TOEGEPAST ELEKTROMAGNETISME

Applied Electromagnetics

Daniël De Zutter
Department of Information Technology (INTEC) Ghent University
Sint-Pietersnieuwstraat 419000 Gent Belgium daniel.dezutter@intec.ugent.be

Chapter 1: Introduction

- Outline
 $\overline{\text { INTEC }}$

- Electromagnetics
- Notations
- Frequency domain, sinusoidal regime, phasors
- Polarisation
- linear polarisation
- circular polarisation

- Electromagnetics

The basic equations of Electromagnetics are Maxwell's equations first put forward by James Clark Maxwell in 1864. They describe the coupling between electric and magnetic fields and lead to the concept of electromagnetic waves. Maxwell's equations constitute the first "modern" physics theory, soon to be followed by the Special Theory of Relativity and by Quantum Physics. Maxwell's equations predict the speed of light for wave propagation in vacuum and remain invariant under the Lorentz transformation, i.e. they are compatible with the Special Theory of Relativity.

- Electromagnetics

In this course, Maxwell's equations form the starting point to study the propagation and scattering of waves, the principles of antennas and antenna communication, transmission line theory, signal propagation along multiconductor lines and waveguides but also to study electrostatics, magnetostatics and the so-called quasi-static behaviour of circuits and their description in terms of lumped elements. Advantage is taken of the extensive mathematical background of the third year's bachelor student to provide a mathematically rigourous treatment of the various topics.

Some modern applications

- wireless communication: GSM, UMTS, Hyperlan, Bluetooth, ...
- electronic circuits and wireline applications for multiGbit/s applications
- on-chip interconnect including harmonics up to 10 GHz
- nanoscale opto-electronics to "mold the flow of light"
- remote sensing and inverse scattering for non-destructive testing
- medical imaging and imaging for security purposes
- design of artificial materials
\qquad

- The Electromagnetics Group

©

The Electromagnetics Group (5 staff members, 10 Ph.D. students) is one of the research groups of the Department of Information Technology.

During the past 15 years the Electromagnetics Group has been on the forefront of electromagnetic simulation techniques with applications in areas such as microwave and RF circuits, (inverse) scattering, waveguides, packaging for digital systems, EMC, indoor propagation and CAD-tool development. Research results were reported in more than 160 international journal papers and resulted in 25 Ph.D's .

STAFF

D. De Zutter

A. Franchois

L. Knockaert

F. Olyslager

H. Rogier

- Notations这

a or α stand for scalar quantities
a and $\boldsymbol{\alpha}$ are used for vectors
unit vector \mathbf{u} e.g. $\mathbf{u}_{x}, \mathbf{u}_{y}$ and \mathbf{u}_{z} or $\mathbf{u}_{r}, \mathbf{u}_{\phi}$ and \mathbf{u}_{θ} or \mathbf{u}_{n}
place vector: $\mathbf{r}=x \mathbf{u}_{x}+y \mathbf{u}_{y}+z \mathbf{u}_{z}=r \mathbf{u}_{r}$
matrix $\overline{\bar{A}}=\left(\begin{array}{lll}A_{x x} & A_{x y} & A_{x z} \\ A_{y x} & A_{y y} & A_{y z} \\ A_{z x} & A_{z y} & A_{z z}\end{array}\right)$
$\overline{\bar{A}} \cdot \mathbf{a}=\left(A_{x x} a_{x}+A_{x y} a_{y}+A_{x z} a_{z}\right) \mathbf{u}_{x}+\left(A_{y x} a_{x}+A_{y y} a_{y}+A_{y z} a_{z}\right) \mathbf{u}_{y}$ $+\left(A_{z x} a_{x}+A_{z y} a_{y}+A_{z z} a_{z}\right) \mathbf{u}_{z}$.

- Frequency domain - sinusoidal regime

®

general time domain signal $f(t)$ and its frequency domain counterpart $f(\omega)$

$$
f(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} \mathrm{~d} t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(\omega) e^{j \omega t} \mathrm{~d} \omega
$$

pure sinusoidal signal with angular frequency ω_{0}

$$
f(t)=|f| \cos \left(\omega_{0} t+\phi\right)=\Re\left[|f| e^{j \phi} e^{j \omega_{0} t}\right]=\Re\left[f e^{j \omega_{0} t}\right]
$$

phasor representation: $f=|f| e^{j \phi}$
Fourier transform sinusoidal signal: $f(\omega)=\pi\left[f \delta\left(\omega-\omega_{0}\right)+f^{*} \delta\left(\omega+\omega_{0}\right)\right]$

-Frequency domain-sinusoidal regime-cont.

Product of two sinusoidal signals (same frequency)

$$
f(t)=|f| \cos (\omega t+\phi)=\Re\left[f e^{j \omega t}\right] \quad g(t)=|g| \cos (\omega t+\psi)=\Re\left[g e^{j \omega t}\right]
$$

$\sqrt{5}$

$$
f(t) g(t)=\frac{1}{2}|f \| g|[\cos (2 \omega t+\phi+\psi)+\cos (\phi-\psi)]
$$

Time average value over a single period

$$
\overline{f(t) g(t)}=\frac{1}{2}|f \| g| \cos (\phi-\psi)=\frac{1}{2} \Re\left[f g^{*}\right]
$$

- Polarisation

general property of a vector with sinusoidal time dependence!
$\mathbf{a}(t)=\left|a_{x}\right| \cos \left(\omega t+\phi_{x}\right) \mathbf{u}_{x}+\left|a_{y}\right| \cos \left(\omega t+\phi_{y}\right) \mathbf{u}_{y}+\left|a_{z}\right| \cos \left(\omega t+\phi_{z}\right) \mathbf{u}_{z}$
$=\Re\left[\left(a_{x} \mathbf{u}_{x}+a_{y} \mathbf{u}_{y}+a_{z} \mathbf{u}_{z}\right) e^{j \omega t}\right]$.

$$
=\Re\left[\mathbf{a} e^{j \omega t}\right]
$$

with $\quad \mathbf{a}=\mathbf{a}_{r}+j \mathbf{a}_{i}$
the corresponding time domain signal becomes

$$
\mathbf{a}(t)=\Re\left[\left(\mathbf{a}_{r}+j \mathbf{a}_{i}\right) e^{j \omega t}\right]=\mathbf{a}_{r} \cos \omega t-\mathbf{a}_{i} \sin \omega t
$$

$$
\pi
$$

with $\omega t=\tau$ as a parameter this is the representation of an ellipse

- Polarisation ellipse
 INTEC

$$
\mathbf{a}(t)=\Re\left[\left(\mathbf{a}_{r}+j \mathbf{a}_{i}\right) e^{j \omega t}\right]=\mathbf{a}_{r} \cos \omega t-\mathbf{a}_{i} \sin \omega t
$$

main axes

$\tilde{\mathbf{a}}_{r}=\mathbf{a}_{r} \cos \phi+\mathbf{a}_{i} \sin \phi$,
$\tilde{\mathbf{a}}_{i}=-\mathbf{a}_{r} \sin \phi+\mathbf{a}_{i} \cos \phi$

$$
\operatorname{tg} 2 \phi=\frac{2 \mathbf{a}_{r} \cdot \mathbf{a}_{i}}{\mathbf{a}_{r} \cdot \mathbf{a}_{r}-\mathbf{a}_{i} \cdot \mathbf{a}_{i}}
$$

polarisation plane: plane formed by a_{r} and a_{i}
ellipticity: $\kappa=\frac{\left|\tilde{\mathbf{a}}_{i}\right|}{\left|\tilde{\mathbf{a}}_{r}\right|}$

- Special polarisations

Linear polarisation: $\mathrm{a}_{\mathrm{r}} / / \mathrm{a}_{\mathrm{i}}$

$$
\begin{aligned}
& \mathbf{a}_{r}=a_{r} \mathbf{u} \quad \mathbf{a}_{i}=a_{i} \mathbf{u} \\
& a_{r}+j a_{i}=A e^{j \phi} \\
& \mathbf{a}(t)=A \cos (\omega t+\phi) \mathbf{u}
\end{aligned}
$$

Circular polarisation: main axes have equal length $(a \cdot a=0!)$

$$
\text { example in the (x,y)-plane: } \mathbf{a}_{r}=A \mathbf{u}_{x} \quad \mathbf{a}_{i}= \pm A \mathbf{u}_{y}
$$

left hand circular (LHC) or clockwise (CW)

right hand circular (RHC) or counter clockwise (CCW)

- Outine
 (NTEC

- Differential and integral formulation
- Constitutive equations
- Conservation of energy - Poynting's vector
- Boundary conditions
- Elementary dipole sources
- Potentials and Green's functions
- Wave equations
- Image theory and image sources

- Maxwell's equations in the time domain ®

curl equations

$$
\begin{gathered}
\nabla \times \mathbf{e}(\mathbf{r}, t)=-\frac{\partial}{\partial t} \mathbf{b}(\mathbf{r}, t) \\
\nabla \times \mathbf{h}(\mathbf{r}, t)=\frac{\partial}{\partial t} \mathbf{d}(\mathbf{r}, t)+\mathbf{j}(\mathbf{r}, t)
\end{gathered}
$$

divergence equations

$$
\begin{gathered}
\nabla \cdot \mathbf{d}(\mathbf{r}, t)=\rho(\mathbf{r}, t) \\
\nabla \cdot \mathbf{b}(\mathbf{r}, t)=0
\end{gathered}
$$

law of conservation of charge

$$
\nabla \cdot \mathbf{j}(\mathbf{r}, t)=-\frac{\partial}{\partial t} \rho(\mathbf{r}, t)
$$

- Maxwell's equations in the frequency domain

curl equations

$$
\begin{gathered}
\nabla \times \mathbf{e}(\mathbf{r})=-j \omega \mathbf{b}(\mathbf{r}) \\
\nabla \times \mathbf{h}(\mathbf{r})=j \omega \mathbf{d}(\mathbf{r})+\mathbf{j}(\mathbf{r})
\end{gathered}
$$

divergence equations

$$
\begin{gathered}
\nabla \cdot \mathbf{d}(\mathbf{r})=\rho(\mathbf{r}) \\
\nabla \cdot \mathbf{b}(\mathbf{r})=0
\end{gathered}
$$

law of conservation of charge

$$
\nabla \cdot \mathbf{j}(\mathbf{r})=-j \omega \rho(\mathbf{r})
$$

- Integral form of Maxwell's equations
 ®

Integrating the curl equations over a surface S yields

Faraday's law

$\oint_{c} \mathbf{e}(\mathbf{r}, t) \cdot \mathbf{d} \mathbf{c}=-\frac{\partial}{\partial t} \int_{S} \mathbf{b}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=-\frac{\partial}{\partial t} \Phi_{b}$ Ampère's law
$\oint_{c} \mathbf{h}(\mathbf{r}, t) \cdot \mathbf{d c}=\int_{S} \mathbf{j}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S+\frac{\partial}{\partial t} \int_{S} \mathbf{d}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=i(\mathbf{r}, t)+\frac{\partial}{\partial t} \Phi_{d}$
$\oint_{c} \mathbf{h}(\mathbf{r}, t) \cdot \mathbf{d} \mathbf{c}=\int_{S} \mathbf{j}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=i(\mathbf{r}, t) \quad\left(\right.$ neglecting $\left.\Phi_{\mathrm{d}}\right)$

- Integral form of Maxwell's equations

®

Integrating the divergence equations over a volume V yields

Gauss's law
$\begin{aligned} \int_{S} \mathbf{d}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=\int_{V} \rho(\mathbf{r}, t) d V & =q_{V}(t) \\ & =\text { total charge in } \mathbf{V}\end{aligned}$
Gauss's law for the magnetic induction

$$
\int_{S} \mathbf{b}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=0 \Rightarrow \text { no magnetic charges }
$$

Integrating the charge conservation law over a volume \mathbf{V} yields

$$
\int_{S} \mathbf{j}(\mathbf{r}, t) \cdot \mathbf{u}_{n} d S=-\frac{\partial}{\partial t} q_{V}(t)
$$

