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OutlineOutline

Electromagnetics

Notations

Frequency domain, sinusoidal regime, phasors

Polarisation
linear polarisation

circular polarisation
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ElectromagneticsElectromagnetics
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ElectromagneticsElectromagnetics

Some modern applications
• wireless communication: GSM, UMTS, Hyperlan, Bluetooth, …
• electronic circuits and wireline applications for multiGbit/s applications
• on-chip interconnect including harmonics up to 10GHz
• nanoscale opto-electronics to “mold the flow of light”
• remote sensing and inverse scattering for non-destructive testing
• medical imaging and imaging for security purposes
• design of artificial materials
• …………...
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The Electromagnetics GroupThe Electromagnetics Group

During the past 15 years the Electromagnetics Group has been on the forefront 
of electromagnetic simulation techniques with applications in  areas such as 
microwave and RF circuits, (inverse) scattering, waveguides, packaging for digital 
systems, EMC, indoor propagation and CAD-tool development. Research results 

were reported in more than 160 international journal papers and resulted in 25 Ph.D’s .

The Electromagnetics Group (5 staff members, 10 Ph.D. students) is one
of the research groups of the Department of Information Technology.
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NotationsNotations

e.g. oror

place vector: 

matrix 
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Frequency domain - sinusoidal regimeFrequency domain - sinusoidal regime

general time domain signal f(t) and its frequency domain counterpart f(ω)

pure sinusoidal signal with angular frequency ω0

phasor representation: 

Fourier transform sinusoidal signal: 
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Frequency domain - sinusoidal regime - cont.Frequency domain - sinusoidal regime - cont.

Product of two sinusoidal signals (same frequency)

Time average value over a single period
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PolarisationPolarisation

general property of a vector with sinusoidal time dependence!

with

the corresponding time domain signal becomes

with ωt = τ as a parameter this is 
the representation of an ellipse
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Polarisation ellipsePolarisation ellipse

t = 0

t = 3T/4

t = - φ T/(2π)

t = - φ T/(2π) + 3T/4

a r
~

t = T/2

t = T/4

a i
~

a r

a i

polarisation plane: plane formed by ar and ai

main axes

ellipticity:
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Special polarisationsSpecial polarisations

Linear polarisation: ar // ai

Circular polarisation: main axes have equal length  (a • a = 0 ! )

example in the (x,y)-plane: 

x

y

a(t)

x

y

a(t)

left hand circular (LHC) 
or clockwise (CW)

right hand circular (RHC) 
or counter clockwise (CCW)
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Questions?

14Applied Electromagnetics
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Chapter 2: Maxwell’s EquationsChapter 2: Maxwell’s Equations

16Applied Electromagnetics

OutlineOutline

Differential and integral formulation

Constitutive equations

Conservation of energy - Poynting’s vector

Boundary conditions

Elementary dipole sources

Potentials and Green’s functions

Wave equations

Image theory and image sources
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Maxwell’s equations in the time domainMaxwell’s equations in the time domain

curl equations

divergence equations

law of conservation of charge
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Maxwell’s equations in the frequency domainMaxwell’s equations in the frequency domain

curl equations

divergence equations

law of conservation of charge
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Integral form of Maxwell’s equationsIntegral form of Maxwell’s equations

S

c

un

Faraday’s law

Integrating the curl equations  over a surface S yields

Ampère’s law

(neglecting Φd )
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Integral form of Maxwell’s equationsIntegral form of Maxwell’s equations

Integrating the divergence equations  over a volume V yields

V

S

un

Gauss’s law

= total charge in V

Gauss’s law for the magnetic induction

no magnetic charges

Integrating the charge conservation law over a volume V yields
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Constitutive equations in free spaceConstitutive equations in free space

To solve Maxwell we need relations between e, b, d, h and j

Vacuum (free space)

µ0 = permeability of free space =

= permittivity of free space

= velocity of light in vacuum = 2.99792458 108 m/s
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Constitutive equations in material mediaConstitutive equations in material media

typically formulated in the frequency domain 
macroscopic
 

linear isotropic

anisotropic

dispersive 
homogeneous

inhomogeneous

relative permittivity and permeability

complex valued !!

refractive index

loss tangent

??
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Conduction current and source currentConduction current and source current

The current j in Maxwell’s equations consists of 2 contributions

• a known externally enforced source current density je (A/m2)

• charge displacement induced by the fields: conduction current ji

Constitutive equation for the conduction current

 “Complex” permittivity

}
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Perfect conductorPerfect conductor

PEC: Perfect Electric Conductorσ = ∞

js

PEC
ρs

e = 0  h = 0

zero fields inside the PEC
supports surface charges and surface currents
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Conservation of energy - Poynting’s vectorConservation of energy - Poynting’s vector

V

S

un

V

S2

un

un S1

V

(a) (b)

je

je

S: S1 U S2

Poynting’s vector:
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Poynting’s vector in free spacePoynting’s vector in free space

ji = 0

radiated power through S

=

real power
generated 
by source

imaginary power

radiated imaginary power

difference of average electric and magnetic energy stored in V 
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Sourceless volume VSourceless volume V

V

S2

un

un

S1

V

je

power entering V through S1 must leave through S2

and similarly for the imaginary part!
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Isotropic lossy mediumIsotropic lossy medium

Joule losses
(time average)

magnetic losses electric losses
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Boundary conditions between mediaBoundary conditions between media

un
jsρs

1

2

tangential electric field is always continuous

normal magnetic induction is always continuous

0   tangential magnetic field is always continuous

= js   EXCEPT if medium 1 is PEC or if js is enforced

0  normal electric induction is continuous

= ρs   EXCEPT if medium 1 is PEC or if ρs is enforced
= ρs   EXCEPT if medium 1 and/or 2 is conducting   
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Boundary conditions at a PECBoundary conditions at a PEC

un
js

PEC
ρs

e

h

tangential electric field is zero

the normal magnetic induction is zero

the tangential magnetic field equals the surface current

e = 0   h = 0

the normal electric induction equals the surface charge
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Elementary dipole sourcesElementary dipole sources

l

z

a

OI

I

O

a

z-directed electric (Hertz) dipole 

O
+

- q = - I / jω

q = I / jω

z

pe = I l / jω

elementary loop current or magnetic (Hertz) dipole

pe : electric dipole moment

pm : magnetic dipole moment

pm = I π a2 uzuz
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Potentials in a homogeneous mediumPotentials in a homogeneous medium

• from Electrostatics we are familiar with the potential φ with e = -∇ φ

• can we still use potentials to solve Maxwell?

• from calculus we know that
∇ x f = 0           f = -∇ φ        φ is a scalar potential
∇ • f = 0            f =  ∇ x a     a is a vector potential 

a and φ ??    →  use remaining
                              Maxwell equations
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Homogeneous mediun with “complex” Homogeneous mediun with “complex” εε and  and µµ

Insertion in the remaing Maxwell equations gives

e

Now use the Lorentz gauge (Lorentz ijk of ijkvoorwaarde)

a and φ : Lorentz potentials
k : wavenumber = ω √ εµ
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Helmholtz equationHelmholtz equation

scalar Helmholtz equation :   

point 
source 

infinite
homogeneous space

solution or Green’s function:r

This Green’s function not only satisfies the differential equation
but also the radiation condition at infinity !
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Solution of the Helmholtz equations for a and Solution of the Helmholtz equations for a and φφ

O
r

r’
r-r’

source point

observation 
point

j    ρ
V

source
volume

source
point

observation
point

attenuation factor |r - r’|

phase factor

interference
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Wave equationsWave equations

From Maxwell it can be shown that both e and h satisfy a Helmholtz
equation also called wave equation

(what about ex or hy e.g. ??)

