
QUANTITATIVE MICROWAVE TOMOGRAPHY FROM SPARSE MEASUREMENTS USING
A ROBUST HUBER REGULARIZER
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ABSTRACT
In statistical theory, the Huber function yields robust estima-
tions reducing the effect of outliers. In this paper, we employ
the Huber function as regularization in a challenging inverse
problem: quantitative microwave imaging. Quantitative mi-
crowave tomography aims at estimating the permittivity pro-
file of a scattering object based on measured scattered fields,
which is a nonlinear, ill-posed inverse problem. The results on
3D data sets are encouraging: the reconstruction error is re-
duced and the permittivity profile can be estimated from fewer
measurements compared to state-of-the art inversion proce-
dures.

Index Terms— inverse problem, microwave imaging, ro-
bust estimation, regularization.

1. INTRODUCTION

Quantitative microwave tomography aims at reconstructing
the exact permittivity profile of an unknown scattering object
by illuminating the object with microwaves and by measur-
ing the scattered electric field. Different approaches exist for
solving this ill-posed nonlinear inverse problem [1–6]. In [1],
edge preserving regularization was imposed on the real and
imaginary part of the complex permittivity separately. Multi-
plicative smoothing (MS) [4] applies Tikhonov regularization
in a multiplicative fashion. A related, earlier method applies
total variation (TV) as a multiplicative constraint [5]. The
Value Picking (VP) regularizer [6] favors solutions consisting
of piece-wise constant permittivities, without imposing this
constraint in a strict sense.

In this paper, we propose a novel reconstruction algo-
rithm using robust statistical regularization. To the best of our
knowledge, such approaches were not reported in microwave
tomography so far. In particular, we regularize the problem
by imposing the Huber robust potential function [7] on the
neighboring values of the complex permittivity. The Huber
function

gHuber(η) =

{
η2 |η| ≤ γ
2γ|η| − γ2 else

(1)

is quadratic for small values of η and linear for large values,
avoiding in this way over-smoothing at true discontinuities.
Related robust methods are used extensively in vision appli-
cations, such as image restoration, segmentation, surface and
shape filling and pose estimation [7]. Recently, a related Hu-
ber Markov Random Field regularizer was employed in SAR
imaging [8] and in parallel magnetic resonance imaging [9].
These are however linear inverse problems, while the prob-
lem considered in this paper is non-linear and involves dif-
ferent physical and computational mechanisms. We derive a
reconstruction algorithm where a Huber function with a com-
plex argument regularizes the non-linear cost function, which
is then optimized by a modified Gauss-Newton technique.

Our experiments demonstrate a significant improvement
over the recent related methods in microwave tomography.
The profiles are reconstructed more accurately and the advan-
tages are especially prominent when the measurements are
sparse. In Section 2 the electromagnetic inverse scattering
problem and Gauss-Newton method are revisited. The pro-
posed Huber regularization is discussed in Section 3 and re-
sults on 3D datasets are presented in Section 4. Section 5
concludes the paper.

2. PROBLEM FORMULATION

Consider an unknown object with complex permittivity εεε(r)
embedded in free space εεε0 that is illuminated successively
with different known time-harmonic incident fields. The
discretized unknown permittivity profile εεε is estimated iter-
atively, on a grid with Nε square (2D) or cubic (3D) cells
within a reconstruction domain D, alternating between the
forward and the update problem. The forward problem sim-
ulates the scattered electric field for a guessed permittivity
profile, using a volume integral equation (VIE) [6]. The
scattered fields escat(εεε) collected by a number of receiving
antennas in the simulation are compared with the measured
fields emeas. Based on the resulting error, the permittivity
profile is updated. Typically, the inverse problem is solved by
minimizing a cost function

F (εεε) = FLS(εεε) + µFR(εεε) (2)



where FLS(εεε) is the least squares cost function, which eval-
uates the data error and FR(εεε) is a regularization term, with
the parameter µ ≥ 0. The least square cost function is

FLS(εεε) =
‖emeas − escat(εεε)‖2

‖emeas‖2
(3)

where emeas and escat(εεε) are ND-dimensional vectors that
contain the data for all combinations of illuminating and re-
ceiving antennas.