- Constitutive equations in free space ®

To solve Maxwell we need relations between $\mathbf{e}, \mathrm{b}, \mathrm{d}, \mathrm{h}$ and j
Vacuum (free space)

$$
\begin{gathered}
\mathbf{d}(\mathbf{r})=\epsilon_{0} \mathbf{e}(\mathbf{r}) \\
\mathbf{b}(\mathbf{r})=\mu_{0} \mathbf{h}(\mathbf{r})
\end{gathered}
$$

$$
\mu_{0}=\text { permeability of free space }=4 \pi 10^{-7} \mathrm{H} / \mathrm{m}
$$

$$
\epsilon_{0}=\frac{1}{c^{2} \mu_{0}}=8.85418781810^{-12} \mathrm{~F} / \mathrm{m}=\text { permittivity of free space }
$$

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\text { velocity of light in vacuum }=2.9979245810^{8} \mathrm{~m} / \mathrm{s}
$$

\square Constitutive equations in material media

typically formulated in the frequency domain
macroscopic
$\begin{aligned} \mathbf{d}(\mathbf{r}, \omega) & =\epsilon(\mathbf{r}, \omega) \mathbf{e}(\mathbf{r}, \omega) \\ \mathbf{b}(\mathbf{r}, \omega) & =\mu(\mathbf{r}, \omega) \mathbf{h}(\mathbf{r}, \omega)\end{aligned}$

$\epsilon_{r}=\epsilon / \epsilon_{0}, \quad \mu_{r}=\mu / \mu_{0} \quad$ relative permittivity and permeability
$\epsilon=\epsilon_{R}+j \epsilon_{I} \quad \mu=\mu_{R}+j \mu_{I}$ complex valued !!
$n=\sqrt{\epsilon_{r} \mu_{r}} \quad$ refractive index
$\operatorname{tg} \delta=-\frac{\epsilon_{I}}{\epsilon_{R}} \quad$ loss tangent

- Conduction current and source-current

The current j in Maxwell's equations consists of 2 contributions

- a known externally enforced source current density j_{e} (A/m²)
- charge displacement induced by the fields: conduction current j_{i}

ת

$$
\mathbf{j}(\mathbf{r})=\mathbf{j}_{i}(\mathbf{r})+\mathbf{j}_{e}(\mathbf{r})
$$

Constitutive equation for the conduction current

$$
\mathbf{j}_{i}(\mathbf{r})=\sigma(\mathbf{r}) \mathbf{e}(\mathbf{r})
$$

"Complex" permittivity

$$
\left.\begin{array}{l}
\nabla \times \mathbf{h}(\mathbf{r})=j \omega \epsilon(\mathbf{r}) \mathbf{e}(\mathbf{r})+\sigma(\mathbf{r}) \mathbf{e}(\mathbf{r})+\mathbf{j}_{e}(\mathbf{r}) \\
\nabla \times \mathbf{h}(\mathbf{r})=j \omega \tilde{\epsilon}(\mathbf{r}) \mathbf{e}(\mathbf{r})+\mathbf{j}_{e}(\mathbf{r})
\end{array}\right\} \tilde{\epsilon}(\mathbf{r})=\epsilon(\mathbf{r})+\frac{\sigma(\mathbf{r})}{j \omega}
$$

- Perfect conductor

$\sigma=\infty \Rightarrow$ PEC: Perfect Electric Conductor

zero fields inside the PEC
supports surface charges and surface currents

- Conservation of energy - Poynting's vector

$\mathrm{S}: \mathrm{S}_{1} \mathrm{US}_{2}$
$\int_{S}\left(\mathbf{e} \times \mathbf{h}^{*}\right) \cdot \mathbf{u}_{n} d S=\int_{V}\left(-j \omega \mathbf{h}^{*} \cdot \mathbf{b}-\mathbf{e} \cdot\left(\mathbf{j}_{e}^{*}+\mathbf{j}_{i}^{*}\right)+j \omega \mathbf{e} \cdot \mathbf{d}^{*}\right) d V$
Poynting's vector: $\mathbf{p}(\mathbf{r})=\frac{1}{2} \mathbf{e}(\mathbf{r}) \times \mathbf{h}^{*}(\mathbf{r})$
Ω

$$
-\frac{1}{2} \int_{V} \mathbf{e} \cdot \mathbf{j}_{e}^{*} d V=\int_{S} \mathbf{p} \cdot \mathbf{u}_{n} d S+\frac{1}{2} \int_{V} \mathbf{e} \cdot \mathbf{j}_{i}^{*} d V+\frac{1}{2} \int_{V}\left(j \omega \mathbf{h}^{*} \cdot \mathbf{b}-j \omega \mathbf{e} \cdot \mathbf{d}^{*}\right) d V
$$

- Poynting's vector in free space

- Sourceless volume \mathbf{V}
 INTEC

power entering V through S_{1} must leave through S_{2}

$$
\Re \int_{S_{1} \cup S_{2}} \mathbf{p} \cdot \mathbf{u}_{n} d S=0
$$

$\Re \int_{S_{1}} \mathbf{p} \cdot\left(-\mathbf{u}_{n}\right) d S=\Re \int_{S_{2}} \mathbf{p} \cdot \mathbf{u}_{n} d S \quad$ and similarly for the imaginary part!

Isotropic lossy medium

$$
\begin{aligned}
& -\frac{1}{2} \Re \int_{V} \mathbf{e} \cdot \mathbf{j}_{e}^{*} d V=\Re \int_{S} \mathbf{p} \cdot \mathbf{u}_{n} d S+\frac{1}{2} \int_{V} \sigma|\mathbf{e}|^{2} d V \\
& \quad-\frac{1}{2} \omega \int_{V} \mu_{I}|\mathbf{h}|^{2} d V+\frac{1}{2} \omega \int_{V} \epsilon_{I}|\mathbf{e}|^{2} d V \\
& \text { magnetic losses } \\
& -\frac{\text { Joule losses }}{\text { (time average) }} \\
& -\frac{1}{2} \Im \int_{V} \mathbf{e} \cdot \mathbf{j}_{e}^{*} d V=\Im \int_{S} \mathbf{p} \cdot \mathbf{u}_{n} d S+\frac{1}{2} \omega \int_{V} \mu_{R}|\mathbf{h}|^{2} d V-\frac{1}{2} \omega \int_{V} \epsilon_{R}|\mathbf{e}|^{2} d V
\end{aligned}
$$

Boundary conditions between media

OAT)

2

$\mathbf{u}_{n} \times\left(\mathbf{e}_{2}-\mathbf{e}_{1}\right)=0 \Rightarrow$ tangential electric field is always continuous
$\mathbf{u}_{n} \cdot\left(\mathbf{b}_{2}-\mathbf{b}_{1}\right)=0 \Rightarrow$ normal magnetic induction is always continuous
$\mathbf{u}_{n} \times\left(\mathbf{h}_{2}-\mathbf{h}_{1}\right)=\mathbf{0} \Rightarrow \mathrm{j}_{\mathrm{s}} \Rightarrow\left\{\begin{array}{l}\text { tangential magnetic field is always continuous } \\ \text { EXCEPT if medium } 1 \text { is PEC or if } \mathrm{j}_{\mathrm{s}} \text { is enforced }\end{array}\right.$

$$
\begin{aligned}
\mathbf{u}_{n} \cdot\left(\mathbf{d}_{2}-\mathbf{d}_{1}\right) & =0 \\
& =\rho_{\mathrm{s}} \\
& =\rho_{\mathrm{s}}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\text { normal electric induction is continuous } \\
\text { EXCEPT if medium } 1 \text { and/or } 2 \text { is conducting } \\
\text { EXCEPT if medium } 1 \text { is PEC or if } \rho_{\mathrm{s}} \text { is enforced }
\end{array}\right.
$$

- Boundary conditions at a PEC
 回

$\mathbf{u}_{n} \times \mathbf{e}=0 \quad$ tangential electric field is zero
$\mathbf{u}_{n} \times \mathbf{h}=\mathbf{j}_{s} \quad$ the tangential magnetic field equals the surface current
$\mathbf{u}_{n} \cdot \mathbf{d}=\rho_{s} \quad$ the normal electric induction equals the surface charge
$\mathbf{u}_{n} \cdot \mathbf{b}=0 \quad$ the normal magnetic induction is zero

- Elementary dipole sources

 (คั会z-directed electric (Hertz) dipole

p_{e} : electric dipole moment

$$
=j \omega \mathbf{p}_{e} \delta(\mathbf{r})
$$

elementary loop current or magnetic (Hertz) dipole

$$
\begin{array}{lr}
\mathbf{j}(\mathbf{r})=\nabla \times \mathbf{p}_{m} \delta(\mathbf{r}) & \mathbf{p}_{m}: \text { magnetic dipole moment } \\
\mathbf{p}_{m}=p_{m} \mathbf{u}_{z} & \mathbf{p}_{m}=\mathbf{I} \pi \mathrm{a}^{2} \mathbf{u}_{\mathbf{z}}
\end{array}
$$

- Potentials in a homogeneous medium

㲅

- from Electrostatics we are familiar with the potential ϕ with $\mathrm{e}=-\nabla \phi$
- can we still use potentials to solve Maxwell?
- from calculus we know that

$$
\begin{array}{lll}
\nabla \times f=0 & f=-\nabla \phi & \phi \text { is a scalar potential } \\
\nabla \bullet f=0 & f=\nabla \times a & a \text { is a vector potential }
\end{array}
$$

$\begin{aligned} \nabla \cdot \mathbf{b}(\mathbf{r})=0 \Rightarrow & \begin{array}{l}\mathbf{b}(\mathbf{r})=\nabla \times \mathbf{a}(\mathbf{r}) \\ \\ \nabla \times \mathbf{e}(\mathbf{r})=-j \omega \mathbf{b}(\mathbf{r})\end{array} \Rightarrow \nabla \times[\mathbf{e}(\mathbf{r})+j \omega \mathbf{a}(\mathbf{r})]=0\end{aligned}$

$$
\begin{aligned}
\text { a and } \phi ? ? & \rightarrow \quad \text { use remaining } \\
& \text { Maxwell equations }
\end{aligned}
$$

$$
\mathbf{e}(\mathbf{r})=-j \omega \mathbf{a}(\mathbf{r})-\nabla \phi(\mathbf{r})
$$

- Homogeneous mediun with "complex" ε and μ ®

Insertion in the remaing Maxwell equations aives

$$
\begin{aligned}
& \nabla \cdot \mathbf{d}(\mathbf{r})=\rho_{\mathbf{e}}(\mathbf{r}) \Rightarrow \nabla^{2} \phi(\mathbf{r})+j \omega \nabla \cdot \mathbf{a}(\mathbf{r})=-\frac{\rho_{e}(\mathbf{r})}{\epsilon} \\
& \nabla \times \mathbf{h}(\mathbf{r})=j \omega \mathbf{d}(\mathbf{r})+\mathbf{j}(\mathbf{r}) \\
& \Rightarrow \quad \nabla^{2} \mathbf{a}(\mathbf{r})+k^{2} \mathbf{a}(\mathbf{r})=\nabla[\nabla \cdot \mathbf{a}(\mathbf{r})+j \omega \epsilon \mu \phi(\mathbf{r})]-\mu \mathbf{j}_{e}(\mathbf{r})
\end{aligned}
$$

Now use the Lorentz gauge (Lorentz ijk of ijkvoorwaarde)

$$
\begin{gathered}
\nabla \cdot \mathbf{a}(\mathbf{r})+j \omega \epsilon \mu \phi(\mathbf{r})=0 \\
\text { 刁 } \\
\nabla^{2} \mathbf{a}(\mathbf{r})+k^{2} \mathbf{a}(\mathbf{r})=-\mu \mathbf{j}_{e}(\mathbf{r}) \\
\nabla^{2} \phi(\mathbf{r})+k^{2} \phi(\mathbf{r})=-\frac{\rho_{e}(\mathbf{r})}{\epsilon}
\end{gathered}
$$

a and ϕ : Lorentz potentials
k : wavenumber $=\omega \sqrt{\varepsilon \mu}$

- Helmholtz equation

scalar Helmholtz equation : $\nabla^{2} f(\mathbf{r})+k^{2} f(\mathbf{r})=\operatorname{source}(\mathbf{r})$
infinite
homogeneous space

This Green's function not only satisfies the differential equation but also the radiation condition at infinity !