Example: 
   for je = δ(r) uz and 
   in the (x,y)-plane

|e|

y

x
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Image theory and image sourcesImage theory and image sources

j

j

PEC

jmirror

j jmirror

imaging of current sources

ε   µ ε   µ ε   µ

                           // components switch sign ⊥ components do not switch sign

+

_

_

_ +

+

imaging of charges

ε   µ ε   µ ε   µ
PEC

charges switch sign
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Questions?
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Chapter 3: ElectrostaticsChapter 3: Electrostatics
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OutlineOutline

Maxwell’s equations in the static case
Coulomb force and electric field
The electric potential
Dielectric - Electric dipole - Polarisation
Boundary conditions
Conductors - Resistance - Joule’s law
Capacitance - Capacitance matrix
Electrostatic energy
Solution of Laplace’s equation
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Maxwell’s equations in the static caseMaxwell’s equations in the static case

Static = independent of time  ∂ / ∂ t = 0 

Electrostatics

Magnetostatics
(*)

(*) both problems can be coupled for a conduction current j = σ e
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Coulumb force and the electric fieldCoulumb force and the electric field

+

_

r
F

F

+

r

F

F

+ε

+

r
ur

ε

O

e

q

Coulomb force

(V/m)

Electric field
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Electric potential Electric potential φφ

The static electric field is conservative or irrotational, i.e. :

 Only the potential difference is meaningful and unique (why?)

P2

P1

c1

c2

The potential can be defined by choosing a 
reference point for which φ = 0

ref: very often at infinity 

44Applied Electromagnetics

Potential of a Perfect Electric ConductorPotential of a Perfect Electric Conductor

PEC
ρs

e = 0 

Electrostatic behaviour of a PEC

φ = constant

 Why ?
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The equations of Poisson and LaplaceThe equations of Poisson and Laplace

The potential satisfies Poisson’s equation:

homogeneous region

charge free region

i.e. Laplace’s equation
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Potential of a point charge and a line chargePotential of a point charge and a line charge
infinite

homogeneous 3D space

r’

O

point 
charge

r

|r-r’|

infinite
homogeneous 2D space

ρ’

O

line 
charge

ρ

|ρ -ρ’|
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Dielectrics - dipole moment - polarisationDielectrics - dipole moment - polarisation
How to model a nonpolar material using a simple model of the atom?

+
- -

- -
--

+- -
- -

--

+

(a) (b) (c)

_
pe

eext

neutral
situation

effect of
external field

modelling
by a dipole

eext

+- +- +- +- +- +- +- +-
+- +- +- +- +- +- +- +-
+- +- +- +- +- +- +- +-
+- +- +- +- +- +- +- +-
+- +- +- +- +- +- +- +-

eext

+ + + + + + + +

- - - - - - - -

einduced
polarisation
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Dielectric displacement vectorDielectric displacement vector

dielectric
displacement

electric polarisation field

linear and isotropic material: 

electric susceptibility

relative pemittivity
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Boundary conditions for electrostaticsBoundary conditions for electrostatics

un

1

2

tangential electric field is always continuous

0 normal electric induction is continuous

1,2 : non-conducting
        dielectrics
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ConductorsConductors

Constitutive law : conductivity σ
|electron charge|

N: number per m3

µ : mobility in m2 / Vs
subscript e: electrons
                 h: holes 

un

ρs

1

2

good conductor σ >> ωε

all free volume charges
rapidly diffuse to 
the surface !!

relaxation time for copper
e.g. is about 1.5 10-9 s
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ResistanceResistance

+ -
V

I
σ

lSA SB

j

cylindrical resistor

Generalisation

A

B
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Differential equation for the resistanceDifferential equation for the resistance

SA

SB

φ = 1

φ = 0

∂φ/∂n = 0
the contact surfaces are
(chosen to be)
equipotential surfaces !

no volume charges

currents are perpendicular
to these surfaces

WHY?
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Dissipated powerDissipated power

Joule losses

Pdis = RI2

Proof ? Use one of Green’s theorems
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CapacitanceCapacitance

ε

+

-

+

-

+

-

+

-

+

-

+

-

+

- V

+q

-q

1

2

un

S1

S2

e

The potential φ satisfies

outside the conductors
on S1

on S2

static (ω = 0): 

potential difference:

path independent!

q = C V     with
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Two elementary examplesTwo elementary examples

+

- VSfict

z

de ee

(a) (b)

Parallel plate capacitor: 

α

fringing

α < 1

l
z

ε

b
a

ε

Coaxial capacitor: 

C
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Capacitance matrixCapacitance matrix

+

-

+

-

+

-

+

-

+

-

+

-

q1

1e

ref

2

q2

qref

+
+

+

take one conductor as the 
reference conductor and 
assign a zero potential to it 

remark: q1 + q2 + qref = 0

2x2 capacitance
matrix

To determine C11 and C12
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Capacitance matrix - cont.Capacitance matrix - cont.

M + 1 conductor case

Q : M x 1 column vector of charges
C : M x M capacitance matrix
V : M x 1 column vector of potentials
      w.r.t. the reference conductor

ref

1 2
|C12|

C1 C2
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A set of signal lines: examplesA set of signal lines: examples

d dd

d/2

d/2c0

c2

c1

d
3d/4

εr = 4

ref

21.7 pF/m

262.1 pF/m262.1 pF/m

air

εr = 3.2

εr = 4.3

PEC

200 µm

100 µm

c

c

c

a

aa bb

1

2 3

ref

1 2 3

119.4 pF/m

0.89 pF/m

53.7 pF/m

21.7 pF/m 18.1 pF/m

69.0 pF/m

a = 350µm; b = 150µm; c = 70µm 
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Electrostatic energyElectrostatic energy

q
dc

e

Energy needed to move a charge against an electric field

To charge a capacitance we have to transfer charge from one conductor to 
the other conductor. The total energy needed for this is

proof ! see Poynting’s theorem

Extension to the multiconductor case: 
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Solution of Laplace’s equationSolution of Laplace’s equation

• allows to determine the resitance or the capacitance (matrix)
• important topic in Computational Electromagnetics
• research topic in the Electromagnetics Group
• most important techniques: Finite Differerences, Finite Elements, 
                                                    Integral equations (Method of Moments)

Elementary Finite Difference Technique

z

y

xP
1

2

3

4

5

6

∆

y

xP
1

2

3

4

∆

(a) (b)
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Finite difference techniqueFinite difference technique

z

y

xP
1

2

3

4

5

6

∆

y

xP
1

2

3

4

∆

(a) (b)

Laplace’s equation is satisfied provided

3D

2D
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Finite difference techniqueFinite difference technique

Iterative solution

P

φ = 0φ = 1

φ = 0

(a) φ is zero everywhere except on conductor 1
(b) apply                                 to each point P
(c) repeat (b) until convergence is obtained (note: convergence is poor)
(d) calculate total charge q1 on conductor 1           q1 = C11

