
TWO-STAGE DENOISING METHOD FOR HYPERSPECTRAL IMAGES COMBINING KPCA
AND TOTAL VARIATION
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ABSTRACT

This paper presents a two-stage denoising method for hyper-
spectral image (HSI) by combining kernel principal compo-
nent analysis (KPCA) and total variation (TV). In the first
stage, we use KPCA denoising to reduce spectrally uncorre-
lated noise. In the second stage, the information content is
largely separated from the remaining noise by means of prin-
cipal component analysis (PCA). The remaining noise is then
efficiently removed by fast primal-dual TV denoising in low-
energy PCA channels. Experimental results on simulated and
real HSIs are very encouraging.

Index Terms— Hyperspectral images, denoising, kernel
principal component analysis, total variation, classification.

1. INTRODUCTION

Despite advances in hyper-spectral sensor technology, image
noise is unavoidably present, which can affect information re-
trieval and content interpretation. Using denoising as a pre-
processing tool will improve various post-processing tasks,
e.g. classification, target detection, unmixing, etc.

Many techniques were reported for noise reduction in hy-
perspectral data [1, 2, 3, 4, 5]. In [3], a multilinear algebra
method was proposed to simultaneously reduce the spectral
dimension and noise in hyperspectral images. Othman and
Qian [2] proposed a hybrid spatial-spectral derivative-domain
wavelet shrinkage noise reduction approach. The approach of
[4] proposed a cubic total variation model for hyperspectral
image denoising by combining the 2-D TV model for spatial
domain and the 1-D TV model for spectral domain. The ap-
proach of [5] employed a spectral-spatial adaptive TV model
for hyperspectral image denoising. Recently, Chen et al. [1]
proposed a denoising algorithm for hyperspectral images with
reasonably good SNR by using principal component analysis
and wavelet shrinkage. The algorithm utilized PCA to decor-
relate the fine features of the data cube from the noise, and
then reduced the noise only in the noisy low-energy PCA out-
put channels with wavelet shrinkage denoising.

However, when dealing with HSIs with low signal-to-
noise ratio (SNR), the first k PCA channels also contain a
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lot of noise. Therefore, this paper proposes a two-stage de-
noising method for HSIs. The proposed method first uses
kernel PCA to reduce spectrally uncorrelated noise without
sacrificing important information content. Then we use PCA
to decorrelate the resulting data of the first stage from the
remaining noise and employ a fast primal-dual total variation
to reduce the noise only in the low-energy PCA output chan-
nels. The results demonstrate effectiveness of the proposed
method and superior performance over recent methods like
[1], both visually and quantitatively (in terms of PSNR and
subsequent classification accuracy). The remainder of the pa-
per is organized as follows. The proposed denoising method
is detailed in Section 2. Section 3 presents the experimental
results. Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

We developed in this section a two-stage denoising method
for HSI, which builds on some ideas from [1]. In the first
stage, KPCA is used to reduce spectrally uncorrelated noise
while preserving most information in HSI. The second stage
of our approach is similar to [1], which utilizes the PCA to
decorrelate the fine features of the data cube from the noise,
reducing the noise only in the noisy low-energy PCA out-
put channels. We use a first-order primal-dual total variation
method [9] to remove the noise in the low-energy PCA chan-
nels, due to its computational efficiency and edge preserving
property. The flow chart of the proposed two-stage denoising
method for HSI is shown in Fig.1.

2.1. KPCA denoising

Kernel Principal Component Analysis [11] is a nonlin-
ear version of PCA using techniques of kernel methods,
which is more suitable to describe higher-order complex
and nonlinear distributions. Its application to reducing the
dimensionality of hyperspectral data sets has been inves-
tigated in [6, 7]. Suppose xi ∈ RB (i = 1, 2, · · · , n) is
the original data, where B is the spectral bands of HSI.
There exists a function ϕ, which can map the original data
into a higher or infinite dimensional Hilbert space. KPCA
solves the eigenvectors by performing eigen decomposi-
tion on kernel space. A new data set can be obtained in
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Fig. 1: Flow chart of proposed two-stage denoising method for HSI.

