

Adaptive equalization /channel estimation GENT TELIN (32)	
Conclusions	
$\mu N_t \sqrt{E_s} > 2$	instable
$\mu N_t \sqrt{E_s} = 1$	fastest convergence (as $(1 - 1/N_t)^k$), steady-state MSE = 2MMSE
$\mu N_t \sqrt{E_s} < 1$	slow convergence, steady-state MSE ∈ (MMSE, 2MMSE)
Keep N_t to a reasonable minimum !	
99	