
Quantitative Microwave Imaging Based on a Huber
regularization

Funing Bai, Wilfried Philips and Aleksandra Pižurica
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Abstract—Reconstruction of inhomogeneous dielectric objects
from microwave scattering by means of quantitative microwave
tomography is a nonlinear, ill-posed inverse problem. In this
paper, we employ the Huber function as a robust regularization
approach for this challenging problem. The resulting reconstruc-
tions both in 2D and 3D from sparse data points for piecewise
constant objects are encouraging. The reconstructions of more
complex permittivity profiles from breast phantom data indicate
potential for use in biomedical imaging.

I. INTRODUCTION

Microwave imaging relies on the capability of microwaves
to differentiate among different materials/tissues based on the
contrast in their dielectric properties. Quantitative microwave
tomography aims at estimating the permittivity profile of a
scattering object based on measured scattered fields. Recent
research [1]–[7] indicates potentials of quantitative microwave
tomography to discriminate between tumors and healthy tissue
in breast imaging. Considerations of safety, cost, availability,
sensitivity and specificity are in favor of using microwaves for
routine medical screening (such as breast cancer screening).
One of the main problems is the considerable computational
complexity stemming from the difficult, nonlinear inverse
problem. Choosing the right regularization strategy is crucial
for improving the accuracy of reconstructions as well as for
reducing the computational load.

Earlier regularized iterative methods to solve this nonlinear
and ill-posed inverse problem include Multiplicative Smooth-
ing [8] (Tikhonov regularization applied in a multiplicative
fashion), total variation (TV) [9], edge preserving models [10],
[11] and Value Picking (VP) [12]. Edge preserving regular-
ization was imposed on the real and imaginary part of the
complex permittivity separately in [10], [11]. Krylov subspace
methods were used in [13] and a soft-prior regularization
strategy was employed in [14] for microwave imaging in
medical applications. A time-domain-based algorithm based
on broadband microwave measurements for biological tissues
was investigated in [15]. Most of these methods work well on
particular classes of permittivity profiles (e.g. TV and VP are
well suited for piece-wise constant profiles). Approaches based
on Tikhonov regularization or multiplicative smoothing tend to
oversmooth the result. Only the models that are able to adapt to
discontinuities can yield edge-preserving regularization. While
discontinuity-adaptive Markov Random Field (MRF) models
have been largely studied in the domain of real functions, their
extensions to the complex domain are scarce. For example,

edge preserving regularization of [10], [11] was applied to the
real and imaginary part of the complex permittivity profile
separately.

We proposed a discontinuity adaptive MRF-based regular-
ization in [16] using the robust Huber function. The Huber
function

gHuber(η) =

{
η2 |η| ≤ γ
2γ|η| − γ2 else

(1)

is quadratic for small values of η and linear for large values,
avoiding in this way over-smoothing at true discontinuities. In
[16], we evaluated this robust regularizer only on simulated
3D piecewise constant objects. In this paper, we evaluate
the whole approach not only on different piecewise constant
objects but also in a challenging case study with biomedical
data. The results demonstrate the effectiveness of the proposed
Huber regularization in imaging piecewise constant objects as
well as in biomedical imaging. In particular, the results on sim-
ulated breast phantom data indicate potentials for applications
like breast cancer screening.

This paper is organized as follows. Section II introduces the
electromagnetic inverse scattering problem and Gauss-Newton
optimization. The proposed method is presented in Section III
and results from numerical experiments are shown in Section
IV. Conclusions are formulated in Section V.

II. INVERSE PROBLEM

We consider an unknown object with complex permittivity
εεε(r) = ε′(r) + jε′′(r) embedded in free space εεε0 and
illuminated successively with different known time-harmonic
incident fields. The discretized unknown permittivity profile
εεε = [ε1, · · · , εν , · · · , εNε ] is estimated iteratively, on a grid
with Nε cube cells within a reconstruction domain D, al-
ternating between the forward and the update problem. The
forward problem simulates the scattered electric field for a
guessed permittivity profile, using a volume integral equation
solver [17]. The scattered fields escat(εεε) collected by a number
of receiving antennas in the simulation are compared with
the measured fields emeas. Based on the resulting error,
the permittivity profile is updated. This inverse problem is
typically optimized by minimizing a cost function