the feature space Φ = (ϕ(x1), ϕ(x2), · · · , ϕ(xn)). ϕ is
an implicit function, which cannot be calculated directly,
but some kernel functions can be used by performing inner
product between the two samples xi and xj in the orig-
inal space, κij = κ(xi, xj) = ϕT (xi)ϕ(xj). The most
widely used Mercer kernels [11] include Gaussian kernel:
κ(xi, xj) = exp(− ||xi−xj ||2

2δ2 ).
Another interesting application of KPCA is in image de-

noising [8]. In order to denoise a given input data, KPCA
first transforms the inputs into a higher dimensional feature
space and then carries out linear PCA in the feature space
to obtain the principal components. Denoising is then car-
ried out by projecting the transformed pattern onto the most
dominant eigenvectors (in our experiments, we just keep the
most dominant eigenvectors, which represent 99% of the cu-
mulative variance). By throwing away the rest of the very
low-energy KPCA output channels, we can remove spectrally
uncorrelated noise in HSI without losing too much informa-
tion. In order to obtain the denoised pattern in the original
input space (called pre-image [11]), a reverse transform is
needed. However, an exact pre-image may not exist (i.e. the
inverse transform of ϕ may not exist), as noted in [11] and
[8]. Therefore, instead of obtaining the exact pre-image, one
uses algorithms to estimate an approximating pre-image. For
more details about KPCA denoising, we refer the interested
reader to [8].

The number of extracted kernel principal components,
which represent 99% of the cumulative variance depends
on the number of total training samples and the parame-
ters in the selected kernel function. In our experiments,
1000 samples were randomly selected to train and construct
the training kernel matrix: Gaussian kernel function with
δ = 1

n×n

√∑n
i=1

∑n
j=1 κ

2
ij , where n is the total number of

the training samples, κij = κ(xi, xj) is the element of the
kernel matrix.

2.2. TV denoising with group sparsity

KPCA suppresses well spectrally uncorrelated noise, while
preserving most information of HSI. The noise in the first
PCA output channels is suppressed quite well after KPCA
denoising, as shown in Fig. 2. However, the resulting data
still contain some remaining noise. Therefore, in the second

(a) PC 1 (b) PC 2

(c) PC ′ 1 (d) PC ′ 2
Fig. 2: The first two principal components before denoising
(top row) and after KPCA denoising (bottom row).

stage, we employ a similar approach as in [1] for suppress-
ing this remaining noise. We utilize the PCA to decorrelate
the fine features of the data cube from the noise, reducing
the noise only in the noisy low-energy PCA output channels.
We use total variation denoising, which is widely used in im-
age processing applications [4, 5, 9], because of its good edge
preserving performance and also due to its computational effi-
ciency, which is important when processing large data cubes.
We propose to use group sparsity [12] to combine all the gra-
dient coefficients (TV norm) over the different channels at the
same spatial position into one group such that the resolving
operator (soft-thresholding) does not act component-wise but
treats the group as one vector.

Let u denote unknown noise-free data that we want to es-
timate, and f the resulting data from the low-energy PCA out-
put channels after stage 1. The optimization problem that we
consider is:

û = argmin
u

B∑
i

||∇u||2 +
λ

2
||f − u||22 (1)

where û is the estimate of the noise -free data u (the result
of denoising),∇ the discrete gradient operator. The first term
on the right side of (1) is the TV group sparsity regularization,
which is responsible for smoothing (i.e. noise reduction). The
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Fig. 3: HSI data sets used in our experiments. Left: false
color image of Indian Pines; middle: ground truth; right: sim-
ulated HSI using the average spectral reflection of same class
in the ground truth.

Fig. 4: Denoising results on the simulated HSI. Left: resulting
PSNR per spectral band (PSNR of the input HSI is 25 dB).
Right: mean PSNR with different PSNR in the simulated HSI
after adding additive white Gaussian noise.

second term ||f − u||22 is commonly referred to data fidelity
term. The parameter λ controls the relative contribution of
the data fidelity term and smoothing term.

In our implementation, we used a very fast and memory
efficient first-order primal-dual algorithm [9] for solving the
optimization problem (1).

