +Q( \/?)

(21a)

Py(e|w) = Q<@>_Q(S %N
fo() o o))

Thus, the BER of 16-QAM in Rayleigh fading with perfect
channel estimation can be obtained by combining (12) with (20)
and (21) as

1(1 1
Py==|-(1- ~(1- 22
M= [2( p1) + 2( N2)} (22a)
1 1 1
P = — —(1 — — —(1—
L 2{[2( Ml) 2( N3)}
1 1
+ 5(1—M1)+§(1—N2) (22b)
where, by definition
2%
= 22
M1 51 2% (22¢)
18
= 22d
2 5T 187 (22d)
507
= 22
3 5T 507 (22¢)

The derivation of (22) is very close to that in [1], except that our
final result is expressed in terms of the SNR per bit, whereas the
result in [1] is expressed in terms of symbol SNR.

Previously, the BER of single-branch reception 16-QAM in
flat fading with imperfect channel estimation was derived in
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[12], but the results are approximations. As [12] neither identi-
fies nor justifies that the analysis is approximate, we will clarify
the analytical approach used there and contrast it with the an-
alytical approach used here. Generally, the average BER can
be calculated by averaging the conditional BER for the AWGN
channel over the fading represented by the variables «, &, and
. Hence

[e's} oo 2
Pe:/ / / P(e|a, &, 0)p(a, &, p)dpdada.  (23)
J0O J0 JO

First, note that it is well known that the amplitude and the phase
of the Rayleigh fading channel are independent random vari-
ables. Thus

p(e, 8) = p(e)p(6)
and the first-order jpdf factors into the product of the amplitude
pdf and the phase pdf. However, and importantly, the envelope
and phase random processes are not independent random
processes. Conceptually, even though the single sample of the
random amplitude process, «, is independent of the single
sample of the random phase process, 6 (both taken at the same
time, ¢), multiple samples of the amplitude will not be indepen-
dent of multiple samples of the phase (taken at multiple times).
For example, we expect that amplitude “hits” (rapid changes
from one sample to the next sample) will be accompanied by
phase “hits.” Experimental data reported in [20] shows this
dependency. Thus, in the PSAM system, the channel estimate
is a weighted sum of the estimates from the pilot symbols’
channel fadings (3), and the jpdf of the amplitude of the channel
gain «, and the amplitude of the channel gain estimate &, are
not independent of the jpdf of the phase sample of the channel
gain 6, and the phase sample of the channel gain estimate 4.
In [12], the analysis and results are based on assuming the
phase error § — 6, the amplitude «, and the amplitude estimate
&, are independent. This treatment is equivalent to using the
following equation:

oo poo p2m 2T
:/ / / / Pe|a, &, 8,0)p(a, &)p(0,0)dbdodada
0 0 Jo 0

(25)

(24)

which is only an approximation. The exact form is

/ / / 27/ ) 0,0)p(a, &, 0, 0)dbdddadé.

(26)
In[12], the jpdf p(cx, &, 0, 6) has effectively been replaced by the
product p(cv, &)p(#, §). This conclusion can be drawn by careful
scrutiny of [12, egs. (38) and (40)]. This replacement requires
that the amplitude samples («, &) are independent of the phase
samples (6, ). It is clear from the analysis in [13, Ch. 8] that
(v, &) and (6, ) are not independent.

There is a second reason for which the BER results in [12]
are only approximate. Even in the absence of noise and other
system errors (for example, carrier recovery error or symbol
timing error), the channel estimate is corrupted by an error that
is Gaussian distributed. This error has its origin in the fact that
the fading at an information symbol’s time is decorrelated from
the fading at a pilot symbol’s time. Note particularly, that the
BER depends on the location of the information symbol, since
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the decorrelation depends on the location (in addition, other
error sources may also depend on the location of the informa-
tion symbol). These errors cause an error-rate floor which will
determine the BER when the SNR is large. The analysis in [12]
averages the parameters r (r = a% /o2) and p ( the correlation
coefficient between «? and &2) over [, the location of a symbol
in a data-symbol frame, and then uses these averaged parame-
ters in the BER equation. This approach is an approximation.
The precise BER is obtained by averaging the BER conditioned
on these parameters over the probabilities of these parameters, a
more complex computation. The average BER can be obtained
by averaging the conditional BERs over the locations of the in-
formation symbols in the frame.