F (εεε) = FLS(εεε) + µFD(εεε) (2)

where FLS(εεε) is the least squares cost function, which eval-
uates the data error and FD(εεε) is a regularization term, with



Algorithm 1 The complete algorithm for reconstructing εεε
Require: εεεinit, µ, γ
Ensure: Objects, configuration
εεε0 ← εεεinit
Measure emeas, compute λ2 = µ‖emeas‖2
repeat

Compute escat(εεε)

if
‖emeas − escat(εεε)‖2

‖emeas‖2
< 10−3 then

return εεε
else

Compute Jk: Jdl = ∂escatd /∂εl
Compute ΩΩΩD∗k and ΣΣΣDk using (6-8)
Compute ∆∆∆εεεk using (4)
Compute βk with line search
εεεk+1 = εεεk + βk∆∆∆εεεk

end if
until k=The number of maximum iterations
print εεε

the parameter µ ≥ 0. The least square cost function is

FLS(εεε) =
‖emeas − escat(εεε)‖2

‖emeas‖2
(3)

where emeas and escat(εεε) are Nd-dimensional vectors that
contain the data for all combinations of illuminating and
receiving antennas.

We consider minimization by an approximate line search
along a modified Gauss-Newton descent direction, which
requires a positive definite Hessian matrix. The complex
permittivity in iteration k is updated as εεεk+1 = εεεk + βk∆∆∆εεεk,
where βk is calculated from line search [18] and ∆∆∆εεεk is
obtained from

(JHk Jk + λ2ΣD
k )∆∆∆εεεk = −(JHk [escat(εεεk)− emeas] + λ2ΩD∗

k )
(4)

where (.)H stands for Hermitian transpose and (.)∗ denotes the
complex conjugate. The trade-off parameter λ is given by λ2 =
µ‖emeas‖2 [12]. J is the Nd × Nε Jacobian matrix, which
contains the derivatives of the scattered field components with
respect to the optimization variables: Jdν = ∂escatd /∂εν ; ΩΩΩD∗k
is an Nε−dimensional vector that contains the derivatives
of the regularizing function, ΩD∗ν = ∂FD/∂ε∗ν ; ΣΣΣDk is a
Nε × Nε matrix, ΣDν,ν′ = ∂2FD/∂εν′∂ε∗ν . In the following,
the subscript k is omitted. The factor JHJ + λ2ΣD is known
as a modified Gauss-Newton Hessian matrix. To avoid ill-
conditioning of the forward problems, constraints are imposed
on the real and imaginary parts of the complex permittivity and
implemented by a modified, constrained line search [12].

III. HUBER REGULARIZED RECONSTRUCTION ALGORITHM

We define the regularization function FD(εεε) as

FD(εεε) =
1

2

∑
ν

∑
ν′∈Nν

gHuber(|εν − εν′ |) (5)

with gHuber defined in (1). The index ν′ denotes a spatial
position neighboring ν in the neighborhood system Nν . In
2D, ν is a pair of indices ν ≡ (i, j) and in 3D a triplet ν ≡
(i, j, k). We use 8 neighbors in 2D and 26 neighbors in 3D as
a compromise between reconstruction quality and complexity.
Taking into account that we use a complex Huber function
where ε in (5) is a complex number and hence |εl − εl′ |2 =
(εl − εl′ )(ε

∗
l − ε∗

l′
). We can derive ΩΩΩD∗ and ΣΣΣD in (4) as

follows.

ΩD∗ν =
∂FD

∂ε∗ν

=
∑
ν′∈Nν

(εν − εν′ ) |εν − εν′ | ≤ γ

γ
(εν − εν′ )

|εν − εν′ |
otherwise

(6)

We obtain the diagonal elements of ΣΣΣD as

ΣDν,ν =
∂2FD

∂εν∂ε∗ν
(7)

=
∑
ν′∈Nν

1 |εν − εν′ | ≤ γ
γ

2|εν − εν′ |
otherwise

and the non-diagonal elements as

ΣDν,ν′ =
∂2FD

∂εν′∂ε∗ν
(8)

=

−1 |εν − εν′ | ≤ γ
− γ

2|εν − εν′ |
otherwise

A pseudo-code of the complete reconstruction is given under
Algorithm 1. Recently, we extended our framework from [16]
to a more general class of function [19] (which includes the
Huber function as one particluar instance). In this paper, we
present a more elaborate evaluation of the whole framework
and we test this framework in a more challenging case study
with biomedical data.

