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Wenzhi Liao, Member, IEEE, Aleksandra Pižurica, Member, IEEE, Rik Bellens, Sidharta Gautama,
Wilfried Philips, Senior Member, IEEE,

Abstract—Nowadays, we have diverse sensor technologies and
image processing algorithms that allow to measure different
aspects of objects on the earth (spectral characteristics in
hyperspectral (HS) images, height in LiDAR data, geometry in
image processing technologies like morphological profiles (MPs)).
It is clear that no single technology can be sufficient for a
reliable classification, but combining many of them can lead to
problems like the curse of dimensionality, excessive computation
time and so on. Applying feature reduction techniques on all
the features together is not a good either, because it does not
take into account the differences in structure of the feature
spaces. Decision fusion on the other hand has difficulties with
modeling correlations between the different data sources. In this
paper, we propose a generalized graph-based fusion method to
couple dimension reduction and feature fusion of the spectral
information (of original HS image) and MPs (built on both HS
and LiDAR data). In the proposed method, the edges of the fusion
graph are weighted by the distance between the stacked feature
points. This yields a clear improvement over an older approach
with binary edges in the fusion graph. Experimental results on
real HS image and LiDAR data demonstrate effectiveness of the
proposed method both visually and quantitatively.

Index Terms—Data fusion, remote sensing, hyperspectral im-
age, LiDAR data, graph-based

I. INTRODUCTION

RECENT advances in the remote sensing technology of
have led to an increased availability of multi-sensor data

from the same area. In particular, hyperspectral (HS) images
provide a detailed description of the spectral signatures of
ground covers, whereas LiDAR data gives detailed information
about the height of the same surveyed area. The HS data, once
combined with LiDAR data, can provide a more comprehen-
sive interpretation of objects on the ground. Many techniques
have been developed for fusion of HS and LiDAR data in
a classification task [1]–[6]. Simental et al. [1] explored the
joint use of hyperspectral and LiDAR data for the separation of
vegetation classes, underlining that LiDAR can be very useful
in the separation of shrubs from trees. Lemp and Weidner
[2] exploit HS and LiDAR data for the classification of urban
areas, using LiDAR for the segmentation of the scene, and then
HS data for the classification of the resulting regions. Koetz
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et al. [3] classified fuel composition from fused LiDAR and
HS bands using support vector machines (SVM), and showed
that the classification accuracies after fusion were higher than
those based on either sensor alone. Multiple feature fusion
using decision fusion and manifold learning were proposed
for classification of HS remote sensing imagery in [7], [8].
Huang et al. [4] compared vector-stacking, re-classification
and post-processing for information fusion of aerial images
and LiDAR data in urban areas. The joint use of HS and
LiDAR remote sensing data for the classification of complex
forest areas was investigated in [5]. They proposed a novel
classification system, based on different possible classifiers
that were able to properly integrate multi-sensor information.
Recently, Pedergnana et al. [6] applied morphological attribute
profiles (EAPs) [9] to both HS and LiDAR data for a clas-
sification task. Their method jointly considered the features
extracted by EAPs computed on both HS and LiDAR data, and
fused spectral, spatial and elevation information in a stacked
architecture.

Despite the simplicity of such feature fusion methods (that
simply concatenate several kinds of feature sources), the
systems do not always perform better (and can even perform
worse) than using single feature source. Dalla Mura et al.
[10] showed examples where the classification accuracies by
stacking different morphological attributes were even lower
than by using only single morphological attribute. This is
because the information contained in different feature sources
is not well represented or measured. Furthermore, the resulting
data by stacking several kinds of feature sources may contain
redundant information. Last, but not least, the increase in the
dimensionality of the stacked features, as well as the limited
number of labeled samples in many real applications may
pose the problem of the curse of dimensionality and, as a
consequence, result in the risk of overfitting the training data.

An older version of our graph-based data fusion method
with binary edges of the fusion graph won the “Best Paper
Challenge” award of 2013 IEEE Data Fusion Contest [11]. In
this paper, we propose a generalized graph-based fusion of
HS and LiDAR (GGF). An important difference with [11] is
that the proposed fusion graph does not simply set the edges of
fusion graph to 0 (disconnected) or 1 (connected), but employs
weighted edges (with weights corresponding to the distance
between the stacked feature points). This way we build a more
general, weighted fusion graph where the actual differences
and similarities in spectral, spatial and elevation characteristics
of the feature points are better modeled. The proposed fusion
graph is hence more general and more powerful than the
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Fig. 1: Openings on a part of LiDAR data with disk-shaped
SEs of increasing radius size (1, 3 and 5).

binary one. The organization of this letter is as follows.
Section II provides a brief review of morphological features. In
Section III, we present the proposed graph-based feature fusion
method. The experimental results on real urban hyperspectral
images are presented and discussed in Section IV. Finally, the
conclusions of the paper are drawn in Section V.