We consider minimization by an approximate line search
along a modified Gauss-Newton direction [6]. The complex
permittivity in iteration k is updated as εεεk+1 = εεεk + βk∆∆∆εεεk,
where βk is caculated from line search [6] and ∆∆∆εεεk is ob-
tained from

(JHk Jk + λ2ΣR
k )∆∆∆εεεk = −(JHk [escat(εεεk)− emeas] + λ2ΩR∗

k )
(4)

where (.)H stands for Hermitian transpose and (.)∗ denotes
the complex conjugate. The trade-off parameter λ is given
by λ2 = µ‖emeas‖2 [6]. In the following, the subscript k is
omitted. J is the ND × Nε Jacobian matrix, which contains
the derivatives of the scattered field components with respect
to the optimization variables: Jdl = ∂escatd /∂εl; ΩΩΩR∗

k is an
Nε−dimensional vector that contains the derivatives of the
regularizing function, ΩR∗

l = ∂FR/∂ε∗l ; ΣΣΣR is a Nε × Nε

matrix, ΣR
l,l′ = ∂2FR/∂εl∂ε

∗
l′ . The factor JHJ + λ2ΣR

is known as a modified Gauss-Newton Hessian matrix. To
avoid ill-conditioning of the forward problems constraints are
imposed on the real and imaginary parts of the complex per-
mittivity by a modified, constrained line search.

3. HUBER REGULARIZED RECONSTRUCTION
ALGORITHM

In this paper, we define the regularization term FR(εεε) in (2)
as follows

FR(εεε) =
1

2

∑
l

∑
l′∈Nl

gHuber(|εl − εl′ |) (5)

with gHuber defined in (1). The index l denotes the spatial
position. In 2D, it is a pair of indices l ≡ (i, j) and in 3D
a triplet l ≡ (i, j, k). Nl is the neighborhood of l. For the
chosen regularization function, we derive ΩΩΩR∗ and ΣΣΣR in (4).
Taking into account that ε in (5) is a complex number and
hence |εl − εl′ |2 = (εl − εl′ )(ε∗l − ε∗l′ ), it can be shown that

ΩR∗
l =

∂FR

∂ε∗l

=
∑
l′∈Nl

(εl − εl′ ) |εl − εl′ | ≤ γ

γ
(εl − εl′ )
|εl − εl′ |

otherwise
(6)

Algorithm 1 The complete algorithm for reconstructing εεε
Require: εεεinit, µ, γ
Ensure: Objects, configuration
εεε0 ← εεεinit
Measure emeas, compute λ2 = µ‖emeas‖2
repeat

Compute escat(εεε)

if
‖emeas − escat(εεε)‖2

‖emeas‖2
< 10−3 then

return εεε
else

Compute Jk: Jdl = ∂escatd /∂εl
Compute ΩΩΩR∗

k and ΣΣΣR
k using (6-8)

Compute ∆∆∆εεεk using (4)
Compute βk with line search
εεεk+1 = εεεk + βk∆∆∆εεεk

end if
until k=The number of maximum iterations
print εεε

We obtain the diagonal elements of ΣΣΣR as

ΣR
l,l =

∂2FR

∂εl∂ε∗l
(7)

=
∑
l′∈Nl

1 |εl − εl′ | ≤ γ
γ

2|εl − εl′ |
otherwise

and the non-diagonal elements as

ΣR
l,l′ =

∂2FR

∂εl′∂ε
∗
l

(8)

=

−1 |εl − εl′ | ≤ γ
− γ

2|εl − εl′ |
otherwise

A pseudo-code of the complete reconstruction is given un-
der Algorithm 1. We optimize the regularization parameter µ
and the parameter γ of the Huber function experimentally.
For piece-wise constant objects γ = 0.1 is a good choice and
for continuous profiles (like in biomedical cases) a smaller γ
(0.008) should be used. For the regularization parameter µwe
obtained the same optimal value (∼ 1e− 6) for different tar-
gets and different antenna configurations. For the neighbor-
hoodNl we used 26 nearest neighbors in 3D as a compromise
between reconstruction quality and complexity.

4. RECONSTRUCTION RESULTS

We performed experiments with different dipole antenna con-
figurations, including the configuration from [6] (shown in
Fig. 1(a)) and much sparser configurations, like in Fig. 1(b),
(c). The sparser configurations are very attractive from the



(a) 20376 data points (b) 5184 data points

(c) 2304 data points

Fig. 1. Three dipole configurations with antenna positions
(dots) on a sphere with radius 0.2m. The arrows in two or-
thogonal directions indicate transmitting dipoles. The cube in
the center indicates the reconstruction domain D.

point of view of computation time but make the reconstruc-
tion problem much more challenging.