IV. RESULTS

We performed a large number of simulations with artificial
objects and breast phantom data under different antenna con-
figurations. In these experiments, we simulated TM- and TE-
polarized scattered field measurements at different frequencies
with additive white Gaussian noise and signal-to-noise ratio
(SNR) of 30 dB.

We compared three different regularizations: MS [8], SRVP
[12] and the proposed method. To keep the 3D forward
problems well-conditioned, the constraints on the permittivity
were imposed as 1 < Re(ε) < 10, −10 < Im(ε) < 0
for piecewise constant objects and 1.0 < Re(ε) < 55.0,
−50.0 < Im(ε) < 1.0 for the breast phantom. In all the
experiments, we used a stabilized bi-conjugate gradient Fast
Fourier Transform (BICGSTAB-FFT [20]) forward solver to
accelerate the calculations. The computation time is similar for
all three considered regularizations provided that equal num-
bers of antennas are used. Reducing the number of data points



Fig. 1. Real parts of the complex permittivity profile of different methods for three targets from Fresnel database. From left to right: original, MS [8], SRVP
[12] and the proposed Huber regularization. From top to bottom: FoamDielInt; FoamDielExt and TwinDiel targets.

is of interest in terms of computation time. We optimize the
regularization parameter µ and the parameter γ of the proposed
regularization experimentally. For piece-wise constant objects
γ = 0.1 is a good choice and for continuous profiles (like in
biomedical cases) a smaller γ = 0.008 should be used. For
the regularization parameter µ we obtained the same optimal
value (∼ 1e−4 in 2D and ∼ 1e−6 in 3D) for different targets
and different antenna configurations. Our simulations were
performed on a sixcore Intel i7 980x processor (3.33GHz)
with 24GByte memory.

A. Piecewise constant objects in 2D

We consider different targets and antenna configurations in
accordance with the 2D Fresnel database [21], for which we
simulate TM- and TE-polarized scattered field measurements
at 4GHz. We used three inhomogeneous targets from the
Fresnel database: FoamDielInt, FoamDielExt and TwinDiel,
shown in Fig. 1 and described in [21]. The antenna positions
are equally spaced on a circle with radius 1.67 m. The
scattering object is positioned in the center of this circle, see
Fig 2. We use 8 equally spaced transmitting antennas, each
with two polarizations (TM and TE), and different numbers
of receiving antennas, ranging from 16 to 241, resulting in a
data vector emeas of length Nd ranging from 768 to 11568
complex numbers.

All reconstructions start from a 0.16 × 0.16 m2 domain D
filled with air as an initial estimate of the permittivity. This

(a) 816 data points (b) 11568 data points

Fig. 2. Two dipole configurations with antenna positions (dots) on a
circle with radius 1.67m. The arrows in two orthogonal directions indicate
transmitting dipoles. The hightlighted region in the center indicates the
reconstruction domain D.

square is chosen as the reconstruction domain in the inverse
solver and is discretized in 32 × 32 square inverse problem
cells, yielding a total of 1024 permittivity unknowns. The
edge size of an inverse problem cell is 5 mm, which roughly
corresponds to 15 inverse problem cells per wavelength λ0.

With our method (and similarly with other methods), the
reconstruction using 768 data points takes less than 5 minutes
while around 2 hours are needed using 11568 data points. For
the more complex TwinDiel target, the reconstruction takes
around 10 mins with 768 data points and 3.5h with 11568
data points.



Reconstruction error Foamdielint Foamdielext TwinDiel
MS 0.067 0.076 0.094
SRVP 0.057 0.065 0.13
Huber 0.055 0.055 0.063

TABLE I
RECONSTRUCTION ERRORS IN THE PERMITTIVITY ESTIMATION OF

FRESNEL DATABASE EXAMPLES FOR DIFFERENT METHODS AND THE
CONFIGURATION FROM 768 DATA POINTS.

