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bstract. We perform a statistical analysis of curvelet coefficients,
istinguishing between two classes of coefficients: those that con-
ain a significant noise-free component, which we call the “signal of
nterest,” and those that do not. By investigating the marginal statis-
ics, we develop a prior model for curvelet coefficients. The analysis
f the joint intra- and inter-band statistics enables us to develop an
ppropriate local spatial activity indicator for curvelets. Finally,
ased on our findings, we present a novel denoising method, in-
pired by a recent wavelet domain method called ProbShrink. The
ew method outperforms its wavelet-based counterpart and pro-
uces results that are close to those of state-of-the-art denoisers.
2008 SPIE and IS&T. �DOI: 10.1117/1.2987723�

Introduction
n recent years, many novel geometric image transforms
ave been developed such as the ridgelet transform,1 the
edgelet transform,2 and the contourlet transform.3 These
ew transforms capture the geometric information present
n images, and in this sense overcome the limitations of
lassical wavelets. Among these, a mathematically elegant
ethod entitled the “curvelet transform” has gained in-

reasing popularity. Curvelets are directional basis func-
ions that are highly localized, both in space and frequency.
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n Wavelet Applications in Industrial Processing IV, October 2006, Bos-
on, Massachusetts. The paper presented there appears �unrefereed� in
PIE Proceedings Vol. 6383.
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In Ref. 4, two digital implementations of the second-
generation curvelet transform were presented. We refer the
reader to this work for a comprehensive description of this
transform.

The potential these geometric transforms hold for de-
noising images has been investigated by many researchers,
e.g., in Refs. 5–8. As is the case when denoising images
using the classical wavelet transform, noise reduction in the
new transform domains results from greatly reducing the
magnitude of the coefficients that contain primarily noise,
while reducing others to a lesser extent. Thresholding as it
has been applied in the wavelet domain9 also has been used
successfully in the curvelet and the contourlet domains.6,8

Optimizing the choice of the threshold between these two
classes of coefficients will improve the denoising perfor-
mance of a method for wavelets10,11 as well as for other
transforms.8 A very broad class of wavelet-based denoisers
estimates the noise-free coefficients by minimizing a Baye-
sian risk, either by minimum mean-squared error or maxi-
mum a posteriori estimation.12–15 These methods are opti-
mized with respect to the marginal statistics of the
coefficients within each sub-band by imposing a prior dis-
tribution on the noise-free transform coefficients. A particu-
lar success was exhibited by denoising methods where the
local context was considered in the choice of one or more
parameters of the prior model.16–22 Recently, Po et al. trans-
ferred this reasoning to the contourlet domain.7 To enable
this transfer, marginal and joint image statistics on oriented
multiscale pyramids, of which curvelets are a special case,
Jul–Sep 2008/Vol. 17(3)1
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ere previously studied by Po et al. for the contourlet case,
nd by Boubchir et al. and Alecu et al. for the curvelet
ase.7,23–25 In addition, Boubchir et al. proposed a multi-
ariate prior model for curvelet coefficients.23,24

Over the past few years, mixture priors have been shown
o be effective in wavelet processing.11,13,22,26–29 Recently,
e investigated how to develop a related prior for curvelet

oefficients,30 particularly one similar to that proposed by
he authors in Ref. 22. As part of this endeavor, we ex-
ended the statistical analyses in Refs. 7 and 23–25 by in-
estigating the different behaviors of curvelet coefficients
hat contain a significant noise-free component, and coeffi-
ients in which such a “signal of interest” is absent.30,31

ased on our findings and inspired by the wavelet domain
robShrink estimator,22 we also defined and analyzed dif-
erent intra-band30 and inter-band31 local spatial activity in-
icators �LSAIs� in the curvelet domain.

In this paper, we extend our previous statistical studies
n a more comprehensive way, and introduce and analyze a
ew LSAI that includes both intra- and inter-band depen-
ent curvelet coefficients. Using this new LSAI in the
urvelet-based denoising method ProbShrinkCurv that we
eveloped in Ref. 30 allows us to improve upon our previ-
us denoising results reported in Refs. 30 and 31.

The remainder of this paper is organized as follows: Sec.
provides some background on the curvelet transform and

ntroduces the notations and terminology used in this paper.
ection 3 presents a comparative statistical analysis of the

wo classes of curvelet coefficients mentioned above. Sec-
ion 4 discusses a novel curvelet-based context adaptive
enoising method, and Sec. 5 considers the parameter that
arks the threshold between the coefficient classes. Sec-

ions 6 and 7 summarize the main results and conclusions
f this paper.

Curvelet Transform
lthough the curvelet transform was originally a continu-
us transform,32 it has several digital approximations. The
wo most recent ones were introduced by Candès et al.4

here, one implementation is based on unequally spaced
ast Fourier transforms �USFFT�, while the other is based
n the wrapping of specially selected Fourier samples.4

ince the latter implementation exhibits a somewhat faster
unning time, especially for the inverse transform �see Ref.
�, we use it throughout this paper.

The curvelet transform decomposes the image in several
requency bands. At the coarsest scale, isotropic wavelets
re used as basis functions. At finer scales, curvelets take
ver this role. At the finest scale �highest frequencies�, one
an choose between a wavelet and a curvelet decomposi-
ion. Using curvelets at all scales leads to a transform that
rovides approximate rotation invariance �sharp directional
electivity�, which is beneficial for denoising applications.
his is why in this work we always choose a curvelet de-
omposition at the finest scale, in spite of disadvantages
uch as some possible aliasing and an increased redundancy
f the transform �e.g., for a 512�512 image, with 4 scales
n the curvelet decomposition and 16 orientations at the
oarsest curvelet level, redundancy increases from 2.74 to
.16 with curvelets at the finest scale�.

Figure 1�b� shows the curvelet decomposition of the test
mage in Fig. 1�a� into 4 frequency scales with 8 orienta-
ournal of Electronic Imaging 033021-
tions at the coarsest curvelet scale. The low-pass image is
located at the center of the representation. The curvelet co-
efficients are arranged around it. For representation pur-
poses, we display the magnitudes of the coefficients. Those
with value zero are marked in white, whereas coefficients
with large magnitudes are dark. From the prevalent white
color of Fig. 1�b�, it is clear that the curvelet decomposition
of this image is extremely sparse. In fact, curvelets are
known to lead to an optimally sparse representation of
piecewise smooth images with discontinuities along smooth
edges, and this with the best M-term nonlinear
approximation.4 The approximation error decays as
O��log M�3M−2�; hence, by the Bernstein inequality, the
observed decay of the absolute values of the curvelet coef-
ficients is known to be very fast.

The curvelet coefficients are grouped according to ori-
entation and scale. The concentric coronae represent the
different scales starting with the lowest scale �low frequen-
cies� in the center. Sub-bands of the same scale are ordered
within these coronae so that the orientation suggested by
their position matches the spatial frequencies they repre-
sent. Thus, the diagonal lines in Fig. 1�a� produce high
curvelet coefficients in the sub-bands along the direction
perpendicular to them. One can clearly discern four quad-
rants in each corona, which are numbered in a clockwise
direction starting with the upper quadrant. Quadrant 1 con-
tains the magnitudes of the real parts, and quadrant 3 con-
tains the magnitudes of the imaginary parts of the �com-
plex� curvelet coefficients produced by mostly horizontally
oriented curvelet functions. Mutatis mutandis, the same
holds for quadrants 2 and 4. So although the coefficients
contained in the different quadrants are actually only the
real or imaginary parts of the �in reality� complex curvelet
coefficients, we refer to these real and imaginary parts as
“curvelet coefficients.”