Solution of the Helmholtz equations for a and ϕ ค

$$
\phi(\mathbf{r})=\frac{1}{4 \pi \epsilon} \int_{V} \frac{e^{-j k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rho_{e}\left(\mathbf{r}^{\prime}\right) d V^{\prime} \underbrace{\substack{\text { source } \\
\text { point }}}_{\mathbf{j}} \begin{gathered}
\text { source } \\
\text { volume }
\end{gathered}
$$

$$
\mathbf{a}(\mathbf{r})=\frac{\mu}{4 \pi} \int_{V} \frac{e^{-j k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathbf{j}_{e}\left(\mathbf{r}^{\prime}\right) d V^{\prime}
$$

- Wave equations

From Maxwell it can be shown that both e and h satisfy a Helmholtz equation also called wave equation

$$
\begin{aligned}
& \nabla^{2} \mathbf{e}(\mathbf{r})+k^{2} \mathbf{e}(\mathbf{r})=j \omega \mu\left[\mathbf{j}_{e}(\mathbf{r})+\frac{1}{k^{2}} \nabla\left(\nabla \cdot \mathbf{j}_{e}(\mathbf{r})\right)\right] \\
& \nabla^{2} \mathbf{h}(\mathbf{r})+k^{2} \mathbf{h}(\mathbf{r})=-\nabla \times \mathbf{j}_{e}(\mathbf{r}) \quad \text { (what about } \mathbf{e}_{\mathrm{x}} \text { or } \mathrm{h}_{\mathrm{y}} \text { e.g. ??) }
\end{aligned}
$$

Example:
for $j_{e}=\delta(r) u_{z}$ and
in the (x, y)-plane

Chapter 3: Electrostatics

- Outline
 Nited

- Maxwell's equations in the static case
- Coulomb force and electric field
- The electric potential
- Dielectric - Electric dipole - Polarisation
- Boundary conditions
- Conductors - Resistance - Joule's law
- Capacitance - Capacitance matrix
- Electrostatic energy
- Solution of Laplace's equation

- Maxwell's equations in the static case ล

Static $=$ independent of time $\Rightarrow \partial I \partial t=0$

$$
\begin{aligned}
& \nabla \times \mathbf{e}(\mathbf{r}, \mathrm{t})=-\frac{\partial}{\partial t} \mathbf{b}(\mathbf{r}, t) \\
& \nabla \times \mathbf{h}(\mathbf{r}, t)=\frac{Q}{\partial t} \mathbf{d}(\mathbf{r}, t)+\mathbf{j}(\mathbf{r}, k) \\
& \Rightarrow \\
& \begin{array}{c}
\nabla \cdot \mathbf{d}(\mathbf{r}, t)=\rho(\mathbf{r}, t) \\
\nabla \cdot \mathbf{b}(\mathbf{r}, t)=0
\end{array} \\
& \nabla \times \mathbf{e}(\mathbf{r})=0, \\
& \nabla \cdot \mathbf{d}(\mathbf{r})=\rho(\mathbf{r}) \\
& \text { Magnetostatics } \\
& \nabla \times \mathbf{h}(\mathbf{r})=\mathbf{j}(\mathbf{r}) \quad{ }^{(*)} \\
& \nabla \cdot \mathbf{b}(\mathbf{r})=0 .
\end{aligned}
$$

(*) both problems can be coupled for a conduction current $\mathrm{j}=\sigma \mathrm{e}$

Coulomb force

$$
\begin{gathered}
F=\frac{1}{4 \pi \epsilon} \frac{q_{1} q_{2}}{r^{2}} \\
\sqrt{夕}
\end{gathered}
$$

Electric field

$$
\mathbf{e}(\mathbf{r})=\mathbf{e}(r)=\frac{1}{4 \pi \epsilon} \frac{q}{r^{2}} \mathbf{u}_{r}(\mathrm{~V} / \mathrm{m})
$$

- Electric potential ϕ
 intec

The static electric field is conservative or irrotational, i.e. :

$$
\nabla \times \mathbf{e}(\mathbf{r})=0 \quad \Rightarrow \mathbf{e}(\mathbf{r})=-\nabla \phi(\mathbf{r}) \quad \mathbf{e}(\mathbf{r})=-j \omega \mathrm{a}(\mathbf{r})-\nabla \phi(\mathbf{r})
$$

Only the potential difference is meaningful and unique (why?)

$$
\phi_{12}=\phi_{1}-\phi_{2}=-\int_{P_{1}}^{P_{2}} \nabla \phi \cdot \mathbf{d} \mathbf{c}=\int_{P_{1}}^{P_{2}} \mathbf{e} \cdot \mathbf{d c}
$$

The potential can be defined by choosing a reference point for which $\phi=0$

$$
\Rightarrow \phi(P)=-\int_{P_{\text {ref }}}^{P} \nabla \phi \cdot \mathbf{d c} \quad \text { ref: very often at infinity }
$$

- Potential of a Perfect Electric Conductor
 Nited

Electrostatic behaviour of a PEC

Why?

- The equations of Poisson and Laplace

The potential satisfies Poisson's equation:

$$
\begin{gathered}
\nabla \cdot[\epsilon(\mathbf{r}) \nabla \phi(\mathbf{r})]=-\rho(\mathbf{r}) \\
\text { Љ homogeneous region } \\
\nabla^{2} \phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\epsilon} \\
\sqrt{\zeta} \quad \text { charge free region } \\
\nabla^{2} \phi(\mathbf{r})=0 \quad \text { i.e. Laplace's equation }
\end{gathered}
$$

- Potential of a point charge and a line charge ©

infinite
homogeneous 3D space

$$
\phi(\mathbf{r})=\frac{1}{4 \pi \epsilon} \int_{V} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rho\left(\mathbf{r}^{\prime}\right) d V^{\prime}
$$

infinite
homogeneous 2D space

- Dielectrics - dipole moment - polarisation

How to model a nonpolar material using a simple model of the atom?

- Dielectric displacement vector

(

$$
\begin{aligned}
& \mathbf{d}=\epsilon_{0} \mathbf{e}+\mathbf{p}_{e} \\
& \begin{array}{l}
\text { dielectric electric polarisation field } \\
\text { displacement }
\end{array}
\end{aligned}
$$

electric susceptibility
linear and isotropic material: $\mathbf{p}_{e}(\mathbf{r})=\epsilon_{0} \chi_{e} \widehat{\mathbf{e}(\mathbf{r})}$
$\mathbf{d}(\mathbf{r})=\epsilon_{0}\left(1+\chi_{e}\right) \mathbf{e}(\mathbf{r})=\epsilon_{0} \epsilon_{r} \mathbf{e}(\mathbf{r})=\epsilon \mathbf{e}(\mathbf{r})$

- relative pemittivity

- Boundary conditions for electrostatics这

1,2: non-conducting dielectrics

2

1
$\mathbf{u}_{n} \times\left(\mathbf{e}_{2}-\mathbf{e}_{1}\right)=0 \Rightarrow$ tangential electric field is always continuous

$$
\Rightarrow \phi_{1}=\phi_{2}
$$

$\mathbf{u}_{n} \cdot\left(\mathbf{d}_{2}-\mathbf{d}_{1}\right)=0 \Rightarrow$ normal electric induction is continuous

$$
\Rightarrow \epsilon_{1}\left(\frac{\partial \phi}{\partial n}\right)_{1}=\epsilon_{2}\left(\frac{\partial \phi}{\partial n}\right)_{2}
$$

- Conductors

Constitutive law : conductivity σ
$\mathbf{j}=\sigma \mathbf{e} \longrightarrow$ |electron charge \mid
$=\widehat{e N_{e} \mu_{e} \mathbf{e}}$ for a conductor,
$=e\left(N_{e} \mu_{e}+N_{h} \mu_{h}\right) \mathbf{e} \quad$ for a semiconductor
N : number per m^{3}
μ : mobility in $\mathrm{m}^{2} / \mathrm{Vs}$ subscript e: electrons h: holes

good conductor $\sigma \gg \omega \varepsilon$
all free volume charges rapidly diffuse to the surface !!
relaxation time for copper
e.g. is about $1.510^{-9} \mathrm{~s}$

- Dissipated power
 inted

Joule losses

$$
\begin{gathered}
P_{d i s}=\int_{V} \sigma|\mathbf{e}(\mathbf{r})|^{2} d V=\int_{V} \sigma(\nabla \phi \cdot \nabla \phi) d V \\
\Omega \\
\mathrm{P}_{\mathrm{dis}}=\mathrm{RI}^{2}
\end{gathered}
$$

Proof? Use one of Green's theorems

$$
\int_{V}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V=\int_{S} f \frac{\partial g}{\partial n} d S
$$

ake one conductor as the reference conductor and assign a zero potential to it

$$
\begin{aligned}
& q_{1}=C_{11} V_{1}+C_{12} V_{2} \\
& q_{2}=C_{21} V_{1}+C_{22} V_{2}
\end{aligned}
$$

remark: $q_{1}+q_{2}+q_{\text {ref }}=\mathbf{0}$
To determine C_{11} and C_{12}

$$
\begin{gathered}
\nabla^{2} \phi(\mathbf{r})=0 \\
\phi=V_{1}=1 \\
\phi=V_{2}=0
\end{gathered} \quad \mathrm{C}=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) \Rightarrow \begin{aligned}
& \text { 2x2 capacitance } \\
& \text { matrix }
\end{aligned}
$$

- Electrostatic energy
 $\stackrel{\text { ® }}{\text { NTEC }}$

Energy needed to move a charge against an electric field

To charge a capacitance we have to transfer charge from one conductor to the other conductor. The total energy needed for this is

$$
u_{e}=\frac{1}{2} C V^{2} \stackrel{\text { proof }!}{=} \int_{V} \frac{1}{2} \mathbf{e} \cdot \mathbf{d} d V \Rightarrow \text { see Poynting's theorem }
$$

Extension to the multiconductor case: $u_{e}=\frac{1}{2} \mathcal{V}^{T} \mathbf{C} \mathcal{V}$

- Solution of Laplace's equation

®

- allows to determine the resitance or the capacitance (matrix)
- important topic in Computational Electromagnetics
- research topic in the Electromagnetics Group
- most important techniques: Finite Differerences, Finite Elements, Integral equations (Method of Moments)

Elementary Finite Difference Technique

- Finite difference technique

(a)

(b)

$$
\begin{gathered}
\left(\nabla^{2} \phi\right)_{P} \approx \frac{1}{\Delta^{2}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}-6 \phi_{P}\right) \\
\Re
\end{gathered}
$$

Laplace's equation is satisfied provided

$$
\begin{array}{cc}
\phi_{P}=\frac{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}}{6} & \text { 3D } \\
\phi_{P}=\frac{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}}{4}
\end{array}
$$

- Finite difference technique

Iterative solution

(a) ϕ is zero everywhere except on conductor 1
(b) apply $\phi_{P}=\frac{\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}}{4}$ to each point \mathbf{P}
(c) repeat (b) until convergence is obtained (note: convergence is poor)
(d) calculate total charge q_{1} on conductor $1 \Rightarrow q_{1}=C_{11}$
(e) calculate total charge q_{2} on conductor $2 \Rightarrow q_{2}=C_{12}$

- Integra equation-cont.

$$
\begin{aligned}
& \lim _{\boldsymbol{\rho} \rightarrow c} \phi(\boldsymbol{\rho})=\lim _{\boldsymbol{\rho} \rightarrow c} \int_{c} \rho_{l}\left(\boldsymbol{\rho}^{\prime}\right) G(\boldsymbol{\rho}, \boldsymbol{\rho}) d c^{\prime}=1 \\
& \quad \prod^{\text {discretisation (basis functions) }} \\
& \lim _{\boldsymbol{\rho} \rightarrow c} \sum_{i=1}^{N} \rho_{l i} \int_{c_{i}} G\left(\boldsymbol{\rho}, \boldsymbol{\rho}^{\prime}\right) d c_{i}^{\prime}=1
\end{aligned}
$$

$\sqrt{\sqrt{2}}$ enforcing this in the midpoints (point matching)
$\lim _{\boldsymbol{\rho} \rightarrow \boldsymbol{\rho}_{j}} \sum_{i=1}^{N} \rho_{l i} \int_{c_{i}} G\left(\boldsymbol{\rho}, \boldsymbol{\rho}^{\prime}\right) d S_{i}^{\prime}=1 \quad j=1,2, \ldots, N$
N linear equations in N unknowns