We compare the reconstruction results with three different
regularizations: multiplicative smoothing (MS) [4], step-wise
relaxed value picking (SRVP) [6] and the proposed Huber reg-
ularization. The Object 1 under investigation is a homoge-
neous sphere with radius ra = 30mm and relative permittiv-
ity εr = 2, positioned in the center of the reconstruction grid
(see Fig. 2(a)). The Object 2 is a cube with side 22.5mm and
permittivity 2.5-1j, which is embedded in a sphere with radius
30mm and permittivity 1.8. The sphere and cube are centered
at the origin and at the point (-5.6mm,-5.6mm,-5.6mm), re-
spectively (see Fig. 4(a)). The constraints on the permittivity
are 1 < Re(ε) < 10, −10 < Im(ε) < 0. The reconstruction
domain is a 0.1 × 0.1 × 0.1 m3 cube and is discretized in 20
× 20 × 20 voxels, with edge size 5 mm, yielding a total of
8000 permittivity unknowns. We use this grid for both for-
ward and update problems as well as for generating the data.
We simulate scattered field measurements at 8GHz.

Each dipole in the three configurations is used to illumi-
nate the target and the scattered field is measured in every
dipole position and along each dipole direction. The config-
uration in Fig. 1(a) taken from [6] consists of 144 antennas

Relative error MS SRVP Huber
20736 data points 0.0635 0.0343 0.0151
5184 data points 0.0674 0.0458 0.0206
2304 data points 0.0879 0.1301 0.0332

Table 1. Relative errors in the permittivity estimation of Ob-
ject 1 for different methods and configurations from Fig. 1.

which generate 20736 complex data points. The configura-
tion in Fig. 1 (b) consists of 36 antennas which generate 5184
data points. The sparsest configuration in Fig. 1 (c) consists
of 24 antennas which generate 2304 data points.

In our experiments, a stabilized bi-conjugate gradient Fast
Fourier Transform (BICGSTAB-FFT [10]) forward solver,
which could be parallelized, is used to accelerate the calcula-
tions. The computation time is similar for all three considered
regularizations provided that equal numbers of antennas are
used. The chosen antenna configuration may have a large
impact on the computation time. To reconstruct Object 1, the
dense configuration from Fig. 1 (a) requires 3 hours while the
sparsest configuration from Fig. 1 (c) requires only around 40
minutes on a six-core Intel i7 980x processor (3.33GHz) with
24GByte memory.

The relative error of the reconstruction, defined as R =
‖ ε̂εε− εεεtrue ‖2/‖εεεtrue‖2 where ε̂εε denotes the estimated and
εεεtrue the true permittivity profile, is shown in Table 1 for
the three antenna configurations. Visual results are shown in
Fig. 2, Fig. 4 (Object 1 in Fig. 1 (c)) and in Fig. 2 (Object 2
in Fig. 1 (b)).

The results in Table 1 show that the proposed method
with Huber regularization yields best results for all an-
tenna configurations: it yields a smaller relative error than
SRVP and MS even with much fewer measurements, reduc-
ing thereby drastically the complexity of the system. The
SRVP is superior to MS for the dense antenna configura-
tion but does not seem to cope well with sparse measure-
ments. The reconstructed profiles in Fig. 2-Fig. 4 show the
improvement visually and demonstrate the potential of the
proposed method for reconstruction from sparse measure-
ments. More results for other objects and different antenna
configurations in 2D and 3D are available at our website
http://telin.ugent.be/∼fbai/MicrowaveTomography/.

5. SUMMARY

In this paper, we have introduced a new algorithm for quan-
titative microwave tomography using Huber regularization.
The results show a significant improvement over recent re-
lated methods and indicate potential for efficient reconstruc-
tion from sparse measurements. By decreasing the number of
required transmitting and receiving antennas, the computation
time is drastically reduced.



(a) Original (b) MS, R=0.0879

(c) SRVP, R=0.1301 (d) Huber, R=0.0332

Fig. 2. Real parts of the complex permittivity profile for Ob-
ject 1 (see text) and antenna configuration from Fig. 1 (c).

(a) Original (b) MS

(c) SRVP (d) Huber

Fig. 3. Cross-sections of the corresponding permittivity pro-
files from Fig. 2.
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