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ABSTRACT

We propose a new wavelet-based method for image
denoising that applies the Bayesian framework, using
prior knowledge about the spatial clustering of the
wavelet coefficients. Local spatial interactions of the
wavelet coefficients are modeled by adopting a Markov
Random Field model. An iterative updating technique
known as iterated conditional modes (ICM) is applied to
estimate the binary masks containing the positions of
those wavelet coefficients that represent the useful signal
in each subband. For each wavelet coefficient a shrinkage
factor is determined, depending on its magnitude and on
the local spatial neighbourhood in the estimated mask.
We derive analytically a closed form expression for this
shrinkage factor.

1.  INTRODUCTION

Recent research on wavelet based image denoising has
demonstrated the advantages of using Bayesian models,
exploiting the prior knowledge about the statistical
properties of the wavelet coefficients. The techniques of
this kind usually assume independent wavelet coefficients
and a heavy-tailed probability density function (pdf), such
as generalized Laplacian distribution [1]. Nonlinear
shrinkage of the wavelet coefficients using Bayes rules is
proposed in [2]. In [3], a Bayesian estimator of the
wavelet coefficients is described, which incorporates the
higher order statistics to estimate the parameters of the
pdf model. The list of references to related techniques and
the extensive analysis of their performance is given in [4].
A wavelet based denoising method proposed in [5] is
related, but different in the sense that it uses spatial
priors. This method follows the principles of Bayesian
image restoration using Markov Random Field models,
given in the classical work [6]. In this paper, we propose
a related approach, which shows better performance than
the method of [5] and which results in a much faster
computation. The differences between the two approaches
can be summarized as follows: (1) In the method of [5]
random search is used to estimate the binary mask that

indicates the positions of meaningful wavelet coefficients.
In our method an iterative updating technique is used to
find the estimate of the binary mask with far fewer
iterations;  (2) In [5], the shrinkage factor for the wavelet
coefficients equals the marginal probability that the
coefficient is noise free, given the set of all observations.
This probability is calculated by counting the number of
occurrences of a given label at a given spatial position in
the whole chain of masks that are generated during the
random search process. To estimate the probability
accurately by this counting procedure a long chain of
masks is needed, even if the convergence of the
underlying random search process is fast. In our method a
closed form expression for the shrinkage factor is
proposed, depending on the local observation and on the
spatial neighborhood in the estimated mask.

2.  THE PROPOSED METHOD

We treat the wavelet coefficients as random variables. We
will denote random variables by capital letters and their
realizations by the corresponding small letters. Boldface
capital letters will be used for vectors of random variables
and boldface small letters for vectors of realizations. We
adopt a simple numbering of pixels by using a raster
scanning and assigning a sequence number l to each pixel.
The set of all indices l for the given array of pixels is
denoted by S. In order to have a more compact
representation, we will omit the indices of the wavelet
coefficients that indicate the scale and the orientation.
Thus, the wavelet coefficients will have only one index
that corresponds to their spatial location. The notation
S \ l will denote the set of all pixels in S except the pixel l,
and the notation )(l∂  will denote the neighborhood of the

pixel l, except l itself.
With each detail image w ={w1,…,wn} we associate a

vector m ={m1,…, mn} of measures; The measure m l can
be the magnitude of the coefficient or the estimate of the
local Lipschitz exponent like in [5]. Further on, we will
associate with each detail image a vector x ={x1,…,xn} of
binary labels: x l = 0 if w l is assumed to originate from
noise and x l = 1 if w l is assumed to represent a useful



signal. The vectors x will be called binary masks.
To model the spatial dependencies between the

wavelet coefficients, we assume that the binary masks x
are specific configurations of a Markov Random Field
(MRF). We search for the estimate x̂  of the binary mask
by applying the maximum a posteriori (MAP) principle,
which maximizes the posterior probability P(X=x | M=m).
For this maximization we use the iterative conditional
mode technique (ICM) [7], which converges quickly and
guarantees a close to MAP solution. Using the estimated
binary mask x̂ , we perform a soft modification of the
wavelet coefficients as follows
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where q l is a shrinkage factor that depends on the local
measure m l and on a given quantity )(l∂τ  derived from

the spatial neighbourhood )(l∂  of the pixel l in the

estimated binary mask x̂ . The shrinkage factor should be

high (i.e., close to one) when m l and/or )(l∂τ  indicate that

w l is likely to represent a useful signal; in the opposite
case q l should be small. We choose for the shrinkage
factor the following marginal probability
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because it satisfies the above requirements and because it
can be derived as a closed form expression in terms of the
measure m l and the local neighborhood in the estimated
mask )(ˆ l∂x . Assuming conditional independence
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the fact that the label X l can take only the values x l = 0 or
x l = 1, we derive
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where lξ  represents the ratio of conditional probabilities

)0|()1|( ==== llllll XmMPXmMP  and where lη
represents the ratio of the prior probabilities

)ˆ|0()ˆ|1( )()()()( llllll XPXP ∂∂∂∂ ==== xXxX . For the

results presented in this paper we have used an
autobinomial Markov random field [8], where we assign
nonzero and equal potentials only to pairwise cliques. In
this case we have
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For the conditional probability model P(Ml = ml | Xl = xl )
we have used the model of [5], for which we have derived
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where T is the threshold for the measure ml, δ determines
the width of the transition interval around T, and α is the
parameter that controls the influence of the noise measure
on the shrinkage factor. The shrinkage factor is now
determined by equations (2)–(5).