2.1 Terminology and Notations
In this paper we use the same terminology as Po et al.,7

Boubchir et al.,23 and Alecu et al.25 Given a curvelet coef-
ficient X, we will use the following notations:

• N denotes the neighboring curvelet coefficient in the

Quadrant 1

Quadrant 3
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(a)

Fig. 1 �a� A 256�256 test image. �b� Curvelet decomposition of the
test image into 4 scales and with 8 orientations at the coarsest
scale. The low-pass image is located at the center of the represen-
tation. Curvelet coefficients with value zero are marked in white,
whereas coefficients with a large magnitude are dark. The dotted
lines mark the border between the four quadrants.
i
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same sub-band �all neighbors are numbered from 1 to
8, starting with the neighbor located at the upper left
and proceeding clockwise�.

• Ck denotes the cousin curvelet coefficient located at
the same relative position as X in a different sub-band
at the same scale, and k denotes the sub-band �all sub-
bands within each corona are numbered, starting from
1 with the sub-band at the upper left and proceeding
clockwise�.

– Ck is an adjacent cousin of X if sub-band k lies
next to the sub-band in which X is located.

– Ck is an opposing cousin of X if sub-band k lies
opposite the sub-band in which X is located, or in
other words, if Ck is the real �imaginary� part of the
complex curvelet coefficient of which X is the
imaginary �real� part.

• P denotes the parent curvelet coefficient located at the
same relative position as X in the same sub-band but
at a coarser scale.

Curvelet Statistics
mage statistics in the curvelet domain were recently stud-
ed by Boubchir et al.23,24 and Alecu et al.25 with a com-
arative analysis to wavelet domain statistics. Po et al.7 did
he same for the contourlet transform. We will now take a
tep further in this direction by analyzing the statistics of
wo classes of curvelet coefficients: those containing a sig-
ificant noise-free component �which we will refer to as
significant” coefficients�, and the coefficients in which no
ignal of interest is present �which we will call “insignifi-
ant”�. For this statistical analysis we will make use of both
oise-free and noisy image versions. The use of noise-free
mage versions enables the development of contextual
odels that we employ in the actual denoising procedure

resented in Sec. 4, where noise-free image versions are
ot available.

In our approach, significant coefficients are defined as
hose that have a noise-free component larger in absolute
alue than a threshold T. We call such a component our
ignal of interest. In our statistical analysis experiments, we

−150 −100 −50 0 50 100 150
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(a)

Fig. 2 Histograms of noisy curvelet coefficients
T, and �b� in which no signal of interest is prese
of the significant and insignificant noise-contam
ournal of Electronic Imaging 033021-
determine the locations of the significant noisy curvelet co-
efficients by thresholding their noise-free counterparts.
Hence, a noisy curvelet coefficient is marked as significant
if the corresponding curvelet coefficient of the noise-free
image version exceeds a threshold T in magnitude.

An important issue at this point is the choice of the
parameter T. This choice cannot be considered indepen-
dently from the goal of this paper: developing a denoising
method for curvelets that aims to minimize the mean
squared error between the denoised and the noise-free im-
age �the method will be described in detail in Sec. 4�.
Therefore, we postpone a discussion of this parameter to
Sec. 5. Let it suffice for now to say that the threshold will
be related to the standard deviation of the noise through a
constant factor.

All the statistics in this section were obtained from the
curvelet decompositions of images contaminated with ad-
ditive white Gaussian noise �AWGN� with standard devia-
tion �=20 unless explicitly mentioned otherwise. The
threshold between significant and insignificant coefficients
was set to 1.3�.

3.1 Marginal Statistics

Figure 2�a� shows the 256-bin histogram of the significant
curvelet coefficients of a sub-band at the finest scale of the
curvelet decomposition obtained from a noisy version of
the image Peppers. Figure 2�b� shows the same histogram
for the insignificant curvelet coefficients of this sub-band.

In Refs. 23–25, the authors showed that the probability
density functions �pdfs� of noise-free curvelet coefficients x
follow well a generalized Laplacian �also called general-
ized Gaussian� distribution. In the following, we denote the
pdf of x by f�x�, so f�x�=v /2s��1 /v�exp�−�x /s�v�, where s
and v are parameters of the generalized Laplacian distribu-
tion.

We adopt the modeling framework proposed by Pižurica
and Philips22 for significant and insignificant wavelet coef-
ficients, and we apply it in the curvelet domain as follows.
Let H1 denote the hypothesis that a curvelet coefficient x is
significant, and let H0 denote the opposite. By our defini-
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h noise-free component larger than a threshold
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ion of significant curvelet coefficients, the pdf of these
oefficients can be modeled by the tails of a generalized
aplacian:

f�x�H1� = Af�x� for�x� � T and f�x�H1� = 0 otherwise, �1�

here A is a normalizing constant. Similarly, the pdf of
oise-free insignificant coefficients has the shape of the
entral part of a generalized Laplacian, or

f�x�H0� = Bf�x� for�x� � T and f�x�H0� = 0 otherwise, �2�

here B is a normalizing constant.
Now we investigate the distributions of the noisy curve-

et coefficients when the input noise is AWGN with stan-
ard deviation �. The curvelet transform, which is a linear
ransform, transforms AWGN into additive correlated
aussian noise in each sub-band. The first-order pdf of the
oise in the sub-bands is a normal distribution ��0,���.
ince the second-generation curvelet transform we are us-

ng corresponds to a tight frame, the standard deviation ��
s � /��, with � the redundancy factor of the transform.
he pdf’s of the significant and insignificant noisy curvelet
oefficients can be modeled by the distribution of their re-
pective noise-free counterparts, convolved with this nor-
al distribution ��0,���: f�x �H0,1����0,���.† We estimate

f�x�, which is necessary for the calculation of f�x �H1� and
f�x �H0�, from the noise-contaminated curvelet coefficients
y using the method of Simoncelli et al.14 for estimating
he generalized Laplacian distribution from wavelet coeffi-
ients contaminated with AWGN. Although, as pointed out
arlier, the noise in the curvelet sub-bands is not white, Fig.

shows that this approximate model matches well with
bservations.

The proposed prior model belongs to a broader class of
nite mixtures of two distributions, one modeling the sta-

istics of significant coefficients and the other one of the
nsignificant coefficients.11–13,26–29,33 In earlier models of
his class, the mixed distributions are usually two normal
istributions �e.g., in Ref. 12�, a normal distribution and a
oint mass at zero �e.g., in Refs. 11 and 13�, or a Laplacian
istribution and a point mass at zero.33 For such prior mod-
ls, the mixing proportion �i.e., P�H0�� as well as the hy-
erparameters are usually estimated jointly using a maxi-
um likelihood �ML� estimator with an expectation-
aximization �EM� algorithm. On the contrary, the

roposed prior has the double advantage that the parameter
stimation procedure is simpler �no iterative joint estima-
ion necessary� and that it can cope with a more compli-
ated model of the noise-free coefficients �generalized La-
lacian�. The only parameter that cannot be directly
stimated from the data is the threshold T. The choice of
his parameter is discussed in Sec. 5.