- Matrix representation - numerical results

(

Applied Electromagnetics 66

Chapter 4: Magnetostatics

- Outline
 (NTEC

- Introduction
- Lorentz force and the magnetic induction
- The magnetic field and Biot-Savart's law
- The vector potential
- Magnetic dipole - Magnetisation
- Boundary conditions
- Inductance - Inductance matrix
- Magnetostatic energy
- Two-dimensional signal lines

- Maxwell's equations in the static case

Static $=$ independent of time $\Rightarrow \partial I \partial t=0$

$$
\begin{gathered}
\nabla \times \mathbf{e}(\mathbf{r}, t)=-\frac{\partial}{\partial t} \mathbf{b}(\mathbf{r}, t) \\
\nabla \times \mathbf{h}(\mathbf{r}, t)=\frac{Q}{\partial t} \mathbf{d}(1, t)+\mathbf{j}(\mathbf{r}, t) \\
\nabla \cdot \mathbf{d}(\mathbf{r}, t)=\rho(\mathbf{r}, \mathrm{t}) \\
\nabla \cdot \mathbf{b}(\mathbf{r}, \mathrm{t})=0
\end{gathered}
$$

Electrostatics

$$
\nabla \times \mathbf{e}(\mathbf{r})=0
$$

$$
\nabla \cdot \mathbf{d}(\mathbf{r})=\rho(\mathbf{r})
$$

(*) both problems become coupled for a conduction current $\mathrm{j}=\sigma \mathrm{e}$

- Lorentz force and the magnetic induction

Lorentz force

$$
\begin{gathered}
\mathbf{F}=q(\mathbf{v} \times \mathbf{b}) \\
\mathbf{F}=q(\mathbf{e}+\mathbf{v} \times \mathbf{b}) \\
,
\end{gathered}
$$

can be used to define the magnetic induction $b\left(W b / m^{2}\right)$
note: take a reference frame in which q does NOT move
$\Rightarrow \mathbf{F}^{\prime}=q \mathbf{e}^{\prime} \Rightarrow \mathbf{F}=q(\mathbf{e}+\mathbf{v} \times \mathbf{b})$ using the principles put forward in Einstein's "Zur Elektrodynamic Bewegten Körper"

- Torque (ค)

total torque: $\mathbf{t}=I \int_{c} \mathbf{r} \times(\mathbf{d c} \times \mathbf{b}) \quad \begin{aligned} & \text { magnetic dipole } \\ & \text { moment of the loop }\end{aligned}$
for a constant b-field this becomes: $\mathbf{t}=S I \mathbf{u}_{z} \times \mathbf{b}=\mathbf{p}_{m} \times \mathbf{b}$

Biot-Savart's (Oersted) law

Magnetic field due to an elementary current filament

- Magnetic field of a linear conductor
 这

Proof the following formula's for a linear conductor
with radius a and carrying a total current I

$$
\begin{aligned}
\mathbf{h}(r) & =\frac{I}{2 \pi r} \mathbf{u}_{\phi} & & \mathrm{r}>\mathbf{a} \\
& =\frac{I r}{2 \pi a^{2}} \mathbf{u}_{\phi} & & \mathrm{r}<\mathbf{a}
\end{aligned}
$$

Use either Biot-Savart or Ampère's law

- Vector potential

®

$$
\nabla \cdot \mathbf{b}(\mathbf{r})=0 \quad \Rightarrow \quad \mathbf{b}(\mathbf{r})=\nabla \times \mathbf{a}(\mathbf{r})
$$

In the static case the vector potential a satisfies the vectorial Poisson equation

$$
\begin{aligned}
& \nabla^{2} \mathbf{a}(\mathbf{r})=-\mu \mathbf{j}(\mathbf{r}) \\
& \sqrt{\Omega} \\
& \mathbf{a}(\mathbf{r})=\frac{\mu}{4 \pi} \int_{V} \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \\
& \text { Biot-Savart } \\
& \mathbf{h}(\mathbf{r})=\nabla \times \frac{1}{4 \pi} \int_{V} \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \stackrel{?}{\Rightarrow} \mathbf{h}(\mathbf{r})=\frac{1}{4 \pi} \int_{V} \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \times \mathbf{j}\left(\mathbf{r}^{\prime}\right) d V^{\prime}
\end{aligned}
$$

- Magnetisation

®

Magnetisation of a material results from the magnetic moments caused by:

1. current loops generated by the motion of the electrons
2. intrinsic magnetic moment of spinning electrons
3. current loops generated by the motion of protons in the nucleus (negligible)

- Magnetisation-cont.
 DIAMAGNETISM (copper, silver, gold, lead, ...)

- distortion of electron orbits due to incident magnetic field

$$
\begin{array}{r}
\Rightarrow \mathbf{m}=\chi_{m} \mathbf{h} \quad \mathbf{b}=\mu_{0}(\mathbf{h}+\mathbf{m})=\mu_{0}\left(1+\chi_{m}\right) \mathbf{h}=\mu \mathbf{h} \\
\begin{array}{l}
\text { magnetic susceptibility } \\
\text { of the order of }-10^{-5}
\end{array} \\
\mu=\mu_{0}\left(1+\chi_{m}\right)=\mu_{0} \mu_{r} \\
\text { permeability relative permeability }
\end{array}
$$

PARAMAGNETISM (aluminium, magnesium, chromium, ...)

- materials already exhibit a permanent but small magnetisation
$\Rightarrow \mathbf{m}=\chi_{m} \mathbf{h}$
magnetic susceptibility
of the order of $+10^{-5}$

- Boundary conditions for magnetostatics

with 1 and 2 not PEC 2

$\mathbf{u}_{n} \times\left(\mathbf{h}_{2}-\mathbf{h}_{1}\right)=0 \Rightarrow$ tangential magnetic field is always continuous
$\mathbf{u}_{n} \cdot\left(\mathbf{b}_{2}-\mathbf{b}_{1}\right)=0 \quad \Rightarrow$ normal magnetic induction is continuous
Identical to the dynamic case!

current carrying loop

The current creates a magnetic field and with this field a flux ψ can be associated

$$
\psi=\int_{S} \mathbf{b} \cdot \mathbf{u}_{n} d S=L I
$$

 (ค)

Pair of parallel PEC wires

The flux is independent of the surface!
Why?

$$
L_{w i r e p a i r}=\frac{\mu}{\pi} \ln \frac{d-a}{a}
$$

- Mutual inductance - Inductance matrix

2×2 inductance matrix
for infinitely thin PEC conductors proof that

$$
L_{21}=\frac{\mu}{4 \pi} \int_{c_{1}} \int_{c_{2}} \frac{\mathbf{d c}^{\prime} \cdot \mathbf{d c}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

$$
\begin{aligned}
\psi_{1} & =L_{11} I_{1}+L_{12} I_{2} \\
\psi_{2} & =L_{21} I_{1}+L_{22} I_{2}
\end{aligned}
$$

- Inductance matrix - cont.

M+1 conductor case

$$
\mathcal{F}=\mathbf{L} \mathcal{I}
$$

F : M x 1 column vector of fluxes
L : M x M capacitance matrix
$I: M \times 1$ column vector of currents

In the two-dimensional (!!!!) case and only in that case it can be proven that

- the inductance matrix is symmetric, $L_{i j}=L_{j i}$;
- all the non-diagonal elements are strictly positive, $L_{i j}>0$;
- all the diagonal elements are strictly positive, $L_{i i}>0$;
- the matrix \mathbf{L} is positive definite and non-singular.

- Magnetostatic energy
 ®

Energy needed to build up the flux through a loop
elementary energy u_{m} when increasing the current

$$
d u_{m}=v d i=L d i \frac{d i}{d t}=\frac{L}{2} \frac{d i^{2}}{d t} \quad \text { and } \quad v(t)=L \frac{d i(t)}{d t}
$$

$$
\begin{aligned}
& \text { Hence } \\
& \qquad u_{m}=\frac{1}{2} L I^{2} \stackrel{\text { proof }!}{=} \int_{V} \frac{1}{2} \mathbf{h} \cdot \mathbf{b} d V \Rightarrow \text { see Poynting's theorem }
\end{aligned}
$$

Extension to the multiconductor case:

$$
u_{m}=\frac{1}{2} \mathcal{I}^{T} \mathbf{L} \mathcal{I}
$$

- only z-directed current
- the vector potential is also z-directed, hence
$\mathbf{h}_{t}(\boldsymbol{\rho})=\frac{1}{\mu} \nabla \times\left(\psi(\boldsymbol{\rho}) \mathbf{u}_{z}\right)=\frac{1}{\mu} \nabla_{t} \psi(\boldsymbol{\rho}) \times \mathbf{u}_{z}$

- Determining L from an equivalent C

(ค

One can prove that in the 2D (signal lines) case the inductance matrix L is the inverse of a capacitance matric C_{m}

$$
\mathbf{L}=\mathbf{C}_{\mathbf{m}}{ }^{-1}
$$

The capacitance problem for \mathbf{C}_{m} is obtained by replacing ε by $1 / \mu$
For a completely homogeneous medium we have: $\mathbf{L} \cdot \mathbf{C}=\mathbf{C} \cdot \mathbf{L}=\epsilon \mu 1$

Example: coaxial line

$$
\begin{gathered}
C_{\text {coax }}=\frac{2 \pi \epsilon}{\ln \frac{b}{a}} \\
L_{\text {coax }}=\frac{\mu}{2 \pi} \ln \frac{b}{a}
\end{gathered}
$$

Chapter 5: Plane Waves

- Outine
 INTEC

- Introduction
- Plane waves in a lossless dielectric
- Plane waves in a lossy dielectric
- Reflection and transmission at a plane interface
- normal incidence
- oblique incidence and Snell's law
- Reflection at a good conductor - surface impedance

Applied Electromagnetics

- Introduction ®

In this chapter we look for the most simple solutions of Maxwell's equations

- homogenous, isotropic, infinitely extending medium
- sourceless situation (eigenmode)
- sinusoidal regime at frequency ω
- solution only depending upon a single coordinate along a propagation direction u

$$
\text { Solution ?? } \mathrm{E}(\mathrm{~s}, \omega) \text { and } \mathrm{H}(\mathrm{~s}, \omega) \quad \Rightarrow \quad \text { plane wave solution }
$$

- Plane waves in a lossless dielectric

©

Medium characterised by real-valued and constant ε_{r} and μ_{r} with $\sigma=0$
Suppose that our prefered direction is the z-direction, i.e. $s=z$
\Rightarrow Maxwell's curl equations become

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} z} \mathbf{u}_{z} \times \mathbf{e}(z) & =-j \omega \mu \mathbf{h}(z) \\
\frac{\mathrm{d}}{\mathrm{~d} z} \mathbf{u}_{z} \times \mathbf{h}(z) & =j \omega \epsilon \mathbf{e}(z)
\end{aligned}
$$

Scalar multiplication with u_{z} shows that

$$
e_{z}=h_{z}=0 \Rightarrow \text { the plane wave has no longitudinal components }
$$

- Plane waves in a lossless dielectric - cont.
 (ค)

Elimination of e of h leads to the following wave equations

$$
\begin{aligned}
& \qquad
\end{aligned}
$$

characteristic impedance
of free space: $\quad Z_{c 0}=\sqrt{\mu_{0} / \epsilon_{0}}=376.7303135 \Omega \approx 377 \Omega \approx 120 \pi \Omega$

- Plane waves in a lossless dielectric - cont.