3.  RESULTS AND DISCUSSION

The proposed technique can be applied to different kinds
of noise; We will use a test image with artificially added
white Gaussian noise (Fig. 1) to compare the performance
of the proposed method and the related approach of [5].
The computation time in these two techniques is
approximately proportional to the number of iterations
that are performed on binary masks (the time required to
compute the direct and the inverse wavelet transform is
much smaller). It is assumed that one iteration is
completed when all binary labels in a mask have been
updated. Since both methods involve the same
parameters, with equivalent meaning, we use the same set
of parameters in both techniques.

In Fig.1(a), an original, noise-free image is shown.
The same image with additive white Gaussian noise is
shown in Fig.1(b). The result of the approach [5] is given
in Fig.1(c), where the number of iterations for calculating
the marginal conditional probabilities was N=10. The
peak signal to noise ratio for this image is PSNR=26.6dB.
The result of the proposed approach, with N=5 iterations
is shown in Fig. 1(d), and the corresponding
PSNR=29.5dB. In our approach N=5 iterations suffices to
reach the convergence, while in the method of [5] the
convergence is reached only after much larger N, but
N=10 provides a good result. In both cases the magnitude
of the wavelet coefficient was the local measure ml =| wl |,
and the parameters were α =1, β =1.1 and δ =0.5.

It can be noted that the result of our method is better
as far as the quantitative measure is concerned; in visual
appearance it is slightly sharper but also contains more
ringing artifacts. We can therefore conclude that the two
methods provide denoised images of similar quality, but
our method is almost two times faster.

We have also tested the performance of the proposed
denoising method on naturally noisy images. An original
Synthetic Aperture Radar (SAR) image is shown in Fig.
2.(a) and the result of the proposed technique in Fig. 2(b).
In Fig. 3, we show the result of applying the proposed



technique to an infrared image of a buried landmine.
These two examples show that the proposed method can
be applied to natural images, where it significantly
reduces noise without deteriorating significant edges.

4.  CONCLUSION

This paper presents an improvement of the algorithm in
[5], which makes it almost two times faster. The proposed
method performs well in presence of different kinds of
noise. Further research will include more realistic models
for the conditional probabilities )0|( == lll XmMP

and )1|( == lll XmMP ; There models are derived by

analyzing the histograms of the local measure ml in the

areas of meaningful edges and in background parts of the
image, in the presence of different kinds of noise. We
also intend to better exploit the spatial correlation of the
wavelet coefficients at different resolution scales, by
extending the neighborhood in the prior spatial model
across the scales, with appropriately assigned potentials
to different intra-scale and inter-scale cliques.

5.  REFERENCES

[1] S. Mallat, “A theory for Multiresolution Signal
Decomposition: The Wavelet Representation,” IEEE
Trans. on Pattern Anal. and Machine Intel., 11 (7), pp.
674-693, July 1989.

Fig 1. (a) The original, noise-free image.   (b) The image with additive gaussian noise (zero mean, standard deviation 20).
(c) The result of the method of [5], with N=10 iterations in each wavelet subband.   (d) The result of the proposed method
with N=5 iterations in each wavelet subband.

(a) (b)

(c) (d)



[2] B. Vidakovic, “Nonlinear Wavelet Shrinkage with Bayes
Rules and Bayes Factors,” Duke Univ., Durham, NC, 1994,
preprint, available on http://www.isds.duke.edu

[3] E. P. Simoncelli, E. H. Adelson, “Noise removal via
Bayesian wavelet coring,” in Proc. IEEE Int. Conf. Image
Proc. (ICIP), Lausanne, Switzerland, pp. 379-382, Oct.
1996,

[4] P.Moulin, J. Liu, “Analysis of Multiresolution Image
Denoising Schemes Using Generalized Gaussian and
Complexity Priors,” IEEE, Trans. on Inform. Theory, 45
(3), pp. 909-919, Apr. 1999.

[5] M. Malfait, D. Roose, “Wavelet-Based Image Denoising
Using a Markov Random Field a Priori Model”, IEEE,
Trans. on Image Proc., 6, (4), pp. 549-565, April 1997.

[6] S. Geman, D. Geman, “Stochastic Relaxation, Gibbs
Distribu-tions, and the Bayesian Restoration of Images,”
IEEE, Trans. on Pattern Anal. and Machine Intel, PAMI-6

(6), pp. 721-741, Nov. 1984.
[7] S. Z. Li, Markov Random Field Modeling in Computer

Vision, Computer Science Workbench, Springer, 1995.
[8] G. R. Cross, A. K. Jain, “Markov Random Field Texture

Models,” IEEE, Trans. on Pattern Anal. and Machine
Intel, PAMI-5 (1), pp. 25-39, Jan. 1983.

[9] D. L. Donoho, “De-noising by Soft Thresholding,” IEEE
Trans on Inform. Theory, 41 (3), pp. 613-627, May 1995.

ACKNOWLEDGMENT

The SAR image was provided by OSTC (Belgian Federal
Office for Scientific, Technical and Cultural Affairs), in
relation with the Telsat 4 project T4/02/42. The research
is funded by the Belgian Ministry of Defense, in the
scope of the Humanitarian Demining project, HUDEM.

Fig. 3. (a) An original infrared image of a buried landmine. (b) The result of the proposed denoising technique.
(a) (b)

Fig. 2. (a) An original SAR image. (b) The result of the proposed denoising technique.
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