(e) calculate total charge q2 on conductor 2            q2 = C12

1 2
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Integral equation technique (2D)Integral equation technique (2D)

original
problem

Capacitance of two infinite parallel strips in free space

equivalent
half space problem

ρ

relevant Green’s function
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Integral equationIntegral equation

PEC

strip

ρ l : charge density (C/m)

potential due to charge density

P φ (P) =

limit for P approaching the strip

integral equation for the charge

piecewise
constant representation 
or basis functions for the charge 
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Integral equation - cont.Integral equation - cont.

discretisation (basis functions)

enforcing this in the midpoints (point matching)

N linear equations in N unknowns
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Matrix representation - numerical resultsMatrix representation - numerical results

N x 1 
unity column 

matrix

N x N 
system matrix

i ≠ j

≈

τ =

N x 1 column matrix with charge densities

PEC

strip

W

d/2
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Signal lines embedded in a dielectricSignal lines embedded in a dielectric

air

εr = 3.2

εr = 4.3

PEC

200 µm

100 µm

c

c

c

a

aa bb

1

2 3

ref

1 2 3

119.4 pF/m

0.89 pF/m

53.7 pF/m

21.7 pF/m 18.1 pF/m

69.0 pF/m

a = 350µm; b = 150µm; c = 70µm 

air

εr = 3.2

εr = 4.3

PEC

200 µm

100 µm

O

r’

r

Green’s function problem
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Questions?
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Chapter 4: MagnetostaticsChapter 4: Magnetostatics

70Applied Electromagnetics

OutlineOutline

Introduction

Lorentz force and the magnetic induction

The magnetic field and Biot-Savart’s law

The vector potential

Magnetic dipole - Magnetisation

Boundary conditions

Inductance - Inductance matrix

Magnetostatic energy

Two-dimensional signal lines
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Maxwell’s equations in the static caseMaxwell’s equations in the static case

Static = independent of time  ∂ / ∂ t = 0 

Electrostatics

Magnetostatics
(*)

(*) both problems become coupled for a conduction current j = σ e
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Lorentz force and the magnetic inductionLorentz force and the magnetic induction

Lorentz force

can be used to define the 
magnetic induction b (Wb/m2)

+

F

v

b

b

b

note: take a reference frame in which q does NOT move

using the principles 

put forward in Einstein’s “Zur Elektrodynamic Bewegten Körper” 
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TorqueTorque

x

y

I
uc

r

pm

total torque: 

for a constant b-field this becomes: 

b

magnetic dipole
moment of the loop
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Biot-Savart’s (Oersted) lawBiot-Savart’s (Oersted) law

r

P

I

dc

ur

Magnetic field due to an elementary current filament

Generalisation

line current I:

volume current j:

surface current js:
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Magnetic field of a linear conductorMagnetic field of a linear conductor

Proof the following formula’s for a linear conductor 
                              with radius a and carrying a total current I

r

I

O

z

u

hφ
x

r > a

r < a

Use either Biot-Savart or Ampère’s law
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Vector potentialVector potential

In the static case the vector potential a satisfies 
the vectorial Poisson equation

Biot-Savart

?
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Magnetic dipoleMagnetic dipole

x

y

Iuφ' a

z

circular current-carying loop

Rθ

a << R !

DEFINE the magnetic dipole moment
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MagnetisationMagnetisation

  Magnetisation of a material results from the magnetic moments caused by:

1. current loops generated by the motion of the electrons

2. intrinsic magnetic moment of spinning electrons 

3. current loops generated by the motion of protons in the nucleus (negligible)

magnetic 
induction

magnetisation
vector
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Magnetisation - cont.Magnetisation - cont.

magnetic susceptibility
of the order of +10-5

PARAMAGNETISM  (aluminium, magnesium, chromium, …)

• materials already exhibit a permanent but small magnetisation

magnetic susceptibility
of the order of -10-5

permeability relative permeability

DIAMAGNETISM  (copper, silver, gold, lead, …)

• distortion of electron orbits due to incident magnetic field
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Ferromagnetism and hysteresisFerromagnetism and hysteresis

FERROMAGNETISM  (iron, nickel, cobalt, …)

b

h
O

P1

P3

brP2

unmagnetised domains magnetised domains

hysteresis curve

about 10-10 m3

domain wall

saturation point

magnetisation curve
remanent 
magnetism

ferromagnetic material:
• non - linear
• large µr values (> 4000 for iron)
• very large µr values for mumetals (> 105)
• effect disappears above Curie temperature
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Boundary conditions for magnetostaticsBoundary conditions for magnetostatics

un

1

2

tangential magnetic field is always continuous

normal magnetic induction is continuous

with 1 and 2 not PEC

Identical to the dynamic case !
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I

Self-inductanceSelf-inductance

current carrying loop

The current creates a magnetic field and 
with this field a flux ψ can be associated

un

loop surface S

self - inductance (Henry)
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Self-inductance: examplesSelf-inductance: examples

x
x
x
x
x
x
x
x
x
x

z

O l

a

b

Solenoid

(a << l )

N: number of turns

µ

b
a

µI

I

Coaxial inductor

(H/m)
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Self-inductance: examples - cont.Self-inductance: examples - cont.

Pair of parallel PEC wires

Sa

SB

SA

I

I

b

(a) (b)

The flux is independent of the surface !
Why ?
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Mutual inductance - Inductance matrixMutual inductance - Inductance matrix

I1

uc’

uc

r

un

S1

S2

c1

c2

O
r’un’

|r - r’|

for infinitely thin PEC 
conductors proof that

2 x 2 inductance matrix

with L12 = L21
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Inductance matrix - cont.Inductance matrix - cont.

M + 1 conductor case

F : M x 1 column vector of fluxes
L : M x M capacitance matrix
I : M x 1 column vector of currents

In the two-dimensional (!!!!) case and only in that case it can be proven that
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Magnetostatic energyMagnetostatic energy

Energy needed to build up the flux through a loop

see Poynting’s theorem

Extension to the multiconductor case: 

elementary energy um when increasing the current 

and

Hence
proof !

88Applied Electromagnetics

Two-dimensional situationTwo-dimensional situation

z

• only z-directed current
• the vector potential is also
  z-directed, hence

Important note:

the scalar vector potential is the
flux (per unit of length) w.r.t. the
reference conductor (ψ = 0)

For the scalar potential ψ 
we can prove that

outside conductors
I

I

b
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Two-dimensional signal lines - cont.Two-dimensional signal lines - cont.