.2 Joint Statistics
revious studies revealed that noise-free curvelet coeffi-
ients are strongly correlated in local intra-band neighbor-
oods, and that these local correlations are stronger than
heir inter-scale and inter-orientation counterparts.23–25 We

The convolutions in these expressions and in the remainder of this paper are nu-
erically evaluated by multiplying the FFTs of the two separate sequences and then

alculating the inverse FFT.
ournal of Electronic Imaging 033021-
will now investigate whether the joint statistics of signifi-
cant coefficients differ from the joint statistics of coeffi-
cients in which no signal of interest is present. Such a dif-
ference would facilitate the denoising of the coefficients. In
particular, we will focus on the magnitude of the coeffi-
cients.

The correlation coefficients in this section have been
calculated as the average of the correlation coefficients ob-
tained from the magnitudes of the next-to-highest fre-
quency scale curvelet coefficients of a test set of 44
images.‡ As test images, we chose the images from the
Miscellaneous volume of the USC-SIPI image database
�converted to grayscale�.34 To better evaluate the general
validity of the results, we also report the correlation coef-
ficients for four specific images: House, Peppers, Barbara,
and Baboon.

3.2.1 Intra-band correlations
In Refs. 23–25, it was shown that each curvelet coefficient
is strongly correlated with its eight direct neighbors. Alecu
et al. additionally showed that the correlation is not equally
strong for all the neighbors. By construction, curvelet co-
efficients are more correlated with the neighbors that lie in
the direction parallel to the main direction of the curvelet
function by which they were produced. In this section, we
examine whether the same holds for the two categories of
coefficients that are of interest to us: the significant and the
insignificant ones.

In Ref. 25, Alecu performed his analysis for the USFFT
implementation of the curvelet transform �see Ref. 4�. For
this implementation, the main direction of the curvelet
function is normalized to be either horizontal for the sub-
bands in quadrants 1 and 3 or vertical for the sub-bands in
quadrants 2 and 4, where quadrants are numbered as in Fig.
1�b�. This means that the direction of highest correlation
always coincides with one of the grid lines on the discrete
image raster. This is not the case with the wrapping imple-
mentation, which we use throughout this paper. Instead, the
curvelet basis functions have an orientation that differs
from sub-band to sub-band and can be characterized by an
angle � with respect to the horizontal direction. Correlation
is maximal along this direction. To investigate the correla-
tion properties along it, interpolation of neighboring coef-
ficients is required.

‡If the insignificant coefficients were pure noise, their correlation coefficients could
also be obtained by calculating the sample covariance matrix of the curvelet decom-
position of a scaled delta function �which has the same power spectrum as AWGN�.20

However, although the relative influence of the noise is much bigger on the insig-
nificant coefficients than on the significant ones, insignificant coefficients are not
exactly the same as noise, and therefore we will not adopt the theoretical method
described above for the computation of their correlation coefficients.

N2 N3

a

b

θ

N1

s_x N4

s_y

Fig. 3 A curvelet coefficient and four of its neighbors �labeled N1 to
N4�. The curvelet basis function is oriented in the direction �.
Jul–Sep 2008/Vol. 17(3)4



n
e
o
i
e

N

w
a
N

T
n
d
e
�

C
c
o

�
c

�
u

�

�

�

Tessens et al.: Context adaptive image denoising through modeling…

J

Consider, for example, a curvelet coefficient and its four
eighbors arranged as in Fig. 3. Since the direction of high-
st correlation, characterized by �, does not coincide with
ne of the grid lines, none of the four neighbors lies exactly
n the direction of highest correlation. N3 and N4 are clos-
st, so we linearly interpolate them:

� =
a

a + b
�N3� +

b

a + b
�N4� , �3�

here a=sx tan �, b=sy −sx tan �, and sx is the horizontal
nd sy the vertical sampling period. For other values of �,
3 and N4 must be substituted by the appropriate neighbors,

able 1 Mean correlation coefficients between significant and insig-
ificant curvelet coefficient magnitudes and �a� neighbors in the
irection of highest correlation, �b� neighbors in the direction of low-
st correlation, �c� adjacent cousins, �d� opposing cousins, and
e� parents.

oefficients
onditioned
n:

Correlation
coefficients

Significant
coefficients

Insignificant
coefficients

Mean Std. Dev. Mean Std. Dev.

a� Neighbors
orrelated

0.46 0.06 0.26 0.04

b� Neighbors
ncorrelated

0.10 0.11 0.03 0.02

c� Adjacent cousins 0.16 0.08 0.03 0.02

d� Opposing cousins 0.14 0.07 0.02 0.02

e� Parents 0.17 0.07 0.04 0.02

Table 2 Correlation coefficients for some specifi
coefficient magnitudes and �a� neighbors in the
direction of lowest correlation, �c� adjacent cous

Coefficients
conditioned
on:

Significant coeffi

House Peppers Barb

�a� Neighbors
correlated

0.43 0.50 0.5

�b� Neighbors
uncorrelated

0.07 0.08 0.3

�c� Adjacent cousins 0.11 0.19 0.1

�d� Opposing cousins 0.08 0.19 0.2

�e� Parents 0.22 0.25 0.0
ournal of Electronic Imaging 033021-
and the interpolation weights a and b should be adapted
accordingly.

In the following we will always analyze the correlation
between a reference coefficient and this coefficient N�, cal-
culated from its neighbors. We will refer to N� as the neigh-
bor lying in the direction of highest correlation. Of course,
by symmetry, each coefficient has two such neighbors. A
similar reasoning applies to the analysis of correlation in
the direction perpendicular to the direction of highest cor-
relation, i.e., the direction of smallest correlation.

Table 1 �a� lists the mean correlation coefficients be-
tween the significant and insignificant coefficient magni-
tudes and one of their two neighbors in the direction of
highest correlation, calculated from the next-to-highest-
scale sub-bands of our image test set. These large mean
correlation coefficients match with theoretical expectations
of high correlation in the direction of the curvelet basis
function. In the perpendicular direction of smallest correla-
tion, one observes that this correlation virtually disappeared
for the insignificant coefficients and became very small for
the significant ones �see Table 1 �b��. For the latter class of
coefficients, the standard deviation of the correlation coef-
ficients calculated over the image test set is of approxi-
mately the same magnitude as the average value. This
means that correlation with this kind of coefficients is
highly image-dependent. Indeed, correlation is quite high
for Barbara and Baboon but almost disappeared for Pep-
pers and House �see Table 2 �b��. Unlike Barbara and Ba-
boon, Peppers and House both correspond better to the
image model for which curvelets are especially suited,
namely piecewise smooth with discontinuities along the
curvilinear edges. Indeed, Barbara and Baboon both have a
less sparse curvelet representation than Peppers and House.
In a decomposition into four scales and with 16 orientations
at the coarsest level, 11.81% of the coefficients are classi-
fied as significant for Baboon and 5.08% for Barbara ver-
sus only 2.62% for Peppers and 3.49% for House. Thus,
the achieved decorrelation of the transform coefficients is
higher for these two images.

es between significant and insignificant curvelet
ion of highest correlation, �b� neighbors in the
� opposing cousins, and �e� parents.

relation coefficients

Insignificant coefficients

aboon House Peppers Barbara Baboon

0.45 0.28 0.28 0.27 0.23

0.19 0.02 0.02 0.03 0.03

0.18 0.02 0.03 0.04 0.03

0.19 0.02 0.02 0.02 0.03

0.17 0.03 0.04 0.03 0.03
c imag
direct

ins, �d

Cor

cients

ara B

1

5

1

2

4
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As mentioned at the start of Sec. 3, the images from the
est set were contaminated with AWGN ��=20� to obtain
he correlation coefficients in Table 1. Figure 4 shows the
volution of the correlation coefficients between significant
oefficients and their neighbors and insignificant coeffi-
ients and their neighbors in the direction of highest and
owest correlation as a function of the standard deviation �
f the AWGN with which the images in the test set were
ontaminated. To avoid overloading the graph, error bars
ere omitted. The authors verified that the standard devia-

ions of the correlation coefficients were approximately
onstant for all values of �; for �=20, these numbers can
e found in Table 1. For significant coefficients, the relative
elationship of the two curves is maintained for all values
f �. For insignificant coefficients, correlation with neigh-
ors in the direction of lowest correlation remains negli-
ible regardless of �, whereas the correlation with neigh-
ors in the direction of highest correlation displays a rising
rend.