N

Conclusions

- the electric field is perpendicular to the propagation direction
- the magnetic field is perpendicular to the propagation direction
- electric and magnetic field are perpendicular
- the amplitude of the magnetic and electric field differ by a factor called the characteristic impedance of the medium

Time-domain expression

wave propagating in the wave propagating in the positive z-direction negative z-direction

- Plane waves in a lossless dielectric - cont. (ค)

Poynting vector for the wave propagating in the positive z-direction

$$
\mathbf{p}(z)=\frac{\left|\mathbf{E}_{t}^{+}\right|^{2}}{2 Z_{c}^{*}} \mathbf{u}_{z}=\frac{\left|\mathbf{E}_{t}^{+}\right|^{2}}{2 Z_{c}} \mathbf{u}_{z} \Rightarrow \begin{aligned}
& \text { energy density in Watt } / \mathrm{m}^{2} \\
& \text { propagated by the plane wave }
\end{aligned}
$$

Role of polarisation
example: left hand circularly polarised electric field

$$
\begin{aligned}
& \mathbf{E}_{t}^{+}=E^{+}\left(\mathbf{u}_{x}+j \mathbf{u}_{y}\right) \\
& \mathbf{e}(z, t)=E^{+} \cos (\omega t-k z) \mathbf{u}_{x}-E^{+} \sin (\omega t-k z) \mathbf{u}_{y} \\
& Z_{c} \mathbf{h}(z, t)=E^{+} \cos (\omega t-k z) \mathbf{u}_{y}+E^{+} \sin (\omega t-k z) \mathbf{u}_{x}
\end{aligned}
$$

- Plane waves in a lossless dielectric - cont. ©

Polarisation ellipses

$$
e(z, t=0)
$$

- Plane wave propagation in the direction u
 NTEC

Previous results can be generalised to

$$
\begin{gathered}
\mathbf{e}(\mathbf{r})=\mathbf{A} e^{-j k \mathbf{u} \cdot \mathbf{r}} \\
\mathbf{h}(\mathbf{r})=\frac{1}{Z_{c}} \mathbf{u} \times \mathbf{A} e^{-j k \mathbf{u} \cdot \mathbf{r}}=\frac{1}{Z_{c}} \mathbf{u} \times \mathbf{e}(\mathbf{r})
\end{gathered}
$$

with

$$
\mathbf{A} \cdot \mathbf{u}=0
$$

Conclusions

- the electric field is perpendicular to the propagation direction
- the magnetic field is perpendicular to the propagation direction
- electric and magnetic field are perpendicular
- the amplitude of the magnetic and electric field differ by a factor called the characteristic impedance of the medium

- Plane waves in a lossy dielectric - cont.
 Nㅜㄹ

Plane wave expression remains identical

$$
\mathbf{e}(\mathbf{r})=\mathbf{A} e^{-j k \mathbf{u} \cdot \mathbf{r}}
$$

$\mathbf{h}(\mathbf{r})=\frac{1}{Z_{c}} \mathbf{u} \times \mathbf{A} e^{-j k \mathbf{u} \cdot \mathbf{r}}=\frac{1}{Z_{c}} \mathbf{u} \times \mathbf{e}(\mathbf{r}) \quad \mathbf{A} \cdot \mathbf{u}=0$.
example: electric field for propagation along the z-direction
$\mathbf{e}(z, t)=\Re\left[\mathbf{E}_{t}^{+} e^{-j \beta z+j \omega t}\right] e^{-\alpha z}+\Re\left[\mathbf{E}_{t}^{-} e^{j \beta z+j \omega t}\right] e^{\alpha z}$
power loss L in dB/m per metre: $L=8.686 \alpha$

Conclusions

- the electric field is perpendicular to the propagation direction
- the magnetic field is perpendicular to the propagation direction
- electrie-and magnetic field are perpendicular
- the amplitude of the maymetic and electric Tield differ by a factor called the characteristic Tmpedance of the medium

- Isolators and good conductors

Special case:
non-magnetic material with conductivity σ

$$
\varepsilon \Rightarrow \varepsilon+\sigma / \mathrm{j} \omega \Rightarrow\left\{\begin{array}{l}
k=\omega \sqrt{\epsilon \mu} \sqrt{1+\frac{\sigma}{j \omega \epsilon}} \\
Z_{c}=\sqrt{\frac{\mu}{\epsilon}} \frac{1}{\sqrt{1+\frac{\sigma}{j \omega \epsilon}}}
\end{array}\right.
$$

(a) low-loss dielectric (isolator) $\sigma \ll \omega \varepsilon$
$k=\beta-j \alpha=\omega \sqrt{\epsilon \mu}-j \frac{\sigma}{\frac{\sigma}{2}}{ }^{\frac{\mu}{\epsilon}} Z_{c}=\sqrt{\frac{\mu}{\epsilon}}$ attenuation only
polyethylene: $\varepsilon_{\mathrm{r}}=2.3 \quad \sigma / \omega \varepsilon=210^{-4}$ to 310^{-4}
between 50 Hz and 1 GHz

Is the polarisation of the incident wave relevant?
incident linearly polarised plane wave

$$
\begin{gathered}
e_{x i}(z)=e^{-j k_{1} z} \\
Z_{1} h_{y i}(z)=e^{-j k_{1} z}
\end{gathered}
$$

reflected wave (why?)

$$
\begin{aligned}
e_{x r}(z) & =R_{n} e^{+j k_{1} z} \\
Z_{1} h_{y r}(z) & =-R_{n} e^{+j k_{1} z}
\end{aligned}
$$

transmitted wave (why?)

$$
\begin{gathered}
e_{x t}(z)=T_{n} e^{-j k_{2} z} \\
Z_{2} h_{y t}(z)=T_{n} \underbrace{-j k_{2} z} \\
\text { transmission coeff. }
\end{gathered}
$$

NOIGREMEICRE-GOL!

Application of boundary conditions
(a) continuity of tangential electric field

$$
\Rightarrow \quad 1+R_{n}=T_{n}
$$

(b) continuity of tangential magnetic field

$$
\Rightarrow \quad \frac{1-R_{n}}{Z_{1}}=\frac{T_{n}}{Z_{2}}
$$

Final result

$$
T_{n}=\frac{2}{1+\frac{Z_{1}}{Z_{2}}} \quad R_{n}=\frac{1-\frac{Z_{1}}{Z_{2}}}{1+\frac{Z_{1}}{Z_{2}}}
$$

- Obliqueincidence (คั会

Incident plane wave (arbitrary polarisation)

$$
\begin{gathered}
\mathbf{e}_{i}=\mathbf{A} e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}}=\mathbf{A} e^{-j k_{1} \cos \theta_{i} z} e^{-j k_{1} \sin \theta_{i} x} \\
Z_{1} \mathbf{h}_{i}=\left(\mathbf{u}_{i} \times \mathbf{A}\right) e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}}=\left(\mathbf{u}_{i} \times \mathbf{A}\right) e^{-j k_{1} \cos \theta_{i} z} e^{-j k_{1} \sin \theta_{i} x}
\end{gathered}
$$

+ geometry invariance in y ת
all fields remain y-independent
+ translation invariance in x ת
all fields have $e^{-j k_{1} \sin \theta_{i} x}$ dependence

- Oblique incidence - cont.

conclusion from the above reasoning: ansatz for e_{r} and e_{t}

$$
\left.\begin{array}{l}
\mathbf{e}_{r}(x, z)=\mathbf{f}(z) e^{-j k_{1} \sin \theta_{i} x} \\
\mathbf{e}_{t}(x, z)=\mathbf{g}(z) e^{-j k_{1} \sin \theta_{i} x}
\end{array}\right\} \quad+\text { wave equation }
$$

Reflected field

$$
\begin{aligned}
& \nabla^{2} \mathbf{e}_{r}(\mathbf{r})+k_{1}^{2} \mathbf{e}_{r}(\mathbf{r})=0 \\
& \sqrt{\Omega} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}} \mathbf{f}(z)+\left(k_{1}^{2}-k_{1}^{2} \sin ^{2} \theta_{i}\right) \mathbf{f}(z)=\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} \mathbf{f}(z)+k_{1}^{2} \cos ^{2} \theta_{i} \mathbf{f}(z)=0 \\
& \pi \\
& \mathbf{e}_{r}(x, z)=\mathbf{B} e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}}=\mathbf{B} e^{j k_{1} \cos \theta_{i} z} e^{-j k_{1} \sin \theta_{i} x} \\
& Z_{1} \mathbf{h}_{r}(x, z)=\left(\mathbf{u}_{r} \times \mathbf{B}\right) e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}} \\
& \quad \mathbf{B} \cdot \mathbf{u}_{r}=0
\end{aligned}
$$

- Oblique incidence - cont.
 ค

Transmitted field

$$
\begin{aligned}
& \nabla^{2} \mathbf{e}_{\mathbf{t}}(\mathbf{r})+k_{1}^{2} \mathbf{e}_{\mathbf{t}}(\mathbf{r})=0 \\
& \Omega \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}} \mathbf{g}(z)+\left(k_{2}^{2}-k_{1}^{2} \sin ^{2} \theta_{i}\right) \mathbf{g}(z)=0 \\
& \pi \\
& \mathbf{e}_{t}(x, z)=\mathbf{C} e^{-j k_{2} \mathbf{u}_{t} \cdot \mathbf{r}} \\
& =\mathbf{C} e^{-j k_{2} \cos \theta_{t} z} e^{-j k_{1} \sin \theta_{i} x}=\mathbf{C} e^{-j k_{2} \cos \theta_{t} z} e^{-j k_{2} \sin \theta_{t} x} \\
& Z_{2} \mathbf{h}_{t}(x, z)=\left(\mathbf{u}_{t} \times \mathbf{C}\right) e^{-j k_{1} \mathbf{u}_{t} \cdot \mathbf{r}} \\
& \mathbf{C} \cdot \mathbf{u}_{t}=0 \\
& k_{2} \sin \theta_{t}=k_{1} \sin \theta_{i} \\
& \mathbf{u}_{t}=\cos \theta_{t} \mathbf{u}_{z}+\sin \theta_{t} \mathbf{u}_{x} \\
& \Re\left(k_{2} \cos \theta_{t}\right) \geq 0 \text { and } \Im\left(k_{2} \cos \theta_{t}\right) \leq 0
\end{aligned}
$$

- Transmission vs. total internal reflection

$\begin{cases}\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} \mathrm{~g}(z)+\left(k_{2}^{2}-k_{1}^{2} \sin ^{2} \theta_{i}\right) \mathrm{g}(z)=0 \\ k_{2} \sin \theta_{t}=k_{1} \sin \theta_{i} & \text { + lossless materials }\end{cases}$

1. medium $\mathbf{2}$ is more dense than medium $\mathbf{1}\left(k_{2}>k_{1}\right.$ or $\left.N_{2}>N_{1}\right)$

example: from air $\left(\mathrm{N}_{1} \approx 1\right)$ to water $\left(\mathrm{N}_{2} \approx 8.4\right)$

Transmission vs. total internal reflection-cont. ลை

2. medium 2 is less dense than medium $1\left(k_{2}<k_{1}\right.$ or $\left.N_{2}<N_{1}\right)$
(a) $\left(k_{1}^{2}-k_{1}^{2} \sin ^{2} \theta_{i}\right)>0 \Rightarrow$ Snell's law still applies BUT $\theta_{\mathrm{t}}>\theta_{\mathrm{i}}$
(b) $\left(k_{1}^{2}-k_{1}^{2} \sin ^{2} \theta_{i}\right)<0 \Rightarrow$ total internal reflection (\approx mirror)

Transition between (a) and (b): defined by critical angle $\sin \theta_{i}<\frac{N_{2}}{N_{1}}=\sin \theta_{c}$
example: from water $\left(N_{1} \approx 8.4\right)$ to air $\left(N_{2} \approx 1\right) \theta_{c}=6.8^{\circ}$

Applied Electromagnetics 116

- TE and TM polarisation

$\mathbf{e}_{i}=\mathbf{A} e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}}$
$Z_{1} \mathbf{h}_{i}=\left(\mathbf{u}_{i} \times \mathbf{A}\right) e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}}$
$\mathbf{A} \cdot \mathbf{u}_{i}=0$
$\mathbf{e}_{r}(x, z)=\mathbf{B} e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}}$
$Z_{1} \mathbf{h}_{r}(x, z)=\left(\mathbf{u}_{r} \times \mathbf{B}\right) e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}}$
B $\cdot \mathbf{u}_{r}=0$
4 scalar unknowns +
2 scalar source terms (why?)

$$
+
$$

continuity of the tangential electric and magnetic field, i.e. 4 scalar conditions
$\mathbf{e}_{t}(x, z)=\mathbf{C} e^{-j k_{2} \mathbf{u}_{t} \cdot \mathbf{r}}$
$Z_{2} \mathbf{h}_{t}(x, z)=\left(\mathbf{u}_{t} \times \mathbf{C}\right) e^{-j k_{1} \mathbf{u}_{t} \cdot \mathbf{r}}$
$\mathbf{C} \cdot \mathbf{u}_{t}=0$
BUT decoupling into two independent sets of problems or polarisations is possible