I1 I3 = -(I1 + I2)
z

I2

un

uc
∆

P

Q
u⊥

uc

Physical interpretation of the flux ψ 

Flux of b through unit surface
between cond. 1 and cond. 3

1

2

3
the scalar vector potential is the
flux (per unit of length) w.r.t. the
reference conductor (ψ = 0)
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Determining Determining LL from an equivalent  from an equivalent CC

One can prove that in the 2D (signal lines) case the inductance matrix
L is the inverse of a capacitance matric Cm

The capacitance problem for Cm is obtained by replacing ε by 1/µ 
 
For a completely homogeneous medium we have: 

Example: coaxial line
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A set of signal lines: examplesA set of signal lines: examples

d dd

d/2

d/2c0

c2

c1

d
3d/4

εr = 4

air

εr = 3.2

εr = 4.3

PEC

200 µm

100 µm

c

c

c

a

aa bb

1

2 3

a = 350µm; b = 150µm; c = 70µm 

L•C = C •L = 4 ε0 µ0
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Questions?
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Chapter 5: Plane WavesChapter 5: Plane Waves
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OutlineOutline

Introduction

Plane waves in a lossless dielectric

Plane waves in a lossy dielectric

Reflection and transmission at a plane interface

normal incidence

oblique incidence and Snell’s law

Reflection at a good conductor - surface impedance
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IntroductionIntroduction

In this chapter we look for the most simple solutions 
of Maxwell’s equations

• homogenous, isotropic, infinitely extending medium
• sourceless situation (eigenmode)
• sinusoidal regime at frequency ω
• solution only depending upon a single coordinate along
   a propagation direction u

u unit vector along the propagation direction

s
O

Solution ?? E(s,ω) and H(s,ω) plane wave solution
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Plane waves in a lossless dielectricPlane waves in a lossless dielectric

Medium characterised by real-valued and constant εr and µr  with σ = 0

Suppose that our prefered direction is the z-direction, i.e. s = z 

Maxwell’s curl equations become

Scalar multiplication with uz shows that

ez = hz = 0 the plane wave has no longitudinal components
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Plane waves in a lossless dielectric - cont.Plane waves in a lossless dielectric - cont.

Elimination of e of h leads to the following wave equations

+ first order !

real wavenumber in 1/m: k = ω √ ε µ  = ω / c = 2π / λ

real characteristic impedance:

characteristic impedance 
of free space:

transversal
NO z- component
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Plane waves in a lossless dielectric - cont.Plane waves in a lossless dielectric - cont.

Conclusions

• the electric field is perpendicular to the propagation direction
• the magnetic field is perpendicular to the propagation direction
• electric and magnetic field are perpendicular
• the amplitude of the magnetic and electric field differ by a factor
   called the characteristic impedance of the medium

Time-domain expression

wave propagating in the
positive z-direction

wave propagating in the
negative z-direction

why?
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Plane waves in a lossless dielectric - cont.Plane waves in a lossless dielectric - cont.

Poynting vector for the wave propagating in the positive z-direction

 energy density in Watt / m2

 propagated by the plane wave

Role of polarisation

 example: left hand circularly polarised electric field 
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Plane waves in a lossless dielectric - cont.Plane waves in a lossless dielectric - cont.

e(t)

h(t)

Polarisation ellipses e(z, t = 0)
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Plane wave propagation in the direction uPlane wave propagation in the direction u

Previous results can be generalised to

with

Conclusions

• the electric field is perpendicular to the propagation direction
• the magnetic field is perpendicular to the propagation direction
• electric and magnetic field are perpendicular
• the amplitude of the magnetic and electric field differ by a factor
   called the characteristic impedance of the medium

remain valid !
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Plane waves in a lossy dielectricPlane waves in a lossy dielectric

complex wavenumber: k = ω √ ε µ

complex characteristic impedance:

and

write k as k = β - j α

propagation
constant

propagation speed
     v = ω / β

attenuation
constant

Poynting’s vector
decreases exponentially
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Plane waves in a lossy dielectric - cont.Plane waves in a lossy dielectric - cont.

Plane wave expression remains identical

example: electric field for propagation along the z-direction

power loss L in dB/m per metre:  

Conclusions

• the electric field is perpendicular to the propagation direction
• the magnetic field is perpendicular to the propagation direction
• electric and magnetic field are perpendicular
• the amplitude of the magnetic and electric field differ by a factor
   called the characteristic impedance of the medium
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Isolators and good conductorsIsolators and good conductors

non-magnetic material with conductivity σ

ε         ε + σ / jω

Special case:

(a) low-loss dielectric (isolator) σ << ω ε

attenuation only

polyethylene: εr = 2.3     σ/ω ε = 2 10-4 to 3 10-4

between 50 Hz and 1 GHz
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Isolators and good conductors - cont.Isolators and good conductors - cont.

(b) good conductor σ >> ω ε

skin-depth δ

Plane wave in a good conductor

attenuation phase shift

copper: εr = 1     σ = 5.9 107

freq.   δ

50 Hz   9mm
1 MHz   0.06mm
1 GHz   0.02mm
10 GHz   0.66µm
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From DC to skin-effectFrom DC to skin-effect

(a)

(b) (c)

        (a) Layout of a single-chip CMOS GPS receiver
(b) On-chip spiral inductor component

(c) Cross-section of the spiral inductor

(source: Stanford University, CA)
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From DC to skin-effect - cont.From DC to skin-effect - cont.

on-chip interconnect
structures

t

w

 t < δs

w < δs

 t < δs

w > δs

 t > δs

w > δs

edge effect skin effect

frequencyDC

t > δ
w > δ

t < δ
w > δ

t < δ
w < δ
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Reflection and transmission at a plane interfaceReflection and transmission at a plane interface

zy

medium 1 medium 2

ε1 µ1 ε2 µ2

incident

reflected
transmitted

x

(a)

inc.

refl.

transm.

1 2 3

inc.

refl.

1 2 3 4

PEC

two half-spaces
layer between
two half-spaces

stack of layers
on top of PEC
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Normal incidenceNormal incidence

z

ε1 µ1 ε2 µ2

x

ext

hxt

exi

hxi

exr

hxr

incident linearly polarised plane wave

reflected wave (why?)

Is the polarisation of the 
incident wave relevant ?

reflection coeff.

transmitted wave (why?)

transmission coeff.
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Normal incidence - cont.Normal incidence - cont.

z

ε1 µ1 ε2 µ2

x

ext

hxt

exi

hxi

exr

hxr

Application of boundary conditions

(a) continuity of tangential electric field

(b) continuity of tangential magnetic field

Final result

(what happens if medium 2 is PEC ?)
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Oblique incidenceOblique incidence

z

ε1 µ1 ε2 µ2

x

et

ht

ei

hi

er

hr

θi

θr θt

ui

ur

ut

Incident plane wave (arbitrary polarisation)

+ geometry invariance in y

all fields remain y-independent

+ translation invariance in x

all fields have                    dependence 
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Oblique incidence - cont.Oblique incidence - cont.

conclusion from the above reasoning: ansatz for er and et

+ wave equation

Reflected field
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Oblique incidence - Snell’s lawOblique incidence - Snell’s law

z

N1

x

θi

θr θt

ui

ur

ut

N2

θi=

z

N1

x

θi

θr
θt

ui

ur

ut

N2

θi=

θr = θi
N1 < N2
θt < θi

θr = θi
N1 > N2
θt > θi
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Oblique incidence - cont.Oblique incidence - cont.

Transmitted field

t t
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Transmission vs. total internal reflectionTransmission vs. total internal reflection

+ lossless materials

1. medium 2 is more dense than medium 1 (k2 > k1 or N2 > N1)

Snell’s law

example: from air (N1 ≈ 1) to water (N2 ≈ 8.4)

+

θt < θi
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Transmission vs. total internal reflection - cont.Transmission vs. total internal reflection - cont.