IV. DIVERSITY M-QAM

In the case of diversity M-QAM, imperfect channel esti-
mation degrades the performance of the demodulation and
degrades the performance of the diversity combining (recall
that the weighting of the diversity branches in MRC requires
estimates of the complex channel gains [21]). It is desired
to find the BER of 16-QAM with MRC in Rayleigh fading,
accounting both for the effect of imperfect channel estimation
on the demodulation process and on the diversity combining.
We assume that all the diversity branches are independent of
each other. The derivation of the MRC diversity conditional
BER follows the same method given in [17, Ch.5], that was
used for the single-branch case in Section III and illustrated
in Figs. 2 and 3, but is modified to include the effect of the
MRC diversity. Full details are available in [19]. We start from
(13) and (14) and alter these equations to account for diversity,
fading, and channel estimation error, as well as ISI. To do so,
we define a useful ancillary parameter ¢; and then condition the
BER on ¢;, giving

P(elt;)
| L2
=52 wiQ
i=1
M=1 2
|: Z amdm($i COS Ym +Yi sin (pm)‘}_zid?n
m=0
A M-1
> ag,
m=0
(27a)
d 2 29
A= <0_> - 27b)
M-1
> G [(Qm @i COS Om +QmYi SIN Qo ) + 2G|
t; = m=0 (27¢)

M-1
> a7,
m=0

where o, &, and ¢, are the fading channel amplitude,
channel amplitude estimate, and the phase error on the mth
diversity branch, respectively, M is the number of diversity
branches, and the coefficients w;, z;, y;, z; are again listed
in Table I. The parameter, ¢;, is clarified as follows. In the
single-branch case, M = 1 and the BER of the 16-QAM in

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 6, JUNE 2004

the absence of fading is given by (13) and (14). In the case of
diversity, M > 1 and ¢; corresponds to the 7th term in a sum
of weighted terms, each term being a Q(-) function, as in (13)
and (14). The decision statistic of the mth diversity branch
includes the transmitted signal distorted by the phase error,
QT COS oy, the IS, avy, y; sin ., caused by phase error, and
the decision boundary information represented by z;&,, which
is determined by the amplitude estimate.

We need the pdf of ¢;. The derivation of the pdf of ¢; follows
the analysis described in [22], but in contrast to the analysis in
[22] where the variances of a fading quadrature component and
its estimate are equal, here the variances of a fading quadrature
component and its estimate are different. The case where they
are equal models noiseless estimation and, thus, only the effects
of decorrelation are accounted for in the analysis of [22]. We
extend the analysis of [22] to include channel estimation error
originating from both decorrelation and noise. Let the variance
of a fading quadrature component and its estimate be o, and
o3, respectively. The amplitude of the estimate, ¢,,, is Rayleigh
distributed, and its pdf is given by [17, eq. (2-1-128)]

. m G,
Then the conditional pdf of «,,, @, given &, is
. p(am, O, ‘pm)
P, Pm|Om) = ———F————— (29)
( | ) e
where p(Quy, G, ©m) 1 given in (4a).
Define
R(‘ Am
Qi COS Py = U + 026 : (30a)
0
RCS Am
U SIL Py = Uy + —F (30b)
05
Ay, AV, = g dog, de,, (30c¢)
and (28)—(30) yield
A U?g ‘7:% 2 2

where R., R.,, and A were defined in Section II. It can be shown
from (31) that ,,, and v,,, are independent of each other, and in-
dependent of &, [22]. Each of them has a zero-mean Gaussian
distribution with variance A'/2/52. Now define
M—1

Y. Gl
m=0 (32a)

(32b)

m=0

M—1 1/2
R
U="-2 a2 ).

m=0

(32¢)

Itis shown in [22] that v and v are also Gaussian distributed with
variance A'/2 /o2 and are independent of &,,,. The parameter U
has a chi density [14, eq. (5-25)] with 2M degrees of freedom,
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and each degree of freedom has a variance o2. Note that v and
U are independent of each other [22]. We rewrite ¢; from (27c)
as

M-1

1/2
ti=x;(u+U)+yv+ 2z (Z &;)

m=0
=zi(u+Uj) + yiv
=Tl + Yiv

R M—1 1/2
U;:<—§+i><2@fn) .
0'50 Tr; 0

Summarizing, the pdfs of u, U, and v are given by

(33a)

where

(33b)

2

_ J& 9% 2
P = S o |5
2
ag

__ Y& _ % 2
p(v) = VorAL/2 exp [ ont/2? }
2U2M 1 oy (_ U )

(34a)
(34b)

202

p(U) = 9M 2MT()])

(34c¢)

where 0 = R?/02, and the pdf of U/ is given by

/ UM 1 exp(—%)
p(U;) = ZMO'ZMF(M) - (34d)
where 07 = (R./o? + zi/:v,;)2 02, and then the pdf of u + U/
is found as
Putv (14:)
= [ bl = UDp )
0
Vo exp(- g
2M /AL 252M T (M)
. / UMY oxp(—BiU — \UNU! (34e)
0
where
1 (7%
bi=g2tonm (G40
o2 pi
A= — INTER (34g)
Equation (34¢) can be simplified using [23, eq. (3.462)]. Thus
V20;T(2M
p(pi) = (M)

M/ BT (M)
1 of o — Ol
oo |~ (5 i) ) P (Vi) 09
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where D, (x) is the parabolic cylinder function defined at [22,
eq. (42)].