.2.2 Inter-band dependencies
oubchir et al.23,24 and Alecu, et al.25 found that curvelet
oefficients of different sub-bands are approximately
ecorrelated, but some dependencies between sub-bands do
xist. Boubchir et al. and Alecu et al. observed dependency
etween a curvelet coefficient and its parent, as well as
etween a curvelet coefficient and its cousins. The strength
f these inter-orientation dependencies decreases with an
ncrease in the difference of orientation, but dependency is
lso observed with respect to the opposite orientation.25 We
ill now further extend this study of inter-band curvelet

tatistics to the two categories of coefficients that we con-
ider in this paper: the significant and the insignificant cur-
elet coefficients.

The average correlation coefficients between significant,
espectively insignificant coefficient magnitudes and the
agnitudes of their adjacent and opposing cousins and their

arents are indicated in Table 1 �c� to �e�. The same obser-
ations can be made here as in the previous section for the
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(a)

Fig. 4 Correlation coefficients between �a� sig
and their neighbors in the direction of highest a
and parents, as a function of the standard devi
ournal of Electronic Imaging 033021-
correlation coefficients in the direction of smallest correla-
tion: correlation has virtually disappeared for the insignifi-
cant coefficients and is small for the significant ones. Fig-
ure 4 confirms that this observation also holds for other
standard deviation values of the contaminating AWGN. The
high standard deviation of the correlation coefficients for
the significant coefficients implies that the correlation is
highly image-dependent �see Table 1 �c� to �e��. This is
confirmed by the values in Table 2 �c� to �e�.

3.3 Local Spatial Activity Indicators
Inspired by the ProbShrink wavelet domain denoising
method of Ref. 22 that was developed by some of the au-
thors of this paper, we now define and analyze different
LSAIs in the curvelet domain. In general, for each curvelet
coefficient we define the LSAI as a function of those coef-
ficients that are well correlated when the coefficient is sig-
nificant. We investigated this last property in the previous
section about joint curvelet statistics �Sec. 3.2�, and this
study led us to propose four LSAIs that will potentially
perform well in the curvelet denoiser that will be developed
in Sec. 4: two intra-band,30 one inter-band,31 and one novel
combined intra-inter-band �IIB� LSAI. We will evaluate
these LSAIs, first by investigating the correlation between
the magnitudes of the curvelet coefficients and their corre-
sponding LSAI, since this is the correlation that is exploited
in our newly developed denoising method �see Sec. 4�, and
second, by plugging them into this denoising method. The
second evaluation will be performed in the next section.

As in the previous section, the correlation coefficients in
this section have been calculated as the average correlation
coefficients obtained from the next-to-highest-frequency
scale sub-bands of the USC-SIPI image test set, and results
are also reported for four specific images �House, Peppers,
Barbara, and Baboon�.

3.3.1 Anisotropic intra-band LSAIs
Because of the correlation properties of curvelet coeffi-
cients, an anisotropic LSAI seems appropriate. We propose
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wo anisotropic LSAI candidates z that are calculated as the
ean absolute value of the n−1 coefficients N� within a

mall 1�n neighborhood 	 �that excludes the reference
oefficient itself� oriented in the direction of either highest
r lowest correlation:

=
1

n − 1 �
i�	�un�corr

�Ni�� . �4�

he coefficients Ni� within this window 	 are interpolated
rom their neighbors, as explained in Eq. �3�

Table 3 �a� and �b� show the average correlation coeffi-
ients between the curvelet coefficient magnitudes of the
ext-to-finest-scale sub-bands of the images from the test
et and the LSAI oriented in the direction of highest and
owest correlation �in both cases, n is set to 5�.

able 3 Average correlation coefficients between the magnitudes of
ignificant and insignificant curvelet coefficients and �a� the aniso-
ropic LSAI oriented in the direction of highest correlation, �b� the
nisotropic LSAI oriented in the direction of lowest correlation, �c�
he adjacent, opposing, and parents LSAI, and �d� the combined IIB
SAI.

SAI

Correlation
coefficients

Significant
coefficients

Insignificant
coefficients

Mean Std. Dev. Mean Std. Dev.

a� Anisotropic LSAI
orrelated

0.62 0.06 0.33 0.06

b� Anisotropic LSAI
ncorrelated

0.12 0.13 0.04 0.03

c� AOP LSAI 0.26 0.09 0.06 0.02

d� Combined IIB LSAI 0.20 0.12 0.05 0.03

Table 4 Correlation coefficients for some speci
insignificant curvelet coefficients and �a� the a
correlation, �b� the anisotropic LSAI oriented in
opposing, and parents LSAI, and �d� the combi

Coefficients conditioned
on:

Significant c

House Peppers

�a� Anisotropic LSAI corr. 0.58 0.67

�b� Anisotropic LSAI uncorr. 0.11 0.07

�c� AOP LSAI 0.27 0.35

�d� Combined IIB LSAI 0.20 0.21
ournal of Electronic Imaging 033021-
The correlation coefficients for these LSAIs follow the
trend of those between a coefficient and its neighbor, dis-
cussed in Sec. 3.2.1 �see Table 1 �a� and �b��. Indeed, the
anisotropic LSAI oriented in the direction of highest corre-
lation is highly correlated with both the significant and the
insignificant coefficients. Again, this correlation is higher
for the significant coefficients than for the insignificant
ones. For both classes, this correlation is also larger than
the correlation between a coefficient and just one of its
neighbors, indicated in Table 1 �a�, since the LSAI summa-
rizes information from more coefficients �here, 4 as op-
posed to only 1� and can also capture correlations over
longer distances. For the anisotropic LSAI oriented in the
direction of lowest correlation, correlation is low in both
cases, although slightly higher for the significant coeffi-
cients. Again, the standard deviation of the correlation co-
efficients is very high in the significant case, which means
that this correlation is highly image-dependent �see Table 4
for correlation coefficients of some specific images�. Again,
we observe that the decorrelation of the curvelet coeffi-
cients in the direction of smallest correlation is highest for
Peppers and House, both sparsely represented in the curve-
let domain.

3.3.2 Adjacent, opposing, and parents (AOP) inter-
band LSAI

In previous work,31 we defined and discussed several inter-
band LSAIs. Different LSAIs were calculated for each cur-
velet coefficient: the average magnitude of the adjacent
cousins; the adjacent and opposing cousins; the adjacent
cousins and the parent; or the adjacent and opposing cous-
ins and the parent �AOP�. The last LSAI proved to be the
best performing one in terms of denoising capabilities.
Therefore, we will discuss only this inter-band LSAI here.