2. medium 2 is less dense than medium 1 (k2 < k1 or N2 < N1)

Snell’s law still applies BUT 

example: from water (N1 ≈ 8.4) to air (N2 ≈ 1)  θc = 6.8°

θt > θi(a) > 0

(b) < 0 total internal reflection (≈ mirror)

exponential damping

Transition between (a) and (b): defined by critical angle 

(inhomogeneous plane wave)
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TE and TM polarisationTE and TM polarisation

4 scalar unknowns + 
2 scalar source terms (why?)

+
continuity of the tangential 
electric and magnetic field,
i.e. 4 scalar conditions

BUT decoupling into two 
independent sets of problems or
polarisations is possible
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TE polarisationTE polarisation

TE-polarisation or Transverse Electric polarisation

     electric field linearly polarised and perpendicular to plane of incidence

z

ε1 µ1 ε2 µ2

x

ht

et

hi

ei

er

hr

θi

θr θt

ui

ur

ut
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TM polarisationTM polarisation

TM-polarisation or Transverse Magnetic polarisation

     magnetic field linearly polarised and perpendicular to plane of incidence

z

ε1 µ1 ε2 µ2

x

et

ht

ei

hi

er

hr

θi

θr θt

ui

ur

ut
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TE-polarisation: resultsTE-polarisation: results

always different from 0 !



61

121Applied Electromagnetics

TM-polarisation: resultsTM-polarisation: results

0 for 

i.e the Brewster angle

(what happens for θi = 0 ?)
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Example: glass - airExample: glass - air

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

θi

reflection 
coefficient

RTM

-RTE

-RTM

56.30

air to glass

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

reflection 
coefficient

θi

RTE

|R|

RTM

-RTM

33.70 420

glass to air

air (N ≈ 1) 
glass (N ≈ 1.5)
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Total reflection at a perfect conductorTotal reflection at a perfect conductor

perfect conductor: σ → ∞ and Z2 → 0

z

x

hi

ei

er = -ei

hr

θi

θi

ui

ur
PEC

z

x

ei

hi

er

θi

θi

ui

ur

PEC

hr = hi

(a) (b)TE polarisation TM polarisation
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• impedance surface =

   infinitely thin current-carrying sheet

• at this sheet:

• reflection coefficient for

   perpendicular  incidence:

Reflection by an impedance sheetReflection by an impedance sheet

impedance
surface
Simp

z

ε1 µ1

x

exi

hxi

exr

hxr

no fields
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Isolators and good conductors - cont.Isolators and good conductors - cont.

(b) good conductor σ >> ω ε

skin-depth δ

Plane wave in a good conductor

attenuation phase shift

copper: εr = 1     σ = 5.9 107

  freq.       δ

50 Hz   9mm
1 MHz   0.06mm
1 GHz   0.02mm
10 GHz   0.66µm
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Reflection by a good conductorReflection by a good conductor

impedance
surface
Simp

z

ε1 µ1

x

exi

hxi

exr

hxr

good 
conductor

impedance
surface
Simp

z

ε1 µ1

x

exi

hxi

exr

hxr

no fields  fields

= Zc         +      the Joule losses   =  
                      are identical (proof?)

PEC: σ → ∞ and Zs → 0    no losses !
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Questions?

128Applied Electromagnetics
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Chapter 6: Transmission LinesChapter 6: Transmission Lines

130Applied Electromagnetics

OutlineOutline

Introduction
Telegrapher’s equations
Voltage reflection coefficient
Input impedance
Generalised reflection coefficient
Power flow
Standing waves and VSWR
Smith chart
Matching
Transients
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IntroductionIntroduction

(a) (b)

(c) (d)

(e) (f)
x

y

z

Purposes
+ describe signal propagation along z 
    in terms of voltages and currents
+  extend lumped element description in 
    circuit theory with a distributed element
    describing signal propagation and 
    wave effects in the z-direction
+  avoid solving Maxwell?

Solution
+ the transmission line concept
+ solve Maxwell in the cross-section
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Telegrapher’s equationsTelegrapher’s equations

v(z,t) 1/Gdz Cdz

Rdz

v(z+dz,t)

i(z,t) i(z+dz,t)Ldz

dz

lumped element 
representation of
a transmission line

elementary lumped
element section of
a transmission line

L - C - G - R : result from the solution of Maxwell’s equations !
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Telegrapher’s equations - time domainTelegrapher’s equations - time domain

v(z,t) 1/Gdz Cdz

Rdz

v(z+dz,t)

i(z,t) i(z+dz,t)Ldz

dz

v(z,t)

i(z,t)
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Telegrapher’s equations - frequency domainTelegrapher’s equations - frequency domain

General Solution

no losses
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Voltage reflection coefficientVoltage reflection coefficient

V1

I1

z=-d z=0

ZL

Zg

Vg Rc

V2

I2

input 
plane

load 
plane
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Input impedance ZInput impedance Zii

z=-d

Zi

Zg

Vg

V2

I2

V1

I1

z=-d z=0

ZL

Zg

Vg Rc

V2

I2
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Input impedance ZInput impedance Zii: short line: short line

Short line: kd = 2πd/λ << 1

Cd

Ld

ZL

138Applied Electromagnetics

Input impedance ZInput impedance Zii: reactance synthesis: reactance synthesis

Open line

Short circuited line

-5

0

5

Xi

kd

ZL = ∞

ZL = 0

0 π/2 π 3π/2 2π

= jX

= jX

jX
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Generalised reflection coefficientGeneralised reflection coefficient

V1

I1

z=-d z=0

ZL

Zg

Vg Rc

V2

I2

z=-d z

Zi(z)

Zg

Vg
Rc

V2

I2 periodic with period λ/2 !
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Power flowPower flow

no losses

power orthogonality

|KL| = 1 results in total power reflection !
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Standing waves and VSWRStanding waves and VSWR

frequency domain

time domain

constructive interference for the voltage = destructive interference for the current

maximum  voltage amplitude (a+b)

minimum current amplitude (a-
b)/Rcand VICE VERSA ! 
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VSWRVSWR

Voltage Standing Wave Ratio or VSWR

0

0.5

1

1.5

2

λ/2

 a+b
|V|

|RcI|

 a-b

z

0

0.5

1

1.5

2  a+b

 a-b
z

|RcI|

|V|

λ/2

(a)

(b)

λ/4
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VSWR detectorVSWR detector

e

Standing wave detector
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Smith chartSmith chart

2

1
0.5

0.5 1 2

passive
inductive

passive
capacitiveactive

active

-0.5
-1

-2

ℜ (Z’)

ℑ (Z’)

O

1
2

-2
-1

∞0.5

-0.5

0.5

0

ℑ (K)

ℜ (K)

active

passive
O

|K|=1

impedance plane reflection coefficient plane
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Smith chartSmith chart

A

K
φ

O

Smith chart

146Applied Electromagnetics

Smith chartSmith chart

a 50Ω resistor

capacitive

inductive

real

jX
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Smith chart: impedance transformationSmith chart: impedance transformation

ℑ (K)

ℜ (K)

B
Ki

A

KL

towards
generator

towards
load A’

B’

1800 = 1 tour

load plane:
impedance

input plane:
impedance

load plane: admittance

input plane: admittance
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ℑ (K)

ℜ (K)

O

A’

A

B

|V|

|RcI|

MmaxMmin

Smith chart: VSWRSmith chart: VSWR

current

voltage

0

0.5

1

1.5

2

λ/2

 a+b
|V| |RcI|

 a-b

z
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MatchingMatching

(lossless)
matching
network

Rc

feed line
ZL

Rc

feed line
Rc

antenna, filter, ...