Since x;, y;, and z; are real numbers and p; and v are inde-
pendent, the BER of 16-QAM with MRC can be written as

Pe= %i/_z /_C:wiQ[‘/Z(@M +yi”)}?(ui)p(v)duidv.

(36)
Equation (36) is a double integral in two variables, each of which
has doubly infinite range. Making the variable changes, u; =
r;cosf; and v = r;sinf;, where 0 < 0, < 27,0 < r; < 00,
the corresponding Jacobian of the transformation is J = 7;.
Then (36) can be written as shown in (37) at the bottom of the
page, with the coefficients w;, x;, y;, and z; given in Table 1.
Using (37), P, can be calculated numerically for a given order of
diversity M and given frame length L, as well as given symbol
location, .

The BER of 16-QAM in Rayleigh fading with perfect channel
estimation is derived here for later comparisons. It is well known
that for the case of perfect channel estimation, the MRC output
signals on both the I and Q branches are real, thus, the condi-
tional BER depends only on the SNR [17], [21]. The BER of
16-QAM with MRC and perfect channel estimation is obtained
according to (20) by combining f () givenin [17, eq. (14.3-7)]
with Pys(e|yy) and Pr(e]v,) given in (21), where

et S () o]

m=0
+[50- uz>]M mZ= (M e u2>r}

o] () o]
[ B () o]
" (38b)

Note that (38) assumes perfect channel estimation both for
the demodulation and for the channel weighting in the maximal
ratio diversity combining. To the best of the authors’ knowl-
edge, this expression is new and different from other results in
the literature. [24] gives a result for the BER of MRC QAM in
Rayleigh fading with perfect channel estimation, but this result
is an approximation. It is obtained by dividing the SER by the

12 o] 27
1
Pe = 3 E / / w;r; Q [\/A(xin- cosf; + y;7; sin 01-)} p(r; cos b;)p(r; sin b;)db;dr;
=170 /O

37
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Fig. 4. BER performance of single-branch 16-QAM with a Hamming

windowing applied to the sinc interpolator for L = 15, K = 30, and
fpTs = 0.03 and averaged over symbol location [.
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Fig. 5. 16-QAM BER performance of a single-branch receiver with a

rectangular window applied to the sinc interpolator for L = 15, K = 30, and
fpTs = 0.03; the parameter [ is the symbol location in one frame.

number of bits per symbol. Obtaining the exact result requires
accounting for the specific (different) number of bit errors oc-
curring for each particular symbol error, as done here.

Our examples in the next section will consider the BERs at
symbol location I = 1 and [ = 8, the sensitivity of the BER
results to the choice of windows used in the pilot-symbol inter-
polation filter, and the sensitivity of diversity systems to channel
estimation errors. Comparisons between our results and the re-
sults obtained in [12] are included. We also test the validity of
our results for large values of fpT'.

V. EXAMPLES

All the numerical results in this section were obtained using
Mathematica, and the simulations were implemented in Matlab.
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Hamming window applied to the sinc interpolator for L = 15, K’ = 30, and
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Fig. 7. BER performance of 16-QAM with dual-branch diversity and
rectangular windowing applied to the sinc interpolator for L = 15, K = 30,
and fpTs = 0.03; M is the number of diversity branches and [ is the symbol
location in one frame.

The simulator in [25] is used to generate complex samples from
a Rayleigh flat-fading channel with Doppler shift. The high sta-
tistical quality of this simulator is certified in [25] and [26]. In
Figs. 4-8, we set the system parameters for both numerical cal-
culation and simulation as frame length L. = 15, interpolation
order K = 30 with k; = 14 and k» = 15, normalized Doppler
spread fpT = 0.03, and fading variance o2 = 1. A sinc inter-
polator [10] is used as estimator filter. The BERs resulting when
arectangular window and a Hamming window are applied to the
sinc interpolator function are both calculated for comparison.
Fig. 4 compares the average BERs averaging over the symbol
location [ obtained by our method and the method in [12] in
the SNR range 0-20 dB. It shows a distinct difference between
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Fig. 8. BER performance of 16-QAM with dual-branch diversity and
Hamming windowing applied to the sinc interpolator for L = 15, K’ = 30,
and fpTs = 0.03; M is the number of diversity branches and [ is the symbol
location in one frame.

the two curves at small SNR values which diminishes with in-
creasing SNR. For example, at P, = 10~1, the difference is
0.74 dB; at P, = 10~2, the difference is 0.29 dB.