- TE polarisation

TE-polarisation or Transverse Electric polarisation
\Rightarrow electric field linearly polarised and perpendicular to plane of incidence

- TM polarisation

TM-polarisation or Transverse Magnetic polarisation
\Rightarrow magnetic field linearly polarised and perpendicular to plane of incidence

- TE-polarisation: results

$$
\begin{gathered}
\mathbf{e}_{i}(\mathbf{r})=A e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}} \mathbf{u}_{y} \\
Z_{1} \mathbf{h}_{i}(\mathbf{r})=A\left(\mathbf{u}_{i} \times \mathbf{u}_{y}\right) e^{-j k_{1} \mathbf{u}_{i} \cdot \mathbf{r}} \\
\mathbf{e}_{r}(\mathbf{r})=R_{T E} A e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}} \mathbf{u}_{y} \\
Z_{1} \mathbf{h}_{r}(\mathbf{r})=R_{T E} A\left(\mathbf{u}_{r} \times \mathbf{u}_{y}\right) e^{-j k_{1} \mathbf{u}_{r} \cdot \mathbf{r}}
\end{gathered}
$$

$$
\begin{aligned}
R_{T E} & =\frac{Z_{2} \cos \theta_{i}-Z_{1} \cos \theta_{t}}{Z_{2} \cos \theta_{i}+Z_{1} \cos \theta_{t}} \\
& =\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)} \\
& \text { always different from } 0!
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{e}_{t}(\mathbf{r})=T_{T E} A e^{-j k_{2} \mathbf{u}_{t} \cdot \mathbf{r}} \mathbf{u}_{y} \\
Z_{1} \mathbf{h}_{i}(\mathbf{r})=T_{T E} A\left(\mathbf{u}_{t} \times \mathbf{u}_{y}\right) e^{-j k_{2} \mathbf{u}_{t} \cdot \mathbf{r}}
\end{gathered} \quad T_{T E}=\frac{2 Z_{2} \cos \theta_{i}}{Z_{2} \cos \theta_{i}+Z_{1} \cos \theta_{t}}
$$

- Total reflection at a perfect conductor

perfect conductor: $\sigma \rightarrow \infty$ and $Z_{2} \rightarrow 0$

$$
\begin{gathered}
\text { 』 } \\
R_{T E, P E C}=-1 \\
T_{T E, P E C}=0 \\
R_{T M, P E C}=+1 \\
T_{T M, P E C}=0
\end{gathered}
$$

TE polarisation

TM polarisation

- Reflection by an impedance sheet

- impedance surface =
infinitely thin current-carrying sheet
- at this sheet:

$$
\mathbf{e}_{t a n}=Z_{s}\left(\mathbf{u}_{n} \times \mathbf{h}_{t a n}\right)
$$

$\sqrt{\Omega}$

$$
\mathbf{e}_{t a n}=Z_{s} \mathbf{j}_{s}
$$

- reflection coefficient for
perpendicular incidence:

$$
R_{n}=\frac{1-\frac{Z_{1}}{Z_{s}}}{1+\frac{Z_{1}}{Z_{s}}}
$$

- Introduction
- Telegrapher's equations
- Voltage reflection coefficient
- Input impedance
- Generalised reflection coefficient
- Power flow
- Standing waves and VSWR
- Smith chart
- Matching
- Transients

- Telegrapher's equations
 Nive

elementary lumped element section of a transmission line

lumped element representation of a transmission line

L-C - G-R : result from the solution of Maxwell's equations !

Applied Electromagnetics 132

Telegrapher's equations - frequency domain ลை

$\frac{\mathrm{d} V(z)}{\mathrm{d} z}=-(R+j \omega L) I(z)=-Z(\omega) I(z)$,
$\frac{\mathrm{d} I(z)}{\mathrm{d} z}=-(G+j \omega C) V(z)=-Y(\omega) V(z)$.

General Solution

$V(z)=A e^{-j k z}+B e^{j k z}, \quad I(z)=Y_{c}\left(A e^{-j k z}-B e^{j k z}\right)=\frac{1}{Z_{c}}\left(A e^{-j k z}-B e^{j k z}\right)$
$k=\beta-j \alpha=\sqrt{-(R+j \omega L)(G+j \omega C)}$.

$$
k=\omega \sqrt{L C}
$$

$Z_{c}=\frac{1}{Y_{c}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
no losses

$$
\begin{gathered}
Z_{c}=R_{c}=\sqrt{\frac{L}{C}} \\
c=\frac{1}{\sqrt{L C}}
\end{gathered}
$$

- Input impedance Z_{i} : short line (2)

Short line: $k d=2 \pi d / \lambda \ll 1$

$$
\begin{gathered}
Z_{i}^{\prime}=\frac{Z_{i}}{R_{c}}=\frac{Z_{L}^{\prime}+j \tan (k d)}{1+j Z_{L}^{\prime} \tan (k d)} \\
\text {, }
\end{gathered}
$$

$Z_{i}=\frac{Z_{L}+j \omega L d}{1+j Z_{L} \omega C d}$

- Input impedance Z_{i} - reactance synthesis
 ®

$Z_{i}^{\prime}=\frac{Z_{i}}{R_{c}}=\frac{Z_{L}^{\prime}+j \tan (k d)}{1+j Z_{L}^{\prime} \tan (k d)}$
Open line
$Z_{i}^{\prime}=\frac{1}{j \tan k d}=\mathrm{jX}$

Short circuited line
$Z_{i}^{\prime}=j \tan k d .=j X$

Applied Electromagnetics 138

DONEFSON
 (ค)

$$
\begin{array}{r}
P=\frac{1}{2} R e\left(I^{*} V\right) \underset{\text { no losses }}{\Rightarrow} P=\frac{1}{2} \frac{|A|^{2}}{R_{c}}-\frac{1}{2} \frac{|B|^{2}}{R_{c}} \\
\text { power orthogonality } \\
P=P_{i}-P_{r}=P_{i}\left(1-\left|K_{L}\right|^{2}\right) \\
P_{i}=\frac{1}{2} \frac{|A|^{2}}{R_{c}} \\
P_{r}=\left|K_{L}\right|^{2} P_{i}
\end{array}
$$

$\left|\mathrm{K}_{\mathrm{L}}\right|=1$ results in total power reflection!

- Standing waves and VSMR
 $\overline{\overline{I N T E C}}$

frequency domain

$$
\begin{array}{cc}
V(z)=A e^{-j k z}+B e^{j k z} & A=a e^{j \alpha} \\
I(z)=\frac{1}{R_{c}}\left(A e^{-j k z}-B e^{j k z}\right) . & B=b e^{j \beta}
\end{array}
$$

time domain

$v(z, t)=a \cos (\omega t-k z+\alpha)+b \cos (\omega t+k z+\beta)$
$i(z, t)=\frac{1}{R_{c}}[a \cos (\omega t-k z+\alpha)-b \cos (\omega t+k z+\beta)]$
constructive interference for the voltage = destructive interference for the current
maximum voltage amplitude $(a+b)$
$-k z_{n}+\alpha=+k z_{n}+\beta+n 2 \pi \quad \Rightarrow$
and VICE VERSA! minimum current amplitude (ab) $/ R_{c}$

- Transients
 (ค)

- no dispersion i.e. no frequency dependent velocity
- no losses

$$
\begin{aligned}
& \frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t} \\
& \frac{\partial i(z, t)}{\partial z}=-G v(t)-C \frac{\partial v(z, t)}{\partial t}
\end{aligned}
$$

$\frac{\partial^{2}}{\partial z^{2}} v(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} v(z, t)=0$.

$$
v(z, t)=v^{+}(z-c t)+v^{-}(z+c t)
$$

$c=\frac{1}{\sqrt{L C}} \quad$ delay $\tau=\mathrm{d} / \mathrm{c} \quad \Rightarrow \quad i(z, t)=\frac{1}{R_{c}}\left(v^{+}(z-c t)-v^{-}(z+c t)\right)$
$R_{c}=\sqrt{L / C}$.

Chapter 7: Multiconductor Transmission Lines and Waveguides

- Outline

- Introduction
- General eigenmode equations
- Multiconductor transmission lines: quasi-TEM analysis
- TEM modes
- TE and TM modes
- Mode orthogonality
- Parallel-plate waveguide
- losses
- group velocity versus phase velocity - dispersion
- Rectangular waveguide
- Coaxial cable
- Microstrip and stripline

Applied Electromagnetics 160

- General eigenmode equations

$\frac{\frac{d}{d z} f(z) \sim g(z)}{\frac{d}{d z} g(z) \sim f(z)} \Rightarrow \frac{d^{2}}{d z^{2}} f(z) \sim f(z) \Rightarrow f(z)=A e^{-j \gamma z}+B e^{j \gamma z}$
$\frac{d}{d z} g(z) \sim f(z)$

General eigenmode representation

> propagation constant

$$
\begin{aligned}
\mathbf{e}(x, y, z, \omega)= & K^{+} e^{-\alpha z} e^{-j \beta z}\left[E_{t}(x, y, \omega)+E_{z}(x, y, \omega) \mathbf{u}_{z}\right] \\
& +K^{-} e^{+\alpha z} e^{+j \beta z}\left[E_{t}(x, y, \omega)-E_{z}(x, y, \omega) u_{z}\right] \\
\mathbf{h}(x, y, z, \omega)= & K^{+} e^{-\alpha z} e^{-j \beta z}\left[H_{t}(x, y, \omega)+H_{z}(x, y, \omega) \mathbf{u}_{z}\right] \\
& -K^{-} e^{+\alpha z} e^{+j \beta z}\left[H_{t}(x, y, \omega)-H_{z}(x, y, \omega) u_{z}\right)
\end{aligned}
$$

Time domain representation of a mode
$\mathbf{e}(\mathbf{r}, t)=\Re\left[\mathbf{E}(\boldsymbol{\rho}) e^{-j \gamma z+j \omega t}\right]=\Re\left[\mathbf{E}(\boldsymbol{\rho}) e^{-j \beta z+j \omega t}\right] e^{-\alpha z}$
Remember that β and α are in general frequency dependent !!!!!
This is called mode dispersion.

effect of attenuation and dispersion on signal propagation

Phase velocity

$$
v_{p}=\frac{\omega}{\beta}
$$

Group velocity
$v_{g}=\frac{1}{\frac{d \beta}{d \omega}}=\frac{d \omega}{d \beta}$

No dispersion

$$
v_{g}=v_{p}=V \omega
$$

- Multiconductor Lines: quasi-TEM analysis N

Zeroth-order electric field problem

- Quasi-TEM analysis: telegrapher's eqns.