II. MORPHOLOGICAL FEATURES

Morphological features are generated by either applying
morphological openings or closings by reconstruction on the
image, using a structural element (SE) of predefined size and
shape. For example, the morphological profile (MP) with disk
SE carries information about the minimum size of objects,
whereas directional MP indicates of the maximum size of
objects [12]–[14]. An opening acts on bright objects (areas
with the high elevation in LiDAR data, such as the top of the
roof) compared with their surrounding, while closings act on
dark (low height in the LiDAR data) objects. For example, an
opening deletes bright objects that are smaller than the SE1.
By increasing the size of the SE and repeating the previous
operation, a complete morphological profile (MP) is built,
carrying information about the size and the shape of objects
in the image.

In our experiments, morphological features are generated
by applying morphological openings and closings with partial
reconstruction [12]–[14] on both LiDAR data and the first
2 principal components (PCs) (representing more than 99%
of the cumulative variance) of original HS image. For disk-
shaped SE, MPs with 15 openings and closings (ranging from
1 to 15 with step size increment of 1) are computed for both
LiDAR data and the first 2 PCs of HS image. For linear
structuring elements, we take the maximum (for openings)
or minimum (for closings) over multiple orientations (every
10 degrees), and use 10% of the length of the SE for partial
reconstruction. Then, we generate MPs with 20 openings and
closings (ranging from 5 to 100 with step size increment of
5) for both LiDAR data and the first 2 PCs of HS image.
Fig. 1 shows the results of MP with partial reconstruction
for LiDAR data with different scales. As the size of the SE
increases in openings, we can see that more and more bright
objects (i.e. objects with high elevation) disappear in the dark
background of LiDAR data. The effect of using disk-based and
linear-based morphological features with partial reconstruction
for classification of remote sensing data from urban areas has
been discussed in our previous work [12]–[14].

1Deleting means here that the pixels in the object take on the value of their
surrounding

III. PROPOSED FUSION METHOD

Different feature sources typically have different range of
values, different dimensions and different characteristics. For
example, an original HS image with 144 bands contains the
spectral information of the ground covers. The morphological
features of LiDAR data with 70 bands (with 30 bands disk-
based MP and 40 bands directional MP) carry the elevation
information of the same surveyed area. The morphological
features obtained from the HS image has 140 bands and
carries the spatial information. Before fusing all the feature
sources, we normalize their dimensions and reduce the noise
throughout the given feature space with Kernel Principal
Component Analysis (KPCA) [14], [15], like we also did
in [11]. We assume that the dimension of each feature
source is already normalized to the smallest dimension of
all the feature sources D = 70. Let XSpe = {xSpe

i }ni=1,
XSpa = {xSpa

i }ni=1 and XEle = {xEle
i }ni=1 denote the spectral,

spatial (the spatial features are obtained from the hyperspectral
data) and elevation features, respectively, where xSpe

i ∈ RD,
xSpa
i ∈ RD and xEle

i ∈ RD after normalization to the same
dimension. XSta = {xSta

i }ni=1 = [XSpe; XSpa; XEle], and
xSta
i = [xSpe

i ; xSpa
i ; xEle

i ] ∈ R3D denotes the vector stacked
by the spectral, spatial and altitude features. {zi}ni=1, and
zi ∈ Rd denote the fusion features in a lower dimensional
feature space with d ≤ 3D.