    Mismatch
• reflection of power
• signal reflection and echoes
• standing waves (dielectric breakdown)

Matching techniques
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Lumped element matchingLumped element matching

Rc=100 Ω

38.8 nH

0.92 pF ZL = (200 - j100) Ω

2.61 pF

Rc=100 Ω 46.1 nH ZL = (200 - j100) Ω

Planar resistor

Lossy film
Lossy film

Chip resistor Loop inductor Spiral inductor

Air
bridge

Chip capacitorMetal-insulator-
metal capacitor

Dielectric

Interdigital
gap capacitor

εr εr

dimensions < λ/10
parasitics are very

    important

The matching is exact at a single frequency (here at 500 MHz)



76

151Applied Electromagnetics

Single and double stub matchingSingle and double stub matching

Rc=50 Ω Rc=50 Ω

λ/8

60 Ω

0.995 pF

0.454 λ 0.396 λ

Rc=50 Ω Rc=50 Ω

0.044 λ

15 Ω

0.796 nH

0.147 λ

single stub double stub

the matching is exact at 
a single frequency (here at 2GHz)

1.0 1.5 2.0 2.5 3.0

1.0

0.75

0.5

0.25

f(GHz)

|Κ|

1 2
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Quarter wavelength transformerQuarter wavelength transformer

Rquarter RL
Rc

Rquarter RL
Rc

only for real impedances!

(Prove!)

λ/4

λ/4

The matching is exact at a single frequency
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Broadband matchingBroadband matching

ZLRc ZN Z1Z2

0 L

Rc
Z(z)

z

ZL

multisection matching

tapered matching

N = 1
2

3
4

5

0.3

0.2

0.1

0

|Κ|

1/3 1 5/3
f/f0
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TransientsTransients

• no dispersion i.e. no frequency dependent velocity
• no losses

RL

Rg

Vg Rc

d

∆t

z=0 z=d

1

delay τ = d/c
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Transients: equivalent input impedanceTransients: equivalent input impedance

Rc

Rg

Vg

∆t

z=0

1

RL

Rg

Vg Rc

d

∆t

z=0 z=d

1

equivalent circuit at the
beginning of the line

z=-d

Zi

Zg

Vg

V2

I2
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Transients: reflection coefficientsTransients: reflection coefficients

RLRc

z=d

v+

v- 

Rg Rc

z=0

v+

v- 

load

generator
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Transients: exampleTransients: example

t

v(z = 0,t)/κ

τ 2τ 3τ 4τ 5τ 6τ

v(z = d/2,t)/κ

v(z = d,t)/κ

1
0.78

0.14 0.025

0.6
1

1.6

0.18 0.11 0.03

0.29
0.05

beginning
of line

middle of
of line

end
of line

0.02

158Applied Electromagnetics

Questions?
?
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Chapter 7: Multiconductor TransmissionChapter 7: Multiconductor Transmission
                   Lines and Waveguides                   Lines and Waveguides

160Applied Electromagnetics

OutlineOutline

Introduction
General eigenmode equations
Multiconductor transmission lines: quasi-TEM analysis
TEM modes
TE and TM modes
Mode orthogonality
Parallel-plate waveguide

losses
group velocity versus phase velocity - dispersion

Rectangular waveguide
Coaxial cable
Microstrip and stripline
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IntroductionIntroduction

(a) (b)

(c) (d)

(e) (f)
x

y

z

Purposes
+ solve Maxwell’s equations
+ link to the transmission line 
   representation?

Solution

+ solve Maxwell for an infinitely
   long structure with constant cross-section
+ the eigenmode concept
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General eigenmode equationsGeneral eigenmode equations

Propagation direction (longitudinal)

Transverse plane (subindex t )y

x

z

Subdivide fields into a transversal
and a longitudinal part

Maxwell

Separation of
variables +
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General eigenmode equationsGeneral eigenmode equations

( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ )zzt

zjz
zzt

zjz
zzt

zjz
zzt

zjz

,y,xH,y,xeeK
,y,xH,y,xeeK,z,y,x
,y,xE,y,xeeK
,y,xE,x,yeeK,z,y,x

uH
uHh
uE
uEe

ω−ω−
ω+ω=ω
ω−ω+
ω+ω=ω

β+α+−

β−α−+

β+α+−

β−α−+

General eigenmode representation

γ = β - j α

propagation 
factor

propagation
constant

attenuation 
constant
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Eigenmode velocity - dispersionEigenmode velocity - dispersion

Time domain representation of a mode

Phase velocity

Remember that β and α are in general frequency dependent !!!!!
This is called mode dispersion.

effect of attenuation and 
dispersion on signal propagation

Group velocity No dispersion

vg = vp = Vω
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Multiconductor LinesMulticonductor Lines

metal
dielectric
air

1

ref
1 2

ref

321

ref

2

3
1

ref

1

ref

(a) (b) (c)

1

ref
(d) (e)

(f)

Maxwell (no losses)

Low- frequency expansion
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Multiconductor Lines: quasi-TEM analysisMulticonductor Lines: quasi-TEM analysis

Zeroth-order electric field problem

Zeroth-order magnetic field problem

Ez0 = 0

Hz0 = 0

quasi- TEM mode (s)

Transversal Electric 
and Magnetic

=

electrostatic

magnetostatic
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Quasi-TEM analysis: telegrapher’s eqns.Quasi-TEM analysis: telegrapher’s eqns.

2

3
1

ref

2

3
1

ref un

voltage-flux relation

conservation of charge

+

Telegrapher’s equations
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Quasi-TEM analysis: telegrapher’s eqns.Quasi-TEM analysis: telegrapher’s eqns.

Telegrapher’s equations
time domain

Telegrapher’s equations
frequency domain

L11dz

dz

C11dz L22dz

L12dz
C12dz

C22dz

lumped element section
(2 signal conductors)

Propagation constants (β = jω β1)

M+1 conductors         M TEM modes  
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Quasi-TEM analysis: conclusionsQuasi-TEM analysis: conclusions

Validity?

1

ref

321

ref

e(x,y,z,ω) ≈ Et(x,y) e- jβz = - ∇tφ e- jβz

h(x,y,z,ω) ≈ Ht(x,y) e- jβz = - (1/µ)(∇tψ x uz) e- jβz

ez = hz ≈ 0  (O(ω2))     β = ωβ1

non-dispersive with vg = vp = 1/β1

3 qTEM-modes

NO qTEM-mode

1 qTEM-mode

cross-sectional dimension
  << wavelength
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TEM modesTEM modes

+ quasi-TEM         Ez = Hz ≈ 0

+ TEM: Ez and Hz are identically zero for every frequency

Final Result
homogeneous medium only!

jγ

jγ



86

171Applied Electromagnetics

TE and TM modesTE and TM modes

+ TM modes: Hz = 0 for all frequencies   but still Hx Hy Ex Ey Ez

+ TE modes: Ez = 0 for all frequencies   but still Ex Ey Hx Hy Hz

only possible for homogeneous media!