Telegrapher's equations time domain
$\begin{aligned} \frac{\partial}{\partial z} \mathcal{V}(z, t) & =-\mathbf{L} \frac{\partial}{\partial t} \mathcal{I}(z, t) \\ \frac{\partial}{\partial z} \mathcal{I}(z, t) & =-\mathbf{C} \frac{\partial}{\partial t} \mathcal{V}(z, t)\end{aligned}$

lumped element section (2 signal conductors)

Telegrapher's equations frequency domain
$\frac{\partial}{\partial z} \mathcal{V}(z, \omega)=-j \omega \mathbf{L} \mathcal{I}(z, \omega)$
$\frac{\partial}{\partial z} \mathcal{I}(z, \omega)=-j \omega \mathbf{C} \mathcal{V}(z, \omega)$

Propagation constants $\left(\beta=\mathrm{j} \omega \beta_{1}\right)$
$(\mathbf{L C}) \mathcal{V}=\beta_{1}{ }^{2} \mathcal{V}$
(CL) $\mathcal{I}=\beta_{1}{ }^{2} \mathcal{I}$
$v_{p}=v_{g}=\frac{1}{\beta_{1 m}}$
$\mathrm{M}+1$ conductors $\Rightarrow \mathrm{M}$ TEM modes

- TEM modes

©

+ quasi-TEM $\Rightarrow E_{z}=H_{z} \approx 0$
+ TEM: E_{z} and H_{z} are identically zero for every frequency
$\nabla_{t} \mathrm{\Sigma}(\rho)+j \gamma \mathbf{E}_{t}(\rho)=-j \omega \mu\left(\mathbf{u}_{z} \times \mathbf{H}_{t}(\rho)\right)$
$\nabla_{t} \times \mathbf{E}_{t}(\rho)=-j \omega \mu X(\rho) \mathbf{u}_{z}$
$\nabla_{t} \mathrm{~K}_{z}(\rho)+j \gamma \mathbf{H}_{t}(\rho)=j \omega \epsilon\left(\mathbf{u}_{z} \times \mathbf{E}_{t}(\rho)\right)$

$$
\Rightarrow \frac{j \gamma}{j \omega \epsilon(\boldsymbol{\rho})}=\frac{-j \omega \mu(\boldsymbol{\rho})}{-j \gamma}
$$

$\nabla_{t} \times \mathbf{H}_{t}(\rho)=j \omega \epsilon(\boldsymbol{\lambda}) E_{z} \mathbf{u}_{z}$
$\sqrt{\Omega}$
homogeneous medium only!
Final Result

$$
\begin{aligned}
\mathbf{H}_{t}(\boldsymbol{\rho}) & =\sqrt{\frac{\epsilon}{\mu}}\left(\mathbf{u}_{z} \times \mathbf{E}_{t}(\boldsymbol{\rho})\right)=\frac{1}{Z_{c}}\left(\mathbf{u}_{z} \times \mathbf{E}_{t}(\boldsymbol{\rho})\right) \\
\gamma & =\omega \sqrt{\epsilon \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - TE and TM modes } \\
& + \text { TM modes: } H_{z}=0 \text { for all frequencies but still } H_{x} H_{y} E_{x} E_{y} E_{z} \\
& + \text { TE modes: } E_{z}=0 \text { for all frequencies but still } E_{x} E_{y} H_{x} H_{y} H_{z} \\
& \text { only possible for homogeneous media! } \\
& \text { TE modes } \\
& \mathbf{E}_{t}=\frac{j \omega \mu}{k^{2}-\gamma^{2}}\left(\mathbf{u}_{z} \times \nabla_{t} H_{z}\right) \\
& \mathbf{H}_{t}=\frac{\gamma}{\omega \mu}\left(\mathbf{u}_{z} \times \mathbf{E}_{t}\right) \quad Z_{T E}=\frac{\omega \mu}{\gamma} \\
& E_{z}=0 \\
& \nabla_{t}^{2} H_{z}+\left(k^{2}-\gamma^{2}\right) H_{z}=0 \\
& \frac{\partial H_{z}}{\partial n}=0 \underbrace{\text { on the conductor surfaces. }} \\
& \text { Neumann problem } \\
& \text { TM modes } \\
& \mathbf{E}_{t}=-\frac{\gamma}{\omega \epsilon}\left(\mathbf{u}_{z} \times \mathbf{H}_{t}\right) \quad Z_{T M}=\frac{\gamma}{\omega \epsilon} \\
& \mathbf{H}_{t}=-\frac{j \omega \epsilon}{k^{2}-\gamma^{2}}\left(\mathbf{u}_{z} \times \nabla_{t} E_{z}\right) \\
& H_{z}=0 \\
& \nabla_{t}^{2} E_{z}+\left(k^{2}-\gamma^{2}\right) E_{z}=0 \\
& E_{z}=0 \quad \underbrace{\text { on the conductor surfaces. }} \\
& \text { Dirichlet problem }
\end{aligned}
$$

- Mode orthogonality

The following general orthogonality theorem holds for ALL modes

$$
\int_{S}\left(\mathbf{E}_{1} \times \mathbf{H}_{2}\right) \cdot \mathbf{u}_{z} d S=\int_{S}\left(\mathbf{E}_{1 t} \times \mathbf{H}_{2 t}\right) \cdot \mathbf{u}_{z} d S=0
$$

S: cross-section of the waveguide (can be infinite)
E_{1} : electric field of mode 1 (only the transversal field plays a role)
H_{2} : magnetic field of mode 2 (only the transversal field plays a role)
(in the notes the example of the TM modes is given the general proof uses Lorentz reciprocity theorem)

- Parallel-plate waveguide
 部立

Parellel-plate waveguide

Optical slab waveguide

Purpose determine x-independent modes propagating along z
homogeneous filling +2 conductors

Ω

1 TEM mode
TE modes
TM modes

- Parallel-plate waveguide: TEM mode

$$
\begin{aligned}
& \mathbf{e}(\mathbf{y}, \mathbf{z}, \omega)=-\nabla_{\mathbf{t}} \phi \mathbf{e}^{-\mathrm{j} \beta z} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}} \phi(y)=0 \quad \phi(\mathbf{x}=0)=0 \quad \phi(\mathbf{x}=\mathbf{d})=\mathbf{v} \\
& \mathbf{E}_{t}(y)=-\frac{\mathrm{d}}{\mathrm{~d} y} \phi(y) \mathbf{u}_{y}=-\frac{V}{d} \mathbf{u}_{y} \\
& \mathbf{H}_{t}(y)=\frac{V}{d Z_{c}} \mathbf{u}_{x}, Z_{c}=\sqrt{\frac{E}{\epsilon}}=(\mathrm{L} / \mathrm{C})^{1 / 2} \\
& C_{p p}=\frac{\epsilon}{d} \quad \Rightarrow \quad \mathbf{v}=\omega / \beta=1 /(\mathrm{LC})^{1 / 2}=1 /(\varepsilon \mu)^{1 / 2} \\
& L_{p p}=d \mu \quad \text { non-dispersive! }
\end{aligned}
$$

- Parallel-plate waveguide: losses
 Transmission line equivalent and small losses
 $\gamma=\beta-j \alpha=\sqrt{-(R+j \omega L)(G+j \omega C)} \approx \omega \sqrt{L C}-j \frac{G}{2} \sqrt{\frac{L}{C}}-j \frac{R}{2} / \sqrt{\frac{L}{C}}$

 (คั会i.e. the effect of G and R can be evaluated independently

Dielectric losses

+ start from the lossless case: $\mathrm{R}=\mathrm{G}=0$
+ replace C by $C+G I(j \omega)$ in the transmission line equivalent
+ replace ε by $\varepsilon+\sigma /(\mathrm{j} \omega)$ in the dielectric

$$
\begin{gathered}
C_{p p}=\frac{\epsilon}{d} \Rightarrow \mathrm{C}_{\mathrm{pp}}+\mathrm{G}_{\mathrm{pp}} I(\mathrm{j} \omega)=\varepsilon / \mathrm{d}+\sigma / \mathrm{d}(1 /(\mathrm{j} \omega)) \\
\sqrt{\mathrm{J}} \\
G_{p p}=\frac{\sigma}{d}
\end{gathered}
$$

- Parallel-plate waveguide: losses

Conductor losses: skin-effect losses

+ start from the lossless case (PEC conductors)
+ calculate surface currents: $\mathbf{J}_{s}(\rho)=\mathbf{u}_{n} \times \mathbf{H}(\rho)$
+ Joule losses per unit of length:
surface

$$
P_{\text {losses }}=\frac{1}{2} \Re \int_{c} \mathbf{J}_{s} \cdot \mathbf{E}^{*} d c=\frac{1}{2} R_{s} \int_{c}\left|\mathbf{J}_{s}\right|^{2} d c
$$

impedance $\triangle Z_{s}=R_{s}+j X_{s} \quad R_{s}=\frac{1}{\sigma \delta} \quad \delta=\sqrt{\frac{2}{\omega \mu \sigma}}$

+ propagated power:

$$
P_{\text {prop }}=\frac{1}{2} \Re \int_{S}\left(\mathbf{E}(z) \times \mathbf{H}^{*}(z)\right) \cdot \mathbf{u}_{z} d S
$$

- Parallel-plate waveguide: losses ®

+ relationship between decrease of propagated power and losses:

$$
\frac{\mathrm{d}}{\mathrm{~d} z} P_{\text {prop }}=-P_{\text {losses }}
$$

+ proportionality between dissipated power and propagated power:

$$
P_{\text {losses }}=2 \alpha P_{\text {prop }}
$$

Final result

$$
\begin{aligned}
P_{\text {prop }}(z) & =P_{\text {prop }}(z=0) e^{-2 \alpha z} \\
\gamma & =\beta-j \alpha \\
\alpha & =\frac{P_{\text {losses }}}{2 P_{\text {prop }}}
\end{aligned} \Rightarrow
$$

power decays with a factor $\mathrm{e}^{-2 \alpha z}$ \Rightarrow
fields decay with a factor $\mathrm{e}^{-\alpha z}$

$$
\alpha_{p p}=\frac{R_{s}}{d Z_{c}}
$$

- Parallel-plate waveguide: losses

Relationship between losses and transmission line equivalent

$$
\begin{aligned}
\alpha_{p p} & =\alpha_{\text {cond }}+\alpha_{\text {diel }} \\
& =\frac{R_{s}}{d Z_{c}}+\frac{\sigma Z_{c}}{2}
\end{aligned} \Rightarrow R_{p p}=\frac{2 R_{s}}{d}
$$

- Parallel-plate waveguide: TE and TM modes

TE modes

$$
\left.\begin{array}{c}
\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} H_{z}+\left(k^{2}-\gamma^{2}\right) H_{z}=0 \quad \frac{\mathrm{~d}}{\mathrm{~d} y} H_{z}(y=0)=\frac{\mathrm{d}}{\mathrm{~d} y} H_{z}(y=d)=0 . \\
H_{z n}(y)=B_{n} \cos \frac{n \pi y}{d} \\
\mathbf{E}_{t n}(y)=\frac{j \omega \mu d}{n \pi} B_{n} \sin \frac{n \pi y}{d} \mathbf{u}_{x} \\
\mathbf{H}_{t n}(y)=\frac{j d \gamma_{n}}{n \pi} B_{n} \sin \frac{n \pi y}{d} \mathbf{u}_{y}
\end{array}\right\} \mathrm{e}^{-\mathrm{j} \gamma_{\mathrm{n}} \mathrm{z}} \quad \begin{gathered}
\text { with } \gamma_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{d^{2}}} \\
\mathbf{n}=1,2,3, \ldots .
\end{gathered}
$$

- Parallel-plate waveguide: TE and TM modes

TM modes
$\begin{array}{cc}\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} E_{z}+\left(k^{2}-\gamma^{2}\right) E_{z}=0 & E_{z}(y=0)=E_{z}(y=d)=0 \\ \text { ת }\end{array}$

$$
\left.\begin{array}{c}
E_{z n}(y)=A_{n} \sin \frac{n \pi y}{d} \\
\mathbf{H}_{t n}(y)=\frac{j \omega \epsilon d}{n \pi} A_{n} \cos \frac{n \pi y}{d} \mathbf{u}_{x} \\
\mathbf{E}_{t n}(y)=-\frac{j d \gamma_{n}}{n \pi} A_{n} \cos \frac{n \pi y}{d} \mathbf{u}_{y}
\end{array}\right\} \mathrm{e}^{-\mathrm{j} \gamma_{\mathrm{n}} \mathbf{Z}} \quad \begin{gathered}
\text { with } \gamma_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{d^{2}}} \\
\mathbf{n}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots
\end{gathered}
$$

Remark: orthogonality and completeness

- Cut-off frequency

z-dependence: $\mathrm{e}^{-\mathrm{j} \gamma_{\mathrm{n}} z}$ with $\gamma_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{d^{2}}}$ and $\gamma_{\mathrm{n}}=\beta_{\mathrm{n}}-\mathrm{j} \alpha_{\mathrm{n}}$
Case 1: $n \pi / d<k$ or $\lambda<\mathbf{2 d} / \mathbf{n} \Rightarrow \gamma_{n}=\beta_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{d^{2}}}>0 \Rightarrow \mathrm{e}^{-\mathrm{j} \beta_{\mathrm{n}} z}$
the mode with index \mathbf{n} is a propagating mode!