The goal of this paper is to find a transformation matrix
W ∈ R3D×d, which can couple dimensionality reduction and
feature fusion in a way of zi = WT xi (xi is a variable, which
can be set to be xSta

i , xSpe
i and etc.). The transformation

matrix W should not only fuse different features in a lower di-
mensional feature space, but also preserve local neighborhood
information and detect the manifold embedded in the high-
dimensional feature space. A reasonable way [16] to find the
transformation matrix W can be defined as follows:

arg min
W∈R3D×d

(

n∑
i,j=1

||WT xi −WT xj ||2Aij) (1)

where the matrix A is the edge of the graph G = (X,A).
In our previous work [11], we assumed that the edges

(between data points xi and xj) are binary, i.e. Aij ∈ {0, 1}.
Aij = 1 if xi and xj are “close” and Aij = 0 if xi and
xj are “far apart”. The “close” was defined by finding the
k nearest neighbors (NN) of the data point xi. The k NN is
determined first by calculating the Euclidean distance between
data point xi and all the data points, then sorting the distance
and determining nearest neighbors based on the k-th minimum
distance. A fusion graph GFus = (XSta,AFus) was defined
as follows:

AFus = ASpe � ASpa � AEle (2)

with ‘�’ denoting element-wise multiplication, i.e. AFus
i,j =

ASpe
i,j A

Spa
i,j AEle

i,j , AFus
ij = 1 only if ASpe

ij = 1, ASpa
ij = 1

and AEle
ij = 1. In this definition, all the connected nodes had

the same weight on their edges, without accounting for actual
differences in the spectral, spatial and elevation proximities of
different data point pairs. However, this may not be true in
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real cases. For example, it is more probable that a data point
has similar characteristics with its nearest neighbors than with
those points that are far apart. Therefore, in this paper, we
propose a generalized fusion graph GGFus = (XSta,QGFus).
Suppose ∆ is a pairwise distance matrix of the stacked features
XSta. We propose a fused distance matrix as:

∆GFus = ∆ + ANeg max(∆) (3)

where ANeg = ¬AFus and the operator ‘¬’ denotes logical
negation. LetNi denote the k nearest neighbors of xi. For each
node xi, (i ∈ {1, · · · , n}), we first find its k nearest neighbors
Ni in the fused distance matrix ∆GFus. The edges are then
formally defined as:

QGFus
ij =

{
e−||xi−xj ||, if xj ∈ Ni,
0, otherwise,

(4)

Note that the edges denoted by AFus or ANeg are still
binary, while the edges of QGFus are weighted with different
values according to their distance if they are connected. The
use of the neighborhood Ni in this equation guarantees that
those data points that differ strongly in any of the spectral,
spatial or elevation characteristics will not be connected in the
graph. For example, the data points from football fields made
of real grass (xSta

i ) and those made of synthetic grass (xSta
j )

have very similar spatial and altitude information (ASpa
i,j = 1,

AEle
i,j = 1), but different spectral characteristics (ASpe

i,j = 0).
Then, ANeg

i,j = 1 and the distance ∆GFus
i,j in (3) will be

penalized by adding the maximum value of ∆. Hence the
data points that are strongly dissimilar in any of the three
characteristics are not likely to be within each other’s k nearest
neighbors, i.e. they are not likely to be connected in the
fused graph. When using the constraint in [17] for avoiding
degeneracy:

WT (XSta)DGFus(XSta)T W = I (5)

where DGFus is a diagonal matrix with DGFus
i,i =∑n

j=1Q
GFus
i,j and I the identity matrix, we can obtain the

transformation matrix W = (w1,w2, · · · ,wr) which is made
up by r eigenvectors associated with the least r eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λr of the following generalized eigenvalue
problem:

(XSta)LGFus(XSta)T w = λ(XSta)DGFus(XSta)T w (6)

where LGFus = DGFus − QGFus is the fusion Laplacian
matrix.

IV. EXPERIMENTAL RESULTS

Experiments are done on a hyperspectral image and a
LiDAR data which were acquired by the NSF-funded Center
for Airborne Laser Mapping (NCALM) on June 2012 over
the University of Houston campus and the neighboring urban
area. The hyperspectral imagery has 144 spectral bands with
wavelength range from 380 nm to 1050 nm. Both datasets
have the same spatial resolution (2.5m). The whole scene of

the data, consisting of the full 349 × 1905 pixels, contains 15
classes. Available training and testing set are given in Table I
(# number of training samples/ # number of test samples), and
Fig. 2 shows false color image of HS data and test samples.
For more information, see [18].