TE modes TM modes

Neumann problem Dirichlet problem
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Mode orthogonalityMode orthogonality

The following general orthogonality theorem holds for ALL modes

S: cross-section of the waveguide   (can be infinite)
E1: electric field of mode 1 (only the transversal field plays a role)
H2: magnetic field of mode 2 (only the transversal field plays a role)

(in the notes the example of the TM modes is given - 
the general proof uses Lorentz reciprocity theorem)
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Parallel-plate waveguideParallel-plate waveguide

PEC

PEC

εr

n1

n3
n2

Parellel-plate waveguide

Optical slab waveguide

x

y

uz

d εr

Purpose
determine x-independent modes
propagating along z

homogeneous filling + 2 conductors

 1 TEM mode
TE modes
TM modes 
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Parallel-plate waveguide: TEM modeParallel-plate waveguide: TEM mode

x

y

uz

d εr

e(y,z,ω) =  - ∇tφ e- jβz

φ (x=0) = 0   φ (x=d) = V

v = ω / β = 1 / (LC)1/2 = 1 / (εµ)1/2

= (L / C)1/2

non-dispersive!
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Parallel-plate waveguide: lossesParallel-plate waveguide: losses

Dielectric losses

Transmission line equivalent and small losses

i.e. the effect of G and R can be evaluated independently

+ start from the lossless case: R = G = 0
+ replace C by C + G / (jω) in the transmission line equivalent
+ replace ε by ε + σ /(jω) in the dielectric

Cpp + Gpp / (jω)  =  ε/d + σ/d (1/ (jω))
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Parallel-plate waveguide: lossesParallel-plate waveguide: losses

Conductor losses: skin-effect losses

+ start from the lossless case (PEC conductors)

+ calculate surface currents:

+ Joule losses per unit of length:

+ propagated power:

skin 
depth

surface
impedance
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Parallel-plate waveguide: lossesParallel-plate waveguide: losses

+ relationship between decrease of propagated power and losses:

+ proportionality between dissipated power and propagated power:

Final result

power decays with a factor e-2αz

fields decay with a factor e-αz
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Parallel-plate waveguide: lossesParallel-plate waveguide: losses

Relationship between losses and transmission line equivalent
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Parallel-plate waveguide: TE and TM modesParallel-plate waveguide: TE and TM modes

TE modes

-jγnze with

n = 1, 2, 3, ….
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Parallel-plate waveguide: TE and TM modesParallel-plate waveguide: TE and TM modes

TM modes

-jγnze with

n = 1, 2, 3, ….

Remark: orthogonality and completeness
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Cut-off frequencyCut-off frequency

-jγnzez-dependence: with

Case 1: > 0
- j βn ze

the mode with index n is a propagating mode!

or λ < 2d / n

Case 2: > 0
- αn ze

the mode with index n is an evanescent  mode!

or λ > 2d / n

and γn = βn - jαn

Cut-off frequency of mode n: (zero for a TEM mode)

182Applied Electromagnetics

Phase and group velocityPhase and group velocity

dispersion: the propagation factor γ of a mode is frequency dependent

for the TE and TM modes

tg(.) = vpn

tg(.) = vgn

ω

γ

nπ

d√εµ

dispersion relation i.e. γ (ω)
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Phase and group velocityPhase and group velocity

Phase velocity of mode n

fc

v

vp

vg ffrequency

velocity

phase velocity

cut-off
frequency

v

velocity in 
infinite space

tg(.) = vpn

tg(.) = vgn

ω

γ

nπ

d√εµ

tg (.) = vp

> v !
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Phase and group velocityPhase and group velocity

Group velocity of mode n

+ consider a frequency modulated wave:

+ consider a modulation around central frequency ω0

+ result: 
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Phase and group velocityPhase and group velocity

Group velocity of mode n

fc

v

vp

vg ffrequency

velocity

group 
velocity

cut-off
frequency

v

tg(.) = vpn

tg(.) = vgn

ω

γ

nπ

d√εµ

tg (.) = vp

phase velocity

tg (.) = vg
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Rectangular waveguideRectangular waveguide

a

b

x

y

+ no TEM mode
+ TE modes
+ TM modes
+ in practical cases: a = 2b
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Rectangular waveguideRectangular waveguide

TE modes

cut-off frequencies

188Applied Electromagnetics

Rectangular waveguide: exampleRectangular waveguide: example

X-band waveguide: 8 - 12 GHz

a = 2.286 cm
b = 1.016 cm

(attenuation at 10 GHz: 0.11 dB/m)

Mode m n fc (GHz)

TE   1 0 6.562

TE   2 0 13.123

TE   0 1 14.764

TE, TM   1 1 16.156

TE, TM   1 2 30.248

TE, TM   2 1 19.753

a

b

copper

air
WR-90
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Rectangular waveguide: TERectangular waveguide: TE1010 mode mode

The TE10 mode is the only one used in practice monomode operation !

E

b

a

y

x

a = 2b monomode operation for

190Applied Electromagnetics

Field patterns for other waveguide modesField patterns for other waveguide modes

E
H

(a)

(c)(b)

TM21TE11

TE10
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Coaxial cable: TEM modeCoaxial cable: TEM mode

b

a
ρ

example: RG-142/U cable

Rc = 50Ω

a = 0.94mm   b = 2.95mm   
c = 4.34mm
teflon filling with εr = 2.041

c TEM mode

192Applied Electromagnetics

Coaxial cable: transmission line parametersCoaxial cable: transmission line parameters

e.g. 50Ω

Losses

cut-off frequency: determined by the TE11 mode
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StriplineStripline

HE

+ a pure TEM mode exists

+ its capacitance Cstrip per unit of length
   is found by solving the appropriate
   potential problem

+

     c: velocity of light in free space

+

+ signal velocity:

εr

εr

194Applied Electromagnetics

MicrostripMicrostrip

+ no pure TEM, TE or TM modes

+ for sufficiently low frequencies

   a quasi-TEM mode exists

E
H
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Microstrip: effective dielectric permittivityMicrostrip: effective dielectric permittivity

Effective dielectric permittivity

signal speed:                            with c the speed of light in free space

11

10

9

8

7
0 5 10 15GHz

εr,eff

w

h εrquasi-TEM 
limit

high-freq.
limit dispersion w = 3.04mm

h = 3.17mm
εr = 11.7
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Microstrip: transmission line impedanceMicrostrip: transmission line impedance

11

10

9

8

7
0 5 10 15

(εr)eff

eff,r0k ε=β

Z(Ω)

GHz

85

75

65

55

45

PVc

VcI
PI

impedanceeffective
dielectric
permittivity
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Questions?