For a coefficient y in a sub-band k, the LSAI is defined
as

z =
1

4
��Ck−1� + �C�k+1�mod K� + �C�k+K/2�mod K� + �P��,

k � �1, . . . ,K	, and C0 = CK, �5�

where “mod” stands for the modulo operation, K is the

ges between the magnitudes of significant and
pic LSAI oriented in the direction of highest

irection of lowest correlation, �c� the adjacent,
LSAI.

orrelation coefficients

ents Insignificant coefficients

Baboon House Peppers Babara Baboon

0.60 0.35 0.37 0.33 0.27

0.27 0.03 0.04 0.05 0.04

0.30 0.05 0.06 0.07 0.06

0.31 0.04 0.05 0.06 0.05
fic ima
nisotro
the d

ned IIB

C

oeffici

Babara

0.65

0.42

0.25

0.44
Jul–Sep 2008/Vol. 17(3)7



n
t

t
L
a
s
a
p

3
T
t
t
L
o
o

z

o
m
s
p
r
t

4

B
a
S

4
C
t
n
c
n
n
u
p
r
h
p
�
�
l

x

x

S

Tessens et al.: Context adaptive image denoising through modeling…

J

umber of orientations at the scale to which y belongs, and
he notations introduced in Sec. 2.1 are used.

In Table 3 �c�, the average correlation coefficients be-
ween the curvelet coefficient magnitudes and the AOP
SAI are indicated. The insignificant curvelet coefficients
re approximately decorrelated with this LSAI, whereas
ome correlation exists between the significant coefficients
nd this LSAI. Table 4 �c� shows that this behavior is
resent for all our example images.

.3.3 Combined intra- and inter-band LSAI
o exploit both the intra- and inter-band correlations be-

ween curvelet coefficients, we now define a novel LSAI
hat combines the best performing intra- and inter-band
SAIs. Specifically, we define an IIB LSAI as the average
f the anisotropic intra-band LSAI oriented in the direction
f lowest correlation and the AOP inter-band LSAI:

=
1

2
1

4
��Ck−1� + �Ck+1 mod K� + �Ck+K/2 mod K� + �P��

+
1

n − 1 �
i�	uncorr

�Ni���, k � �1, . . . ,K	, and C0 = CK.

�6�

Table 3 �d� indicates the average correlation coefficients
ver our image test set between the curvelet coefficient
agnitudes and this candidate LSAI. Table 3 �d� again

hows that the insignificant curvelet coefficients are ap-
roximately decorrelated with this LSAI. The average cor-
elation coefficient for the significant coefficients is lower
han in the AOP LSAI case.

Context-Adaptive Image Denoising Using
Curvelets

ased on our findings in Secs. 3.1 and 3.3, we now develop
curvelet domain version ProbShrinkCurv of the Prob-

hrink denoising method.22

.1 ProbShrinkCurv Denoiser
onsider an input image contaminated with AWGN. After

ransforming this image to the curvelet domain, let yl de-
ote, for a given scale and orientation, the curvelet coeffi-
ient at position l. Let yl be composed of an unknown
oise-free curvelet coefficient xl and of a noise component
l :yl=xl+nl, where the variables nl are identically distrib-
ted Gaussian random variables that are statistically inde-
endent from yl. Let Hl

1 denote the hypothesis that xl rep-
esents a significant image feature, and Hl

0 denote the
ypothesis that xl contains no signal of interest. The hy-
othesis Hl

1 is equivalent to �xl��T, and Hl
0 is equivalent to

xl��T, where T is an empirically determined threshold
see Sec. 5�. Finally, let zl be any arbitrary indicator of the
ocal spatial activity defined as in Sec. 3.3.

The minimum mean squared error �MMSE� estimate of
l is35,36

ˆl = E�xl�yl,zl� = E�xl�yl,zl,Hl
1�P�Hl

1�yl,zl�

+ E�xl�yl,zl,Hl
0�P�Hl

0�yl,zl� . �7�

ince H0 refers to the absence of a signal of interest,
l

ournal of Electronic Imaging 033021-
E�xl �yl ,zl ,Hl
0�=0. We further assume we can approximate

E�xl �yl ,zl ,Hl
1� by yl. This leads to

x̂l = P�Hl
1�yl,zl�yl. �8�

Using Bayes’ rule, we can rewrite this expression as

x̂l =

l

1 + 
l
yl, �9�

where 
l is the general likelihood ratio 
l=�l�lvl, with
�l= P�Hl

1� / P�Hl
0�, �l= p�zl �Hl

1� / p�zl �Hl
0� and

vl= p�yl �Hl
1� / p�yl �Hl

0�. Applying the inverse curvelet trans-
form to the estimated noise-free curvelet coefficients x̂l
yields the denoised image.

We will now comment in detail on the calculation of
each of the factors of 
l.

4.2 Calculation of �l

The factor �l can be rewritten as22

�l =
P�Hl

1�
P�Hl

0�
=

�−

+
f�xl�H1�dxl

�−

+
f�xl�H0�dxl

=
�−


−T f�xl�dxl + �T

f�xl�dxl

�−T
T f�xl�dxl

=
1 − �−T

T f�xl�dxl

�−T
T f�xl�dxl

. �10�

As mentioned in Sec. 3.1, it was shown in Refs. 23–25
that the noise-free curvelet coefficients x follow well a gen-
eralized Laplacian. So with f�xl�
=v /2s��1 /v�exp�−�xl /s�v�, and by substituting t= �xl /s�v,
then �−T

T f�xl�dxl can be obtained as



−T

T

f�xl�dxl =
�

s��1

�
�
0

T

exp�− � xl

s
���dxl

=
1

��1

�
�
0

�T/s��

t1/�−1e−tdt = �inc��T

s
��

,
1

�
� ,

�11�

where �inc�y ,a�=1 /��a��0
yta−1e−tdt is the incomplete

gamma function. Thus, �l becomes

�l =

1 − �inc
�T

s
��

,
1

�
�

�inc
�T

s
��

,
1

�
� . �12�

4.3 Calculation of vl

For the computation of vl, we showed in Sec. 3.1 that
p�yl �Hl

0,1� can be modeled as f�x �H0,1����0,���, with
f�x �H0,1� as defined in Eqs. �1� and �2�.

4.4 Calculation of �l

The calculation of �l depends on the choice of the LSAI zl.
The choice of this LSAI will be based on the study of joint
curvelet statistics in Sec. 3.3. We will discuss this choice
Jul–Sep 2008/Vol. 17(3)8
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ater in this section. First we will focus on the derivation of
he pdf’s of the LSAI, conditioned on either the hypothesis

l
0 or Hl

1. For compactness of notation, we will suppress
he position index l in what follows.

When z is an intra-band LSAI, i.e.,
=1 / �n−1� �i�	�un�corr

�Ni��, it is calculated from coefficients

hat lie within a small spatial neighborhood 	 around the
entral coefficient. The statistical characterization of the
SAI is greatly simplified by assuming, as in Refs. 19 and
2, that all the coefficient magnitudes within this small
eighborhood, including the ones that are interpolated from
heir neighbors, are identically distributed �either as

p��y� �H1� or as p��y� �H0�� and are conditionally indepen-
ent �given H0 or H1�. Under these assumptions, p�z �H0,1�
an be approximated by convolving p��y� �H0,1� with itself
−1 times.