The SVM classifier with radial basis function (RBF) [19]
kernels is applied in our experiments. The parameters of SVM
classifier are set the same as in our previous work [11].
Different feature sources are scaled to [−1, 1] before classi-
fication. We compare our proposed GGF with the schemes
of (1) Using original HSI; (2) Using the MPs computed on
the first 2 PCs of original HSI (MPsHSI ); (3) Using the
MPs computed on the LiDAR data (MPsLiDAR); (4) Stacking
morphological features computed from both LiDAR data and
the first 2 PCs of original HS image (MPsHSLi), similarly
as [6]; (5) Stacking all dimensional normalized features, i.e.
XSta (Sta); (6) Stacking all the features extracted by PCA from
each individual features which represents more than 99% of
the cumulative variance (PCA); (7) Stacking all the features
extracted by NWFE [20] from each individual feature (which
represents more than 99% of the cumulative variance); (8)
Features fused by using the graph constructed by all stacked
feature sources (i.e. LPP [17]) (LPP); (9) Our previous work
with the edges of the fusion graph binary [11] (GFHL). Both
GFHL and our proposed GGF can operate on all feature
sources without and with KPCA normalization. We denote
feature fusion on original feature sources without KPCA
normalization as GFHLorg and GGForg, respectively. In our
experiments, 5000 samples were randomly selected to train
KPCA, LPP, GFHL and our proposed GGF.

The classification results are quantitatively evaluated by
measuring the Overall Accuracy (OA), the Average Accuracy
(AA) and the Kappa coefficient (κ) on the test samples. The
experiments were carried out on 64-b, 3.40 GHz Intel i7-
4930K (1 core) CPU computer with 64 GB memory, the
consumed time includes normalization, feature fusion and
classification. Table I shows the accuracies and consumed time
obtained from the experiments. For visual comparison, we
show the classification maps in Fig. 2.

Form the table and figure, we have the following findings:
1) The results confirm that fusion of the spectral, the spatial

and the elevation features can improve the classification
performances. In particular, our proposed GGF produced
the best OA, AA and κ. The improvements of GGF
in OA are 3.50%-12.93% compared to the schemes of
(1)-(8). Although increasing the processing time with
KPCA normalization, both GFHL and GGF have more
than 3% improvements in κ compared to the GFHLorg

and GGForg without KPCA normalization. Compared
to setting the edge of fusion graph binary (GFHL)
in [11], the proposed generalized fusion graph (GGF)
produces higher overall accuracies, especially without
KPCA normalization.

2) From the class-specific accuracies, when single features
are used, the RawHSI approach produces better results
on class ‘Tree’, whereas the MPsHSI performs better
on classes ‘Residential’ and ‘Road’, and the MPsLiDAR

approach performs better on classes ‘Commercial’ and
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TABLE I: Classification accuracies obtained by the described schemes.
RawHS MPsHS MPsLi MPsHSLi Sta PCA NWFE LPP GFHLorg GGForg GFHL GGF

Number of Features 144 140 70 210 210 35 42 26 36 28 24 22
OA (%) 80.72 82.43 69.39 86.39 87.49 85.28 87.96 90.74 88.59 91.28 93.29 94.0
AA (%) 83.40 84.99 68.42 88.48 88.94 87.29 88.88 91.26 89.43 91.24 93.19 93.79
κ 0.792 0.810 0.668 0.853 0.864 0.840 0.869 0.900 0.876 0.903 0.927 0.935
Consumed Time (s) 238.3 230.9 163.9 258.9 1159.4 88.1 1338.2 655.7 131.3 83.4 628.8 629.6

(#198 / #1053) Grass Healthy 82.15 80.25 35.61 82.43 81.10 78.63 81.29 82.91 82.72 82.53 82.24 82.91
(#190 / #1064) Grass Stressed 81.58 80.64 67.11 82.61 84.87 81.77 83.27 87.41 84.96 98.68 88.91 99.34
(#192 / #505) Grass Synthetis 99.80 100 79.60 100 100 100 100 100 100 100 100 100
(#188 / #1056) Tree 92.80 84.09 72.92 91.10 95.45 93.75 89.49 98.86 97.73 98.96 99.24 99.34
(#186 / #1056) Soil 97.92 100 83.52 99.91 99.91 99.91 99.81 99.91 99.15 100 100 100
(#182 / #143) Water 95.10 95.10 66.43 100 95.80 95.80 95.80 95.10 95.80 95.10 95.10 95.10
(#196 / #1072) Residential 76.21 87.31 76.59 80.97 86.94 84.70 86.38 92.28 87.22 90.95 89.18 90.86
(#191 / #1053) Commercial 54.51 45.58 91.03 63.06 59.54 66.95 76.07 86.23 85.38 90.98 95.54 95.63
(#193 / #1059) Road 78.47 91.03 59.21 91.88 90.37 83.66 93.58 91.88 89.80 90.46 91.03 89.33
(#191 / #1036) Highway 60.04 60.42 64.86 64.67 65.44 57.53 62.16 72.97 66.89 60.91 98.65 92.76
(#181 / #1054) Railway 79.51 87.10 88.24 93.45 99.24 97.34 98.39 96.87 98.20 94.46 97.34 96.58
(#192 / #1041) Parking Lot 1 82.90 86.84 70.89 97.89 99.33 91.74 99.90 90.2 84.62 99.14 88.95 91.93
(#184 / #285) Parking Lot 2 72.63 76.49 55.09 79.30 77.19 77.54 65.26 76.49 69.82 65.26 73.33 74.39
(#181 / #247) Tennis Court 100 100 100 100 100 100 100 100 100 100 100 100
(#187 / #473) Running Track 97.25 100 14.80 100 98.94 100 100 98.73 99.15 99.15 98.31 98.73