198Applied Electromagnetics
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Chapter 8: Antennas and RadiationChapter 8: Antennas and Radiation

200Applied Electromagnetics

OutlineOutline

Introduction
Overview of antenna types
Far field of a current source
Directivity
Radiation impedance of an antenna
Equivalent circuit of a transmitting antenna
Open circuit voltage of a receiving antenna
Equivalent circuit of a receiving antenna
Effective cross-section of a receiving antenna
Antenna link: Friis formula
Thin wire antennas
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IntroductionIntroduction

Purposes

+ to understand the physics of antennas

+ to obtain equivalent circuit representations for transmitting and receiving

+ to know more about wire antennas

+ to get a short overview of other antenna types

The Concise Oxford Dictionary defines an antenna or aerial as

“ a metal rod, wire or other structure by which signals 
   are transmitted or received as part of a radio
  transmission or receiving system ”

202Applied Electromagnetics

Overview of antenna typesOverview of antenna types

monopole on a ground plane

folded dipole

biconical antenna

monopole on a box

Yagi antenna

horn antennas

wire grid antenna
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Overview of antenna typesOverview of antenna types

spiral antenna biconical patch
antenna

patch antenna
with feed line

radio 
telescope

patch antenna
array

broadband antenna

204Applied Electromagnetics

Far field of a current sourceFar field of a current source

V

O
j

r’

r

ur

|r-r’|

α

Vector potential of the source

Far field approximation

r
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Far field of a current source - cont.Far field of a current source - cont.

r

Far field at P ( r >> λ )

O

P

e

h

ur

locally plane wave                        globally spherical wave     

Far field region 

206Applied Electromagnetics

DirectivityDirectivity

Poynting’s vector for a particular direction ur

Total radiated power (integration over a large sphere)

Directivity: ratio of radiation in space angle dΩ to mean value
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Radiation patternRadiation pattern

main lobe

in dB

-3dB point

side lobe

null

2D cross-section Radiation bodies

208Applied Electromagnetics

Radiation impedanceRadiation impedance

Zg

Vg

V

I

O

un

un

a

b

antenna
surfaces Sa

far field
region r >> λ

r

surface of a sphere 
in the far field

circuit
volume
<<  λ

Sc

Sr

V
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Radiation impedance - cont.Radiation impedance - cont.

Starting point: energy balance equation in V

Sa

0

PEC
far field expressions

Sc

low-frequency approximation

Sr

210Applied Electromagnetics

Radiation impedance & equivalent circuitRadiation impedance & equivalent circuit

Zg

Vg

V

I

O

un

un

a

b linearity

Zg

Vg

V

I

a

b

Za = Ra + jXa

radiation
impedance
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Open circuit voltage of a receiving antennaOpen circuit voltage of a receiving antenna

Vopen

O

a

b
ui

ei hi

es hs

What is the relation between an antenna as
transmitter and the same antenna as a receiver?

incident 
plane wave

scattered 
field

radiation
property in the
same direction
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Equivalent circuit of a receiving antennaEquivalent circuit of a receiving antenna

V’

O

a

b

ui
ei hi

Zl

I’

Za

Vopen

V’

I’

a

b

Zl

radiation
impedance

Thevenin equivalent
  + Thevenin source: the open circuit voltage
  + Thevening impedance: the radiation impedance
                                             of the (transmitter) antenna
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Effective cross-sectionEffective cross-section

V’

O

a

b

ui
ei hi

Zl

I’

incident power Pin:                  in W/m2 

field
at origin O

received power at load: Prec = 1/2 |I’|2 Rl in W

effective cross-section: σeff =           in m2Prec

Pin

DEFINITION
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Effective cross-section - cont.Effective cross-section - cont.

Final result wavelength

gain of the antenna
when radiating in
the direction (-ui)=

directivityempirical factor
to account for metal 
and dielectric losses

polarisation
factor

mismatch factor

=

accounts for mismatch
between Zl and Za 

is 1 for Zl = Z*a 
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Polarisation factorPolarisation factor

field
at origin O

radiation vector
calculated w.r.t. O

(independent of absolute
value of E0 and F !)

x

y

A

τA

x’
y’

B
τ’B

E0

F(-ui)

0 ≤ Q ≤ 1   (when ?)

216Applied Electromagnetics

Antenna link: power budgetAntenna link: power budget

Zt

Vt

It

Za,t

Za,r

Vopen

Ir

Zr

R
ui

maximum available

power 

with Rt = ℜ (Zt)

received power Pr

= ?

Power budget
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Antenna link: Friis formulaAntenna link: Friis formula

distance between
antenna phase centres

transmitter
mismatch factor

receiver
mismatch factor

gain of the receiver
in the direction of the
phase centre of the transmitter

gain of the transmitter
in the direction of the
phase centre of the receiver

polarisation factor
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Antenna link: Friis formula - cont.Antenna link: Friis formula - cont.

= free space loss factor
   (due to spherical wave spreading)

Example: at 2.45 GHz for λ = 12 cm the free space loss factor 
                 is 60dB for a distance R of 10m

power budget decreases
with 20 dB for a distance 
increase of 1 λ
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Wire antennaWire antenna

z
L

-L

a
b

r
θ

F(θ)

Far Field

220Applied Electromagnetics

Thin wire antennaThin wire antenna

z
L

-L

a
b

r
θ

F(θ)

ad hoc current
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Wire antenna - radiation patternWire antenna - radiation pattern

30

210

60

240

90

270

120

300

150

330

180 0

1

0.5

30

210

60

240

90

270

120

300

150

330

180 0

1

0.5

30

210

60

240

90

270

120

300

150

330

180 0

1

0.5

1

0.5

30

210

60

240

90

270

120

300

150

330

180 02L = λ/2
(beamwidth:78°)

L

-L

2L = λ
(beamwidth:47°)

2L = 2λ2L = 3λ/2
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Wire antenna - current distribution @ 1GHzWire antenna - current distribution @ 1GHz

L

-L

numerical data: code F. Olyslager
thin wire approximation
wire length: 2L = 10 cm = λ/3
λ = 30 cm

z/λ

|I(z)|

exact
sinusoidal curent
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Wire antenna - current distribution @ 1GHzWire antenna - current distribution @ 1GHz

L

-L

numerical data: code F. Olyslager
thin wire approximation
wire length: 2L = 20 cm = 2λ/3
λ = 30 cm

z/λ

|I(z)|

exact
sinusoidal current
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Half-wavelength dipole (2L = Half-wavelength dipole (2L = λλ/2)/2)

L

-L

At λ/2 the antenna is in resonance

Xa = 0 !
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Wire antenna - radation impedanceWire antenna - radation impedance

numerical data: NEC code
wire radius: 1 mm
wire length: 2L = 15 cm

L

-L

1V

ΩΩ

0.5 1 1.5 2 2.5 3 3.5 4
GHz

Ra

Xa

0

500

1000

-1000

0

1000

resonance

inductive

capacitive
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Wire antenna - radation impedanceWire antenna - radation impedance

numerical data: NEC code
wire radius: 0.1 µm
wire length: 2L = 15 cm

L

-L

1V

resonance

inductive

capacitive

70

71

72

73

74

75

76

77

10.98 0.99
-20

-10

0

10

20

30

40

50
ΩΩ

GHz

Ra

Xa
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Very short dipoleVery short dipole

L

-L

L / λ  << 1

L = λ/20                Ra = 0.8Ω

100 W radiated power 
needs 11 A input current

about 1 A for a 
halve-wavelength
dipole
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Typical wire antennasTypical wire antennas

dipole monopole V-antenna folded dipole

folded dipole
backed by a metal plate

Yagi antenna helix antenna
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Broadband wire antennasBroadband wire antennas

spiral antenna
 r = eAφ

log-periodic
antenna

fractal
antenna
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Microstrip-fed patch antenna @ 10GHzMicrostrip-fed patch antenna @ 10GHz

Microstrip
line

Microstrip
line

Microstrip
line

antenna
patch

Step in
width

Gap coupled
microstrip

MoM meshing

gnd
Duroid 5870

Duroid 5870

2 layer substrate
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Questions?

232Applied Electromagnetics

The End