To evaluate the quality of the permittivity reconstructions,
the reconstruction error R is defined as

R =
‖ εεεscat − εεεexact ‖2

‖εεεexact‖2
(9)

which expresses the normalized squared difference between
the exact and reconstructed permittivity values on the grid.
TABLE I shows reconstruction errors for MS, SRVP and the
proposed method for the three targets. The proposed approach
is clearly better than the other two, especially for complex
targets like TwinDiel.

Fig. 1 shows the reconstructions with the different methods
using 768 data points. The parameters for MS and SRVP were
set as proposed by the authors in [22]: µ = 0.001 for MS
and µ = 3 for SRVP. The results of MS are over-smoothed
as expected. The SRVP results retain sharp edges but the
reconstructed edge positions as well as resulting permittivity
values deviate from the correct ones. The results with Huber
regularization are much closer to the ground truth.

B. Piecewise constant objects in 3D

We simulated imaging of several homogeneous and piece-
wise constant 3D objects at 8 GHz. All the piecewise constant
targets measured in 3D in our simulations are guaranteed to
lie in a 0.1 × 0.1 × 0.1m3 cube at the center of a reference
frame (see Figure 3). This cube is chosen as the reconstruction
domain in the inverse solver and is discretized in 20 × 20
× 20 voxels, yielding a total of 8000 permittivity unknowns.
The edge size of an inverse problem cell is 5 mm. This
relatively small size of an inverse problem cell should facilitate
to reconstruct the curved shapes of the measured targets.

The effect of the particular antenna configuration is simu-
lated by the forward solver. In our simulations, the antenna
positions are equally spaced on a sphere with radius 0.2m.
The scattering object is positioned in the center of this sphere.
For every transmitter position, the target is illuminated using
two different polarizations of the plane wave, one along the
azimuthal direction and one along the meridional direction
(TM and TE).

We performed experiments with different dipole antenna
configurations, including the configuration from [12] (shown
in Fig. 3(a)) and much sparser configurations, like in Fig. 3(b),
(c). The sparser configurations are very attractive from the
point of view of computation time but make the reconstruction
problem much more challenging.

The analyzed object, denoted hereafter as Object is a cube
with side 22.5mm and permittivity 2.5-1j, which is embedded

(a) 20376 data points (b) 5184 data points

(c) 2304 data points

Fig. 3. Three dipole configurations with antenna positions (dots) on a
sphere with radius 0.2m. The arrows in two orthogonal directions indicate
transmitting dipoles. The cube in the center indicates the reconstruction
domain D.

in a sphere with radius 30mm and permittivity 1.8. The sphere
and the cube are centered at the origin and at the point
(-5.6mm,-5.6mm,-5.6mm), respectively (see Fig. 4(a)). Each
dipole in the three configurations is used to illuminate the
target and the scattered field is measured in every dipole
position and along each dipole direction. The configuration
in Fig. 3(a) taken from [12] consists of 144 antennas which
generate 20736 complex data points. The configuration in
Fig. 3 (b) consists of 36 antennas which generate 5184 data
points. The sparsest configuration in Fig. 3 (c) consists of 24
antennas which generate 2304 data points.

To reconstruct Object, the dense configuration from Fig. 3
(a) requires 3 hours while the sparsest configuration from
Fig. 3 (c) requires only around 40 minutes.

The parameters for MS and SRVP were set as in [22]:
µ = 0.0001 for MS and µ = 1 for SRVP. The results in
Fig. 4 demonstrate the effectiveness of the proposed method in
comparison to the reference ones. SRVP requires much more
iterations to arrive at a similar reconstruction quality.

We also evaluate the quality of the permittivity reconstruc-
tions based on (9). The results in TABLE I show that the
proposed method yields a much lower reconstruction error
than the two reference methods MS and SRVP, for the two
analyzed targets.

C. Breast phantom data

Here we deal with a more challenging problem: estimation
of the permittivity profile in biological tissues, which is no



(a) Original (b) MS

(c) SRVP (d) Huber

Fig. 4. Real parts of the complex permittivity profile and antenna configu-
ration from Fig. 3 (b) in 12 iterations for MS and Huber regularization and
22 iterations for SRVP.