Figs. 5 and 6 show the BERs of 16-QAM for single-branch
reception with a rectangular window and a Hamming window
applied to the sinc interpolator, respectively, as a function of
the average SNR per bit. Both theoretical and simulation results
for the [ = 1 case and the [ = 8 case, as well as the BER
for perfect channel estimation, are presented. Note first that our
theoretical results and simulation results are in excellent agree-
ment. The performance using a rectangular window is signif-
icantly worse than that using a Hamming window. One sees
from comparison of Fig. 6 with Fig. 5 that the abrupt trunca-
tion of the rectangular window severely degrades performance
by causing decorrelation relative to the Hamming window. The
BER at symbol location [ = 8 exhibits error-rate floors that
are in evidence for values of SNR greater than 30 and 46 dB for
the rectangular window and the Hamming window, respectively.
The error floors are caused by decorrelation which originates in
the channel variations and in the channel estimation filtering.
The results also show that the error-rate floor caused by decor-
relation is greater for information symbols more distant from
the pilot symbols, as expected.

Figs. 7 and 8 show the BER performance of dual-branch
MRC (M = 2) diversity. The BER performance without
diversity is also shown for comparison. Simulation results
shown for the case with a rectangular window are consistent
with the theoretical results. Simulation results are not given
for dual-branch MRC with a Hamming window, owing to the
time needed to generate them. The BER performance with
MRC is much better than without diversity, as expected. Note
particularly that the BER floor occurring for [ = 8 is lowered
by almost two orders of magnitude by the use of dual diversity.
However, the performance of 16-QAM with diversity degrades
more than that of a single-branch system, due to the decorre-
lation. For example, in Fig. 7, at SNR = 30 dB with [ = 8§,
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Fig. 9. BER performance of single-branch
windowing applied to the sinc interpolator for L = 15, K =
fpTs = 0.1 with symbol location at I = 8.

16-QAM with Hamming
30, and

the BER is increased by a factor of 6.6 (from 4.96 x 10~*
to 3.3 x 1073) for the system without diversity, while the
BER is increased by a factor of 54.6 (from 8.82 x 1077 to
4.81 x 107?) for the dual diversity system; in Fig. 8, at SNR
= 50 dB with [ = 8, the BER is increased by a factor of 9.45
(from 4.97 x 1076 to 4.7 x 107°) for the system without
diversity, while the BER is increased by a factor of 103 (from
8.85 x 10711 to 9.19 x 10~7) for the dual diversity system.
This is expected, since the channel estimation error degrades
the diversity combining as well as degrading the coherent
demodulation.

The validity of the results will be tested by using large values
of fpT. Further, the validity of the results will be tested by cases
where the probability of the phase error ¢ being greater than
0.57 is significant. Note that the probability of ¢ being greater
than 0.57 depends on the quality of the channel estimate. In
particular, the frame length L of the interpolation filter should
be chosen such that the pilot symbols can adequately track the
Doppler frequency shift. When this is the case, the probability
of ¢ being greater than 0.57 is kept small. The validity of our
analysis is, thus, best tested by choosing the PSAM parameters
such that the value of fpT is outside the range of the tracking of
the interpolation filter. We do this test in Figs. 9 and 10. In both
of the figures, we present our numerical results, results from
[12], and simulation results.

In Fig. 9, fpT is set as 0.1 and the frame length remains 15.
In this case, the channel changes faster than the pilot-symbol
insertion rate, and the interpolator can not provide good channel
information. The detector works poorly. The simulation results
are in agreement with our numerical results. Fig. 9 also shows
that the methods in [12] can not provide good approximation in
this situation. In Fig. 10, fp7'is set as 0.1 and the frame length is
changed to 4. As expected, the detector now works well, since it
receives good channel estimates. Again, our theoretical results
agree with the simulation results. Figs. 9 and 10 confirm the
correctness of our analytical results.
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Fig. 10. BER performance of single-branch 16-QAM with Hamming
windowing applied to the sinc interpolator for L = 4, K = 30, and
fpTs = 0.1 with symbol location at I = 8.

VI. CONCLUSION

The exact BER of 16-QAM when used with PSAM channel
estimation has been derived for AWGN channels and Rayleigh
fading channels with and without diversity. The effects of im-
perfect channel estimation on the BER have been studied. Both
noise and estimator decorrelation effects have been examined.
It was shown that the channel estimation error can have a se-
rious effect on the received data BER and that the decorrelation
causes an error-rate floor. The method can be applied to gen-
eral M-QAM with minor modification but more cumbersome
definitions, notations, and development. It can also be applied
to other estimation techniques if the channel estimate is jointly
Gaussian with the channel gain.
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