The first assumption of identical distribution is likely
ecause neighboring coefficients are statistically dependent.
o justify the second assumption of conditional indepen-
ence, we experimentally show that neighbors are not
uch more correlated than being from the same class of

df �significant or insignificant�. To that end, Fig. 5�a� plots
he joint histogram of the magnitudes of a significant coef-
cient and its significant neighbors within a 1�5 spatial
eighborhood 	, oriented in the direction of lowest corre-
ation, for a sub-band of the next-to-highest scale of Bar-
ara, contaminated with AWGN ��=10�. The correlation
oefficient between the magnitudes of significant coeffi-
ients and their neighbors in the direction of lowest corre-
ation is 0.44 for this sub-band. Figure 5�b� shows the ap-
roximation by a conditionally independent model

p��y� �H1�� p��y� �H1�. A comparison of Figures 5�a� and
�b� reveals that the model matches well with the empirical
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ig. 5 Joint histogram of a significant coefficient and its significant
eighbors within a 1�5 spatial neighborhood 	, oriented in the di-
ection of lowest correlation, for a sub-band of the next-to-highest
cale of �a� Barbara contaminated with AWGN ��=10�, �c� Baboon
ontaminated with AWGN ��=20�, and �b� and �d� approximation by
conditionally independent model p��y� �H1��p��y� �H1�.
ournal of Electronic Imaging 033021-
histogram, despite the correlation between the coefficients.
Figures 5�c� and 5�d� show the same for Baboon contami-
nated with AWGN ��=20�. For this sub-band, the correla-
tion coefficient between significant coefficient magnitudes
and their neighbors in the direction of lowest correlation is
0.07.

For the calculation of the pdf of the AOP inter-band
LSAI, we make the same assumptions. More precisely, we
assume that the coefficients from other sub-bands that are
incorporated into the LSAI are identically distributed as the
reference coefficient yl, conditioned on either H1 or H0, and
are conditionally independent �given H0 or H1�. Thus, in
this case p�z �H0,1� can be approximated by convolving
p��y� �H0� with itself 4 times.

The combined intra- and inter-band LSAI is computed
as the average of the intra-band LSAI oriented in the direc-
tion of lowest correlation and the AOP LSAI, so its pdf can
be obtained through the convolution of the pdf’s of the
LSAIs it is calculated from.

4.5 Choice of the LSAI
We will now evaluate the denoising potential of the LSAIs
that were proposed and studied in Sec. 3.3 based on the
results of Sec. 3.2. We used the ProbShrinkCurv method �4
scales in the curvelet decomposition, 16 orientations at the
coarsest level� with the different LSAIs proposed in Sec.
3.3 to denoise some 512�512 grayscale images contami-
nated with AWGN with standard deviations of 5, 10, 20,
30, and 50. The peak signal-to-noise ratio �PSNR� results
are shown in Table 5. They were averaged over 10 noisy
versions of each image, and in the last column, the standard
deviation of these results is indicated for each LSAI.

From these results it can be observed that the orientation
of the anisotropic LSAI is very important. Except for the
case where �=5, the denoising result is better when the
anisotropic LSAI is oriented in the direction of lowest cor-
relation compared to when the LSAI is oriented in the di-
rection of highest correlation. The difference in terms of
PSNR depends on the image and increases with increasing
standard deviation of the added noise. The explanation for
this trend lies in the fact that AWGN is transformed into
correlated noise by the curvelet transform. When calculat-
ing the LSAI of a coefficient in a neighborhood that coin-
cides with the direction of this correlation, it will be con-
taminated by the same noise that disturbed the coefficient
and therefore will not be a good indicator of the local spa-
tial activity, even though the significant coefficients are
highly correlated along this direction �see Table 3 �a��. This
is increasingly true for higher noise levels �cf the rising
trend of the correlation between insignificant coefficients
and neighbors in the direction of highest correlation in Fig.
4�. Because significant coefficients are still somewhat cor-
related along the direction of lowest correlation �see Table
3�b��, calculating the LSAI in a neighborhood oriented in
this direction will lead to a better denoising performance.
For very small standard deviations of the noise ��=5�, the
advantage of high correlation among significant coefficients
will dominate the undesirable influence of the correlated
noise along the direction of highest correlation. For such
small noise levels, calculating the LSAI in a neighborhood
oriented in this direction leads to better denoising results.
Jul–Sep 2008/Vol. 17(3)9
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Table 5 further shows that the AOP LSAI outperforms
he intra-band LSAI in the direction of lowest correlation
or all the tested images except for Barbara. This result
onfirms our observations in Sec. 3.3. Indeed, the correla-
ion of the intra-band LSAI with significant coefficients is
maller than in the AOP LSAI case. Barbara is the excep-
ion here because the correlation of the significant coeffi-
ients with the intra-band LSAI in the direction of lowest
orrelation is extremely high, much higher than the corre-
ation with the AOP LSAI, and much higher than for the
ther tested images. The importance of this intra-band cor-
elation for Barbara explains why the LSAI exploiting this
orrelation performs better in the denoising method.

For standard deviations larger than 5, the denoising per-
ormance of the combined intra- and inter-band LSAI is

Table 5 ProbShrinkCurv denoising results of s
LSAIs of Sec. 3.3. The noisy input images we
deviations �. This table shows the denoising re
LSAI oriented in the direction of highest correla
tion of lowest correlation, �c� an adjacent, oppo
The last column shows the estimated standard

LSAI �

�a� Intra-band anisotropic LSAI corr. 5

�b� Intra-band anisotropic LSAI uncorr.

�c� AOP LSAI

�d� Combined IIB LSAI

�a� Intra-band anisotropic LSAI corr. 10

�b� Intra-band anisotropic LSAI uncorr.

�c� AOP LSAI

�d� Combined IIB LSAI

�a� Intra-band anisotropic LSAI corr. 20

�b� Intra-band anisotropic LSAI uncorr.

�c� AOP LSAI

�d� Combined IIB LSAI

�a� Intra-band anisotropic LSAI corr. 30

�b� Intra-band anisotropic LSAI uncorr.

�c� AOP LSAI

�d� Combined IIB LSAI

�a� Intra-band anisotropic LSAI corr. 50

�b� Intra-band anisotropic LSAI uncorr.

�c� AOP LSAI

�d� Combined IIB LSAI
ournal of Electronic Imaging 033021-1
superior to that of the AOP LSAI. This is somewhat sur-
prising, because we have not observed a greater average
correlation between this LSAI and the significant coeffi-
cients for the images of our test set �see Sec. 3.3�. A pos-
sible explanation is that the intra- and inter-band LSAIs
contribute complementary information to the denoiser. The
LSAI contributes to the determination of the level of sig-
nificance of each coefficient to be denoised. When adding
intra- to inter-band information, individual coefficients that
correlate well with the inter-band LSAI but not with the
intra-band LSAI will be judged as less significant, but oth-
ers will behave in the opposite way. In other words, the
total fraction of significance over all the coefficients in the
sub-bands is not increased, but spread over more coeffi-
cients. This leads to a better denoising result for the tested

12�512 grayscale images using the different
taminated with AWGN with different standard
n terms of PSNR using �a� a 1�5 anisotropic
� a 1�5 anisotropic LSAI oriented in the direc-
nd parent LSAI, and �d� a combined IIB LSAI.
on of the results for each LSAI.