3. EXPERIMENTAL RESULTS

We used the AVIRIS Indian Pines image with 220 bands of
size 145 lines by 145 samples, originally from Multispec c©.
The whole scene contains 16 classes, ranging in size from 20
to 2468 pixels. 13 classes were selected for the experiments.
The resulting false color composition and the groundtruth are
shown in Fig. 3. We simulated a 50× 50× 220 HSI with four
classes in the groundtruth, the spectral reflection of the simu-
lated HSI is the average of all data cube in the same selected
class. By adding different amounts of noise in the simulated
HSI, we compared peak SNR (PSNR) of each spectral band
and the mean PSNR of all bands among the following meth-
ods: TV (primal-dual TV denoising on original HSI), TVPCA
(first using PCA to decorrelate the HSI and then denoise only
on the low-energy output PCA channels with TV), KPCA de-
noising and the proposed method.

The results in Fig. 4 show that KPCA denoising can re-
duce the noise in HSIs by removing 1% of low-energy output
channels, and performs better than TV and TVPCA methods
in case of HSIs with lower PSNR. The performances can be

enhanced by removing more low-energy output channels, but
this will lead to the loss of some image details. TVPCA pro-
duced better results than applying TV denoising directly on
the original HSI. This is because of PCA can decorrelate the
HSI. By using two-stage denoising, the proposed method out-
performs the other methods.

To further verify the effectiveness of our proposed denois-
ing approach, we applied the denoising methods to the real
HSI of AVIRIS Indian Pines, and then compared the classi-
fication results by using the HSI before and after denoising.
In our application, we visually select the parameter λ in TV
denoising, which can also be done by cross-validation [13].
20 labeled samples per class of its ground truth are used to
train the support vector machine (SVM) classifier [14]. Fig. 5
shows the denoised results with combination of three very
noisy bands (bands 2, 109 and 219), Fig. 6 shows the clas-
sification results using SVM on the whole HSI.

The following conclusions can be drawn from the experi-
ments:

• Applying TV denoising directly on the original HSI
results in a noticeable loss of some detailed informa-
tion, such as edges and texture. KPCA behaves much
more conservative: spectrally uncorrelated noise is re-
duced and image details are well preserved. The use
of PCA to decorrelate the HSI and denoising only the
low-energy output PCA channels performs better than
denoising directly on the original noisy HSI. The pro-
posed two-stage method shows superiors performance
in terms of noise reduction and detail preservation.

• The classification result has been greatly improved by
the denoising process. The classification result of the
original noisy HSI is rather poor. This is because of
the effect of the strong noise information in most of the
bands, and strong correlation between different spec-
tral bands. However, the results were greatly improved
by noise reduction, with smoother classification maps
and higher overall classification accuracy (OA). Of the
four classification results from the different denoising
methods, it is shown that our proposed approach pro-
duces the best classification result with the highest OA
of 83.5%.

4. CONCLUSION

A two-stage denoising method for hyperspectral images is
proposed in this paper. We first use KPCA denoising to re-
duce spectrally uncorrelated noise while preserving most in-
formation in the HSI. Then we use PCA to decorrelate the
resulting data from the first stage, and employ a fast primal-
dual total variation denoising to remove noise only in the low-
energy output PCA channels. The results on simulated and on
real HSI show that the proposed method outperforms the tra-
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Fig. 5: Denoising results on real hyperspectral image of
AVIRIS Indian Pines. (a) Image composed of original noisy
bands 2, 109 and 219, (b) TV, (c) TVPCA, (d) KPCA denois-
ing, and (e) the proposed two-stage denoising method.

ditional one-stage denoising methods, and improves greatly
the classification accuracy.
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Philips, “A Primal-Dual Algorithm For Joint Demosaic-
ing And Deconvolution”, In Proceedings of 2012 IEEE
International Conference on Image Processing (ICIP
2012), pp. 2801–2804, 2012.

[10] US Army Topographic Engineering Center, HyperCube,
http://www.tec.army.mil/Hypercube/.

[11] B. Scholkopf, A.J. Smola and K.R. Muller, ”Nonlin-
ear component analysis as a kernel eigenvalue problem,”
Neural Computation, vol. 10, pp. 1299–1319, 1998.

[12] A. Majumdar and R.K. Ward, “Compressed sensing of
color images,” Signal Processing, vol. 90, pp. 3122–
3127, 2010.

[13] S. Arlot, A. Celisse, “A survey of cross-validation pro-
cedures for model selection”, Statistics Surveys, vol. 4,
no. 0, pp. 40–79, 2010.

[14] C.C. Chang and C.J. Lin, ”LIBSVM:
a library for support vector machines,”
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

2052