Configuration MS [8] SRVP [12] Huber
20736 data points 0.0588 0.0543 0.0164
5184 data points 0.0713 0.0734 0.0259
2304 data points 0.0826 0.1000 0.0373

TABLE II
RECONSTRUCTION ERRORS IN THE PERMITTIVITY ESTIMATION OF THE
ANALYZED 3D OBJECT WITH DIFFERENT ANTENNA CONFIGURATIONS.

longer piecewise constant, but rather piecewise continuous.
The data are taken from Numerical Breast Phantoms Reposi-
tory (http://uwcem.ece.wisc.edu/home.htm). The original high-
resolution MRI data (cell size 0.5mm) are down sampled (to
cell size 2.5mm) and a tumor with radius 1cm and permittivity
50-10j is inserted manually. The gray Cuboid in Figure 5
denotes the investigation domain D where a breast can be
placed. The scattering breast is positioned at the center of the
domain. This Cuboid is chosen as the reconstruction domain
in the inverse solver and is discretized in 24 × 28 × 22 cube
inverse problem cells, yielding a total of 14784 permittivity
unknowns. The edge size of the inverse problem cell is again
5 mm.

The dipole configuration which is used to generate the
data is depicted in Figure 5. It consists of 80 dipoles on
a half sphere surface around the domain of the breast with
polarizations in two orthogonal directions tangential to this
surface. All these dipoles are used to sample the field, but
only 64 of them (indicated with the larger green dots) are used
to illuminate the phantom because of memory limitations at
2 GHz (increasing the number of illuminations increases the
size of the Jacobian matrix too much). For every transmitter
position, the target is illuminated using two polarizations of
the plane wave, one along the azimuthal direction and the
other along the meridional direction. This yields a total of
ND = 5120 data points.

(a) (b)

Fig. 5. A dipole configuration with antenna positions (dots) on a half
sphere with radius 0.2m. The arrows in two orthogonal directions indicate
transmitting dipoles. The cube in the center indicates the reconstruction
domain D. (a)xyz view; (b) xy view.

Fig. 6. Breast phantom reconstruction showing the real parts (left) and
imaginary parts (right) of the complex permittivity profile. Top: original
ground truth data; middle: MS reconstruction; Bottom: Proposed method.

Since SRVP is not suitable for reconstructing other than
piecewise constant objects, we compare our approach only to
MS regularization in this case study. Both methods start from
a domain D filled with liquid and assume 10-2j as the initial
estimate of the permittivity. As we mentioned before, we only
have ND = 5120 data points. This means that the problem is
heavily under-determined and the regularization and subspace
preconditioning are indispensable. To test the abilities of
the method, we perform a complete blind reconstruction,
i.e. we do not use knowledge of the breast contour, which
is sometimes suggested in the literature microwave breast
cancer imaging. Hence, in our case, the initial estimate is
just the uniform background medium. The tolerance for the
BICGSTAB (biconjugate gradient stabilized method) iterative
routine is set to 10−3. With our method (and similarly for



MS) under configuration in Fig 5 with 5120 data points,
the reconstruction takes less than 1 hour. The regularization
parameter for MS was set to ∼ 1e − 4 as was suggested by
the authors in [12].

Figure 6 shows the real and imaginary parts of one slice
from breast phantom data of the reconstructed permittivity
profile on a 24×28×22 grid (cell size 5 mm). The results of
MS regularization are again somewhat oversmoothed, which
is especially visible in the reconstructed breast contour in the
imaginary part. The shape of the breast and the tumor are
clearly better reconstructed by the proposed Huber regulariza-
tion method.

V. CONCLUSION

In this paper, we introduced a new method for convex
optimization in the complex domain for two-dimensional
and three-dimensional quantitative microwave tomography. In
particular, starting from the robust Huber function we derived
a discontinuity adaptive regularization that can be used within
a Gauss-Newton optimization scheme. The results show a sig-
nificant improvement over recent related methods, especially
under sparse measurements, saving computation time. The
method is able to reconstruct the spatial complex permittivity
distribution in biological objects from blind reconstruction at
one single frequency, thereby overcoming difficulties with the
dispersive nature of body tissues. Numerical results indicate
the potentials of the method for breast tumor detection even
though a thorough analysis for this challenging problem still
needs to be done.
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Daniël De Zutter for stimulating discussions, insights into inverse scattering
problems and forward solvers and for providing the codes of MS and SRVP.