PSNR �dB�

�PSNRBarbaba Peppers Baboon

37.16 36.56 34.69 0.013

37.14 36.45 34.59 0.015

37.27 36.70 34.92 0.013

37.16 36.37 34.63 0.014

33.62 33.97 30.41 0.023

33.84 34.12 30.38 0.023

33.71 34.20 30.59 0.022

33.89 34.22 30.48 0.022

29.90 30.94 26.58 0.026

30.36 31.34 26.60 0.026

30.15 31.49 26.82 0.025

30.45 31.63 26.76 0.018

27.68 28.69 24.61 0.046

28.29 29.37 24.73 0.044

28.02 29.55 24.92 0.043

28.37 29.73 24.87 0.043

24.79 25.62 22.39 0.059

25.49 26.53 22.66 0.056

25.02 26.69 22.78 0.053

25.45 26.81 22.75 0.054
ome 5
re con
sults i

tion, �b
sing, a
deviati

Lean

38.61

38.53

38.80

38.64

35.36

35.65

35.71

35.85

31.54

32.24

32.34

32.57

29.08

30.08

30.18

30.44

26.19

27.38

27.45

27.70
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mages �except for a small deterioration for Baboon�. For
=5, the information contributed by the uncorrelated intra-
and LSAI to the combined intra- and inter-band LSAI
eteriorates the denoising performance. We had already ob-
erved that the uncorrelated intra-band LSAI performs
oorly for such low noise levels.

Because of the superior denoising performance of the
IB LSAI for all noise levels except the very low ones, we
ill use it in our ProbShrinkCurv method to compare with

tate-of-the-art denoising methods �see Sec. 6�.

Choice of the Threshold T
crucial issue that has not been addressed up to this point

s the choice of the threshold T. This threshold determines
ur actual signal of interest. This signal of interest should
e chosen to minimize the MSE of the denoised image. An
nalytical derivation seems intractable for the assumed
rior. Nonetheless, to make this choice in a theoretically
ounded way, we follow the approach of Pižurica et al.22

nd Jansen et al.37 and base ourselves on the “oracle”
hresholding described by Mallat.38 Oracle thresholding
rovides us with the MMSE estimate of transform coeffi-
ients corrupted with AWGN by zeroing the ones with
oise-free components below the standard deviation � of
he noise. Thus, T=� marks the boundary between signifi-
ant and insignificant coefficients.

Direct application of this estimator to our denoising
ethod is unrealistic for several reasons. First, this ap-

roach requires an oracle to inform us of the value of the
oise-free coefficient in order to make our classification
ecision about the noise-contaminated coefficient. Such an
racle is not available in a realistic scenario. Second, this
hoice minimizes the MSE when denoising is achieved by
ard thresholding the noisy coefficients. Our denoiser
hrinks rather than thresholds the coefficients. Finally, the
oisy curvelet coefficients that we consider are not con-
aminated with white but with colored noise. Considering
ll these factors, we expect the optimal value of the thresh-
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Fig. 6 Denoising performance of the ProbShrin
noise standard deviation T /� for several image
�a� �=5, �b� �=20, and �c� �=50. The optimal
cross. The solid vertical line marks T=1.3�.
ournal of Electronic Imaging 033021-1
old T not to coincide exactly with the standard deviation of
the contaminating noise in the sub-bands, but to peak in its
vicinity.

To verify this expectation, we show in Fig. 6 the influ-
ence of the threshold T on the denoising performance of
ProbShrinkCurv for several noise levels and for the test
images of the Miscellaneous volume of USC-SIPI �the im-
ages used in Sec. 6 were removed from the test set to avoid
overfitting of T�. For each image, results were calculated
for seven different values of T, each time averaged over 10
noisy versions, and for noise standard deviations �=5, 20,
and 50. Figure 6 plots the resulting curves for half of the
images �not for all to avoid overloading the graphs�. The
optimal choice of the ratio T /� for each image is marked
by a cross. These figures show that the optimal value for T
does indeed always lie in the vicinity of T=�, but also that
it is image and noise-level dependent. The overall trend is
that at lower noise levels, the best denoising performance is
achieved for lower values of T.

The average quality drop over all the images �except for
the images used in Sec. 6� when fixing the ratio T /� to a
particular value is quantified in Table 6 for noise levels �
=5, 10, 20, 30, and 50. We can observe first that at moder-
ate noise levels, the average quality drop when choosing a
value for T /� within 23% of the optimum does not exceed
0.5 dB. Second, we can observe that the trend of lower
noise levels favoring a lower threshold and vice versa is
confirmed. However, from �=10 onwards, the smallest
overall drop in performance is achieved when keeping T /�
constant, namely at 1.3. From these experiments, we chose
T=1.3� throughout this paper �also for the statistical analy-
sis of Sec. 3�.

6 Results
In this section, we report on the denoising performance of
our newly developed method and provide a comparison
with some state-of-the-art denoisers.

1.5 2
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=20
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1

T/sig

sigma

(b)

kCurv
s of th
choice
Jul–Sep 2008/Vol. 17(3)1



6
D
5
T
i
t
w
n
T
a
i
c
i
w
b

6
F
m
B
d
R

Tessens et al.: Context adaptive image denoising through modeling…

J

.1 ProbShrinkCurv Denoising Results
enoising results of the ProbShrinkCurv method on some
12�512 and 256�256 grayscale images are reported in
able 7. When possible, we used the versions of the images

ncluded with the online implementation of Ref. 20. In
hese experiments, the standard deviation of the AWGN
as assumed to be known. Results were averaged over 10
oise realizations for each image and for each noise level.
he standard deviation of the results for each noise level
re reported in the last column of Table 7. We used 4 scales
n the curvelet decomposition and 16 orientations at the
oarsest level. Varying these parameters alters the denois-
ng results. The optimal numbers are image dependent, but
e found that this choice produces satisfying results for a
road class of images.

.2 Numerical Comparison with Other Denoisers
igure 7 compares the results of the newly developed
ethod to some state-of-the-art denoisers. These include
iShrink, which uses a dual tree complex wavelet
ecomposition;16 BLS-GSM with the parameters set as in
ef. 20 and operating on a full steerable pyramid decom-

Table 6 Average denoising quality drop �in dB� o
the ratio threshold T to standard deviation � to

� T /�=0.4 T /�=0.7 T /�

5 0.7591 0.0714 0.0

10 1.9985 0.6963 0.1

20 3.8806 1.4579 0.3

30 4.6897 2.2665 0.4

50 5.4500 2.4833 0.7

Table 7 Denoising results in terms of PSNR �dB
The last column shows the estimated standard

� /PSNR
Lena

512�512
Barbara

512�512

2/42.03 42.38 42.58

5/34.13 37.86 37.16

10/28.13 35.20 33.86

15/24.61 33.38 31.83

20/22.13 32.02 30.38

25/20.23 30.97 29.23

30/18.70 30.01 28.29

35/17.44 29.21 27.43

50/14.61 27.14 25.32
ournal of Electronic Imaging 033021-1
position of the image; the BM3D method as reported in
Ref. 39; and the ProbShrink method for wavelets in its
redundant wavelet transform implementation.22 A compari-
son to simple curvelet domain hard thresholding is also
provided �4 scales in the curvelet decomposition, 16 orien-
tations at the coarsest level, and the threshold at k� with
k=4 at the finest scale and 3 otherwise�. Implementations
of curvelet hard thresholding and of the methods in Refs.
16, 20, 22, and 39 are publicly available and were used to
produce the results of Fig. 7. Results were averaged over 10
noise realizations for each image and for each noise level.
For all methods, we assumed that the standard deviation of
the noise was known for the denoising technique.

These results show that the ProbShrink method adapted
to curvelets outperformed or matched its wavelet-based
counterpart for all images. Improvements were smallest for
Lena and Baboon and greatest for Barbara and Peppers �up
to 1.08 dB�. Differences were more pronounced for large
standard deviations of the AWGN. In fact, for standard de-
viations �=5 and smaller, the ProbShrink method for
wavelets performed better. These results were not included
in Fig. 7 to avoid overloading it. This trend complies with

the images in the USC-SIPI test set when fixing
cular value.