(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Classification maps produced by the described schemes. (a) False color image with 15 classes labeled and highlighted
in the image; and thematic maps using (b) MPsHSLi; (c) LPP; (d) GFHLOrg; (e) GGFOrg; (f) GFHL [11]; (g) GGF.

‘Highway’. The proposed GGF produces higher accu-
racy on some classes related to nature resources, e.g.
grass and tree. For some man-made objects such as
‘Commercial’ and ‘Highway’, both GFHL and GGF
perform better than the schemes of (1)-(8).

3) From the classification maps, we can see visually that
the objects under cloud regions are not well classified
by using the stacked features. Without KPCA normaliza-
tion, the proposed GGForg classifies objects under cloud
better than GFHLorg, with less consumed time.

The remote sensing data from urban area was a mix between
man-made structures and natural materials, different objects
may be made by same materials. It is difficult to classify
them only using hyperspectral data, for example, some land
use classes (e.g. commercial and highway) are better classified
when using LiDAR data. Because commercial objects have
larger area and higher elevation than residential objects and
highway objects have higher elevation than road objects. By
concentrating different features in the stacked structure, the
classification accuracies are improved. The approaches of

NWFE and Sta are similar to the PCA approach in terms
of a stacked architecture, all these three approaches first
applied feature extraction on each individual feature, then
concatenated the extracted feature vectors from the original
HS data, the MPs of HS image and the MPs of LiDAR into
one stacked vector. The differences are that each individual
feature is represented by different aspects, e.g. the features
extracted by PCA represent most of the cumulative variance
in the data, while the features extracted by NWFE respect the
class discriminant. The cloud-covered regions in original HS
image are not classified well by fusing features in a stacked
architecture, because the elevation information contained in the
morphological features of LiDAR data is not well represented
in such a way of data fusion. The spectral and the spatial
information (MPsHS) of the cloud-covered regions are not
related to real ground cover. The LiDAR sensor can penetrate
clouds and its morphological features contain the elevation
information of the real ground cover. When stacking all feature
sources together, the element values of different features can
be significantly unbalanced, and the information contained by
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(a) (b)

Fig. 3: (a) The number of non zero entries in ASpe and AFus

as a function of the number of the nearest neighbors. (b) The
OA on the number of extracted features.

different feature sources is not equally represented. The same
problems happen when using the stacked features to build
a graph in LPP method. By building binary fusion graph,
GFHL [11] cannot classify some objects under cloud well,
especially GFHLorg without KPCA normalization. This is
because both GFHL and GFHLorg set all connected edges
of fusion graph to the same weight, which means that all
connected points are treated as equally similar in terms of their
characteristics. The proposed approach (GGF and GGForg)
assigns different weights to the connected edges according
to a distance function and in this way better models the
actual similarity of the connected nodes in their characteristics.
Fig. 3(a) shows that there are fewer non-zero entries in AFus

than in ASpe (the number of non-zero entries is the same
as ASpa and AEle) as the number of the nearest neighbors
increases. With KPCA dimensional normalization, the OA
of both GFHL and our proposed GGF are better than those
without KPCA normalization (i.e. GFHLorg and GGForg) as
the number of extracted features increases, see Fig. 3(b).

V. CONCLUSION

The main contribution of this paper is a new methodology
to include spectral, spatial and elevation information in the
classification process by a generalized graph-based feature
fusion scheme. Compared to an older related method that
used binary edges in the fusion graph, our new method,
which employs weighted edges based on differences among
spectral, spatial and elevation features, better models the
actual similarity of the connected nodes, which is reflected
in improved classification performances.
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