Case 2: $n \pi / d>k$ or $\lambda>2 \mathrm{~d} / \mathrm{n} \Rightarrow \alpha_{n}=\sqrt{\frac{n^{2} \pi^{2}}{d^{2}}-k^{2}}>0 \Rightarrow \mathrm{e}^{-\alpha_{\mathrm{n}} z}$
the mode with index n is an evanescent mode!
Cut-off frequency of mode $\mathrm{n}: f_{c n}=\frac{n}{2 d \sqrt{\epsilon \mu}} \quad$ (zero for a TEM mode)

- Phase and group velocity

dispersion: the propagation factor γ of a mode is frequency dependent $\gamma_{n}=\beta_{n}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{d^{2}}} \quad$ for the TE and TM modes

dispersion relation i.e. $\gamma(\omega)$

- Phase and group velocity

Group velocity of mode n

+ consider a frequency modulated wave: $\Re\left[e^{j\left(\omega(t) t-\gamma_{n}(\omega) z\right)}\right]$
+ consider a modulation around central frequency ω_{0}

$$
\begin{gathered}
\omega(t)=\omega_{0}+\Delta \omega(t) \\
\gamma_{n}=\gamma_{n 0}+\left[\frac{d \gamma_{n}}{d \omega}\right]_{\omega=\omega_{0}} \Delta \omega(t)
\end{gathered}
$$

+ result: $\Re\left[e^{j\left(\omega_{0} t-\gamma_{n 0} z\right)} e^{-j \Delta \omega\left(z / v_{g}-t\right)}\right]$

$$
v_{g n}=v \sqrt{1-\left(\frac{n \pi}{k d}\right)^{2}} \quad \longleftrightarrow \quad v_{p n}=\frac{v}{\sqrt{1-\left(\frac{n \pi}{k d}\right)^{2}}}
$$

- Rectangular waveguide

TE modes

$$
\begin{gathered}
H_{z, n m}(x, y)=B_{n m} \cos \frac{n \pi x}{a} \cos \frac{m \pi y}{b} \\
\mathbf{E}_{t, n m}(x, y)= \\
=\frac{j \omega \mu B_{n m}}{\frac{n^{2} \pi^{2}}{a^{2}}+\frac{m^{2} \pi^{2}}{b^{2}}}\left[-\frac{n \pi}{a} \sin \frac{n \pi x}{a} \cos \frac{m \pi y}{b} \mathbf{u}_{y}\right. \\
\left.+\frac{m \pi}{b} \cos \frac{n \pi x}{a} \sin \frac{m \pi y}{b} \mathbf{u}_{x}\right] \\
\mathbf{H}_{t, n m}(x, y)= \\
+\frac{j \gamma_{n m} B_{n m}}{\frac{n^{2} \pi^{2}}{a^{2}}+\frac{m^{2} \pi^{2}}{b^{2}}}\left[\frac{n \pi}{a} \sin \frac{n \pi x}{a} \cos \frac{m \pi y}{b} \mathbf{u}_{x}\right. \\
\left.+\frac{m \pi}{b} \cos \frac{n \pi x}{a} \sin \frac{m \pi y}{b} \mathbf{u}_{y}\right] \quad \text { cut-off frequencies } \\
\gamma_{n m}=\sqrt{k^{2}-\frac{n^{2} \pi^{2}}{a^{2}}-\frac{m^{2} \pi^{2}}{b^{2}}} \quad f_{c, n m}=\frac{1}{2 \sqrt{\epsilon \mu}} \sqrt{\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}}
\end{gathered}
$$

X-band waveguide: 8-12 GHz

- Rectangular waveguide: TE TE_{10} mode

The TE_{10} mode is the only one used in practice \Rightarrow monomode operation!

$$
\left.\begin{array}{c}
E_{x, 10}=E_{z, 10}=H_{y, 10}=0 \\
E_{y, 10}=-\frac{j \omega \mu}{\pi / a} B_{10} \sin \frac{\pi x}{a} \\
H_{x, 10}=\frac{j \sqrt{k^{2}-\left(\frac{\pi}{a}\right)^{2}}}{(\pi / a)} B_{10} \sin \frac{\pi x}{a} \\
H_{z, 10}=B_{10} \cos \frac{\pi x}{a}
\end{array}\right\} e^{-j \sqrt{k^{2}-\left(\frac{\pi}{a}\right)^{2}} z}
$$

$$
\mathbf{a}=\mathbf{2} \mathbf{b} \Rightarrow \text { monomode operation for } \frac{1}{2 a \sqrt{\epsilon \mu}}<f<\frac{1}{a \sqrt{\epsilon \mu}}
$$

TEM mode

$$
\nabla_{t}^{2} \phi(\rho)=0
$$

$$
\phi(\rho=a)=0 \quad \phi(\rho=b)=V
$$

example: RG-142/U cable

$$
\phi(\rho)=V \frac{\ln \frac{\rho}{a}}{\ln \frac{b}{a}}
$$

$R_{c}=50 \Omega$
$a=0.94 \mathrm{~mm} \quad b=2.95 \mathrm{~mm}$
$c=4.34 \mathrm{~mm}$
teflon filling with $\varepsilon_{\mathrm{r}}=2.041$
$\mathbf{E}_{t}(\rho)=-\nabla_{t} \phi(\rho)=-\frac{d}{d \rho} \phi(\rho) \mathbf{u}_{\rho}=-\frac{V}{\rho \ln \frac{b}{a}} \mathbf{u}_{\rho}$
$\mathbf{H}_{t}(\rho)=-\frac{V}{Z_{c} \rho \ln \frac{b}{a}} \mathbf{u}_{\phi}$

$$
e^{-j \gamma z}=e^{-j k z}=e^{-j \omega \sqrt{\epsilon \mu} z}
$$

- Coaxial cable: transmission line parameters en

$\left.\begin{array}{c}C_{\text {coax }}=\frac{2 \pi \epsilon}{\ln \frac{b}{a}} \\ L_{\text {coax }}=\frac{\mu \ln \frac{b}{a}}{2 \pi}\end{array}\right\} \quad R_{c, \text { coax }}=\sqrt{\frac{L}{C}}=\sqrt{\frac{\mu}{\epsilon}} \frac{\ln \frac{b}{a} 2 \pi}{\text { e.g. } 50 \Omega}$

Losses
$\left.\begin{array}{c}G_{\text {coax }}=\frac{2 \pi \sigma}{\ln \frac{b}{a}} \\ R_{\text {coax }}=\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)\end{array}\right\} \alpha_{\text {coax }}=\alpha_{\text {cond }}+\alpha_{\text {diel }}=\frac{R_{s}}{2 Z_{c} \ln \frac{b}{a}}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{\sigma Z_{c}}{2}$
cut-off frequency: determined by the TE_{11} mode

+ no pure TEM, TE or TM modes
+ for sufficiently low frequencies a quasi-TEM mode exists

$$
\begin{gathered}
R_{c, \text { micro }}=\sqrt{\frac{L_{\text {micro }}}{C_{\text {micro }}}} \\
\beta_{\text {micro }}=\omega \sqrt{L_{\text {micro }} C_{\text {micro }}}
\end{gathered}
$$

- Microstrip: effective dielectric permittivity
 Nㅜㄹ

Effective dielectric permittivity
$\beta_{\text {micro }}=k_{0} \sqrt{\epsilon_{r, e f f}}$:
signal speed: $v=c / \sqrt{\epsilon_{r, e f f}}$ with \mathbf{c} the speed of light in free space

- Microstrip: transmission line impedance 㟫过

- Outline

- Introduction
- Overview of antenna types
- Far field of a current source
- Directivity
- Radiation impedance of an antenna
- Equivalent circuit of a transmitting antenna
- Open circuit voltage of a receiving antenna
- Equivalent circuit of a receiving antenna
- Effective cross-section of a receiving antenna
- Antenna link: Friis formula
- Thin wire antennas

- Introduction $\stackrel{\text { ® }}{\text { NTEC }}$

The Concise Oxford Dictionary defines an antenna or aerial as
" a metal rod, wire or other structure by which signals are transmitted or received as part of a radio transmission or receiving system "

Purposes

+ to understand the physics of antennas
+ to obtain equivalent circuit representations for transmitting and receiving
+ to know more about wire antennas
+ to get a short overview of other antenna types

- Far field of a current-source - cont. (ค)

Far field at $P(r \gg \lambda)$

$$
\begin{aligned}
\lim _{k r \rightarrow \infty} \mathbf{e}(\mathbf{r}) & =\mathbf{F}(\theta, \phi) \frac{e^{-j k r}}{r} \\
\lim _{k r \rightarrow \infty} \mathbf{h}(\mathbf{r}) & =\frac{1}{Z_{c}}\left[\mathbf{u}_{r} \times \mathbf{F}(\theta, \phi)\right] \frac{e^{-j k r}}{r} \\
\mathbf{F}(\theta, \phi) & =j \omega \mathbf{u}_{r} \times\left[\mathbf{u}_{r} \times \mathbf{N}(\theta, \phi)\right] \\
Z_{c} & =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}
\end{aligned}
$$

Far field region

$$
r \geq \frac{2 d^{2}}{\lambda}
$$

locally plane wave
globally spherical wave

- Directivity

Poynting's vector for a particular direction u_{r}

$$
\mathbf{p}(\mathbf{r})=\frac{|\mathbf{F}(\theta, \phi)|^{2}}{2 r^{2} Z_{c}} \mathbf{u}_{r}
$$

Total radiated power (integration over a large sphere)

$$
P_{t o t}=\frac{1}{2 Z_{c}} \int_{0}^{2 \pi} \int_{0}^{\pi}|\mathbf{F}(\theta, \phi)|^{2} \sin \theta d \theta d \phi
$$

Directivity: ratio of radiation in space angle $d \Omega$ to mean value

$$
D(\theta, \phi)=\frac{\frac{|\mathbf{F}(\theta, \phi)|^{2}}{2 Z_{c}}}{\frac{P_{t o t}}{4 \pi}}=\frac{4 \pi|\mathbf{F}(\theta, \phi)|^{2}}{\int_{\Omega}|\mathbf{F}(\theta, \phi)|^{2} d \Omega}
$$

- Open circuit voltage of a receiving antenna
 N

What is the relation between an antenna as transmitter and the same antenna as a receiver?

$$
\frac{P_{r}}{P_{t, \max }}=M_{r} G_{r}\left(-\mathbf{u}^{i}\right) \frac{\lambda^{2}}{(4 \pi)^{2} R^{2}} \frac{\left|\mathbf{F}_{t}\left(\mathbf{u}^{i}\right) \cdot \mathbf{F}_{r}\left(-\mathbf{u}^{i}\right)\right|^{2}}{\left|\mathbf{F}_{t}\left(\mathbf{u}^{i}\right)\right|^{2}\left|\mathbf{F}_{r}\left(-\mathbf{u}^{i}\right)\right|^{2}} G_{t}\left(\mathbf{u}^{i}\right) M_{t}
$$

$$
\begin{aligned}
& \frac{P_{r}}{P_{t, \text { max }}}=M_{r} G_{r}\left(-\mathbf{u}^{i}\right) \frac{\lambda^{2}}{4 \pi)^{2} R^{2}} \frac{\left|\mathbf{F}_{t}\left(\mathbf{u}^{i}\right) \cdot \mathbf{F}_{r}\left(-\mathbf{u}^{i}\right)\right|^{2}}{\left.\mathbf{F}_{t}\left(\mathbf{u}^{i}\right)\right|^{2}\left|\mathbf{F}_{r}\left(-\mathbf{u}^{i}\right)\right|^{2}} G_{t}\left(\mathbf{u}^{i}\right) M_{t} \\
& \sqrt{\Omega} \\
& \frac{\lambda}{(4 \pi R)}=\text { free space loss factor } \\
& \text { (due to spherical wave spreading) }
\end{aligned}
$$

Example: at 2.45 GHz for $\lambda=12 \mathrm{~cm}$ the free space loss factor is 60 dB for a distance R of 10 m
power budget decreases

$$
\begin{aligned}
{\left[\frac{P_{r}}{P_{t, \text { max }}}\right]_{d B} } & =-21.98 d B-\underbrace{20 \log _{10}(R / \lambda)+\left(M_{t}\right)_{d B}+\left(M_{r}\right)_{d B}} \begin{array}{l}
\text { with } 20 \text { dB for a distance } \\
\text { increase of } \lambda
\end{array} \\
& +\left[G_{r}\left(-\mathbf{u}^{i}\right)\right]_{d B}+\left[G_{t}\left(\mathbf{u}^{i}\right)\right]_{d B}+\left(Q_{r t}\right)_{d B}
\end{aligned}
$$

- Thin wire antenna

Applied Electromagnetics 220

- Wire antenna - current distribution @1CHz

Applied Electromagnetics 222

- Wire antenna-current distribution @1GHz 色