T /�=1.3 T /�=1.6 T /�=1.9

0.3707 0.4502 1.1447

0.1089 0.3646 1.0022

0.0754 0.2777 0.7480

0.0761 0.2404 0.6448

0.1028 0.2328 0.5495

me 512�512 and 256�256 grayscale images.
on of the results for each noise level.

s
12

Baboon
512�512

House
256�256 �PSNR

5 42.00 43.49 0.014

9 34.63 38.26 0.015

2 30.48 34.84 0.033

3 28.15 32.92 0.049

3 26.76 31.50 0.032

8 25.63 30.41 0.042

1 24.87 29.45 0.057

3 24.15 28.59 0.123

5 22.75 26.60 0.102
ver all
a parti

=1.0

374

253

252

825

104
� of so
deviati

Boat
512�5

42.3

36.1

33.1

31.2

29.9

28.8

28.0

27.2

25.3
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ur observations from Secs. 4.5 and 5 in which we found
hat for small noise levels, the AOP LSAI and a smaller
hreshold T were more appropriate than the IIB LSAI with
=1.3�, which we chose because of the other noise levels.

The improvements of ProbShrinkCurv over simple cur-
elet domain hard thresholding were considerable for all
mages at all noise levels, but they were most notable for
arbara and Baboon, i.e., for images that were not sparsely

epresented in the curvelet domain. For these images, the
ore complex Bayesian and neighborhood-adaptive ap-

roach of ProbShrinkCurv provided a clear advantage over
imple hard thresholding.

The performance of ProbShrinkCurv compared to other
tate-of-the-art techniques was somewhat image and noise-
evel dependent, but overall our new denoiser was competi-
ive with BiShrink �based on a transform of similar redun-
ancy as ProbShrinkCurv, which was about 7.2 for our
hoice of parameters�, but it was outperformed by BM3D
or all images and by BLS-GSM for all images except
arbara, for which denoising results were similar.
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35

36
lena

InputPSNR [dB]

P
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N
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[d
B
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ProbShrink
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New
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28
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R
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New

(a)

(c)

Fig. 7 Output PSNR as a function of input PSN
Peppers, and �d� Baboon. The following six me
in its redundant wavelet transform implementa
using a dual tree complex wavelet decompositio
the BM3D method as reported in Ref. 39, and t
ournal of Electronic Imaging 033021-1
6.3 Visual Comparison with Other Denoisers
Figures 8 and 9 visually compare some cut-outs of the de-
noising results. The good edge-preserving qualities of
ProbShrinkCurv are illustrated on both the feathers in
Lena’s hat and the striped pattern on Barbara’s scarf, which
are sharply preserved. Compared to ProbShrink for wave-
lets and BiShrink, the method is less plagued by over-
smoothing and impulse-like artifacts. However, some
stripe-like artifacts are visible, although less than in the
curvelet hard thresholding case. The denoising results of
ProbShrinkCurv also give a much sharper impression than
the results obtained through hard thresholding.

6.4 Denoising with Unknown Noise Variance
If the standard deviation of the noise is not known, as is
often the case in practical situations, one must estimate it
from the corrupted data, e.g., using the mean absolute de-
viation estimator of Donoho et al.40 The inaccuracy of this
estimate affects the denoising performance of the methods.
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(d)

ur 512�512 images: �a� Lena, �b� Barbara, �c�
re shown: the ProbShrink method for wavelets

curvelet hard thresholding �Curv HT�, BiShrink
LS-GSM with the parameters set as in Ref. 20,
posed ProbShrinkCurv �New� method.
0

0

R for fo
thods a
tion,22
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able 8 shows the difference in PSNR performance be-
ween denoising with known and estimated noise variances
or several methods and noise levels, averaged each time
ver 10 noise realizations of the images Lena, Barbara,
eppers, and Baboon. In the curvelet-based methods, the
oise variance was estimated from the last orientation sub-
and at the finest scale and in the BiShrink method from
he first finest-scale sub-band in the dual tree complex
avelet decomposition �as it was implemented in the BiSh-

ink code available online�. In the other denoisers, no noise
stimation was implemented, so they were not included in
able 8. From this table it is obvious that the denoising

(a)

(c)

(e)

(g)

Fig. 8 Details of image Lena: �a� original imag
the denoising results of �c� ProbShrink, �d� curv
BM3D, and �h� ProbShrinkCurv.
ournal of Electronic Imaging 033021-1
performance of the compared methods drops dramatically
for low noise levels but is more or less robust to inaccura-
cies in noise variance estimation at higher noise levels. We
can conclude that the performance differences are of the
same order of magnitude for the three methods compared
here.

6.5 Execution Times
Table 9 compares the mean execution times of BiShrink,
BLS-GSM, BM3D, ProbShrink, curvelet hard thresholding,
and ProbShrinkCurv when denoising a 512�512 grayscale

(b)

(d)

(f)

(h)

oisy image �noise standard deviation 20�, plus
rd thresholding, �e� BiShrink, �f� BLS-GSM, �g�
e, �b� n
elet ha
Jul–Sep 2008/Vol. 17(3)4
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mage. Results were averaged over 10 experiments on a
MD Athlon�TM� 64 3400+2.40-GHz processor. All algo-

ithms were run in Matlab and were not optimized for
peed. The mean execution time of ProbShrinkCurv was
ower than the mean execution time of the methods with the
est denoising performance �BLS-GSM and BM3D� and
as also lower than that of its wavelet-based counterpart.
he method is about half as fast as curvelet hard threshold-

ng.

Conclusion
n this paper, we showed the differences in statistical be-
avior between curvelet coefficients containing a signifi-
ant noise-free component and those in which no signal of
nterest was present. We also discussed the adaptation of
he ProbShrink denoising method for wavelets22 to curve-

(a) (b)

(e) (f)

Fig. 9 Details of image Barbara: �a� original ima
the denoising results of �c� ProbShrink, �d� curv
BM3D, and �h� ProbShrinkCurv.

Table 8 PSNR difference �in dB� between den
deviation � averaged over the images Lena, Ba

Denoiser �=2 �=

CurvHT 4.36 0.3

BiShrink16 4.14 0.2

ProbShrinkCurv 4.41 0.2
ournal of Electronic Imaging 033021-1
lets, resulting in a method that we call ProbShrinkCurv. In
particular, we put the knowledge gained from our statistical
study to use in the design of an appropriate LSAI for this
new method.

When considering intra-band coefficients for the LSAI,
we found that, although curvelet coefficients were more
correlated along the principal direction of their generating
basis function, neighboring coefficients in the perpendicu-
lar direction were a better indicator of the significance of
the reference coefficient in terms of denoising results. We
further ascertained that it is beneficial to also incorporate
coefficients from adjacent, opposing, and parent sub-bands
in the LSAI.

The resulting denoising method, ProbShrinkCurv, out-
performed its wavelet-based counterpart and produced re-

(c) (d)

(g) (h)

noisy image �noise standard deviation 20�, plus
rd thresholding, �e� BiShrink, �f� BLS-GSM, �g�

with known and with estimated noise standard
Peppers, and Baboon.

�=20 �=30 �=50

0.08 −0.01 −0.08

0.09 0.08 0.04

0.06 0.04 0.11
ge, �b�
elet ha
oising
rbara,

10

8

5

4
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ults that were both visually competitive with and numeri-
ally close to those of state-of-the-art denoisers.
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