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Abstract

In this paper, we study denoising of multicomponent images. The presented pro-
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tispectral and hyperspectral remote sensing data and Rician distributed noise on
multiple images of within-modality magnetic resonance data. It is shown that a su-
perior denoising performance is obtained when a) the interband covariances are fully
accounted for and b) prior models are used that better approximate the marginal
distributions of the wavelet coefficients.
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1 Introduction

With the evolution of imaging technology, an increasing number of imaging
modalities becomes available. In this paper, we focus on what is called multi-
component or multiband imagery, which are images containing several image
planes. The most well-known example is a color image, which generally consists
of a red, green and blue component. In remote sensing for example, sensors
are available that can generate multispectral or hyperspectral data, involving
five to more than hundred bands. In medical imagery, distinct image modali-
ties reveal different features of the internal body. Examples are MRI images,
acquired by using different imaging parameters (T1, T2, proton density, dif-
fusion, ...), different CT and nuclear medicine imaging modalities.

In these images, a trade-off exists between spatial and spectral resolution and
signal-to-noise ratio (SNR), which makes noise handling important. Also, noise
filtering and image enhancement can drastically facilitate the processing and
analysis of multicomponent imagery. More in particular, this holds for the
classification and segmentation of multicomponent images for identification
purposes [1, 2].

Multiband image noise is usually treated as stochastic Gaussian distributed,
where the noise in the different bands is not necessarily independent. Gen-
erally, in remote sensing multispectral noise removal is achieved by a trans-
form, referred to as minimum noise fraction (MNF) [3, 4]. MNF contains two
principal component transformations. The first one diagonalizes the noise co-
variance, the second one decorrelates the noise-whitened data. MNF only uses
spectral information for denoising. On the other hand, spatial smoothing of
each spectral band separately is also a common practice in multispectral noise
reduction. Recently, two-step approaches have been suggested, where spectral
decorrelation of the noise is combined with band-wise denoising [5, 6].

Here, we will concentrate on spatial denoising methods, although denoising
of hyperspectral data can also be performed in the spectral direction. In the
latter case, consecutive bands are considered as densely sampled continuous
spectra. However, not all multicomponent images have a sufficient number of
spectral bands for these methods to apply. Here, we are not assuming continu-
ous spectra, but merely that there is some correlation between the bands. The
presented methods are invariant to permutation of the bands, which would
not be the case for denoising in the spectral direction.

With spatial denoising, one makes use of the uniformity in a spatially local
neighborhood of a pixel. Selection of this neighborhood is dependent on the
content of the image, to prevent it from smoothing over edges. Wavelet-based
methods are the current state-of-the-art for spatial denoising. The wavelet
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transform offers an efficient representation of spatial discontinuities within
each spectral band [7–9]. It compresses the essential information of an image
into a relatively few, large coefficients coinciding with the positions of image
discontinuities. Such a representation naturally facilitates the construction of
spatially adaptive denoising methods that can smooth noise without excessive
blurring of image details. Typically, noise is reduced by shrinking the noisy
wavelet coefficient magnitudes. Ideally, the coefficients that contain primarily
noise (usually the smallest coefficients) are reduced to negligible values while
the ones containing a “significant” noise-free component are reduced less [10].
Standard wavelet thresholding [10] treats the coefficients with magnitudes
below a certain threshold as “non significant” and sets these to zero; the
remaining, “significant” coefficients are kept unmodified (hard-thresholding)
or reduced in magnitude (soft-thresholding). Shrinkage estimators can also
result from a Bayesian approach [11–29], which imposes a prior distribution
on noise-free data. Common priors for noise-free data include (generalized)
Laplacians [11, 18, 21], alpha-stable models [20], double stochastic (Gaussian
scale mixture) models [24,25] and mixtures of two distributions [13–17] where
one distribution models the statistics of “significant” coefficients and the other
one models the statistics of “insignificant” data.

In this work, we will give a unifying wavelet-based Bayesian framework for
multicomponent image denoising. While a few different Bayesian multicom-
ponent methods existed before [30–35], we provide a general framework where
all these methods fit as special cases with different prior models. This pro-
vides not only a better insight about these methods, but it also enables a
fair comparison between these different models within the same framework.
For this, the different compared techniques are all presented with a particular
prior distribution, allowing for comparison of effectiveness of the suggested
prior image model.

Recently, several wavelet based procedures for multicomponent images were
proposed that account to some extent for the inter-component correlations, ap-
plying wavelet thresholding [36] or Bayesian estimation, using different prior
models [30–35]. The purpose of this work is to present these in a Bayesian
framework for wavelet-based denoising of multicomponent images to a) fully
account for the inter-component covariances, and b) use different prior models
that optimally approximate the marginal densities of the wavelet coefficients.
Within this framework, 4 different prior models are reviewed: the Bernouilli-
Gaussian model from the literature [30], and the Gaussian [31], the Gaussian
Scale Mixture [32] and the Generalized Gaussian models [35], that have been
investigated by the authors. The denoising performance of these techniques is
compared to that of standard spectral denoising and spatial single-band tech-
niques that do not or only partly account for the inter-component correlations.
The methods are compared within two applications with different noise types:
(1) remote sensing multispectral and hyperspectral data with non-correlated
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as well as correlated white Gaussian noise and (2) magnetic resonance within-
modality data with Rician distributed noise.

The outline of this paper is as follows: in the next section, we introduce the
framework for spatial wavelet-based denoising on multicomponent images. The
wavelet representation, the imaging model and the Bayesian estimation pro-
cedure are elaborated. In section 3, least-squares denoising procedures us-
ing 3 different priors are presented: the Gaussian Scale Mixture model, the
Bernouilli-Gaussian model and the Laplacian mixture model. In section 4, the
experiments are conducted and a discussion on the results follows.

2 The Bayesian multicomponent image denoising framework

For spatial denoising of multicomponent images, making use of inter-band cor-
relations is essential. An image discontinuity (e.g., an edge, corner, line, point
target,...) appearing in one image band is likely to appear in at least some of
the remaining bands. Proper use of inter-band correlations facilitates discrim-
ination between noise and image features, and even reveals image details that
were “hidden” by noise in given bands or discards false structures generated
by noise.

In general, designing a multicomponent denoiser involves making the following
choices: the image representation (e.g., single-resolution or multiresolution);
handling the multicomponent character of the data (e.g., vector-based pro-
cessing or band-wise processing) and the estimation approach (e.g., choosing
an optimization criterion). In the following subsections, we address each of
these items and link them to the denoising framework presented in this paper.

2.1 Non-decimated wavelet transform

The wavelet transform reorganizes image content into a low-resolution approx-
imation and a set of details of different orientations and different resolution
scales. A fast algorithm for the discrete wavelet transform is an iterative fil-
ter bank algorithm of Mallat [8], where a pair of high-pass and low-pass filters
followed by downsampling by two is iterated on the low-pass output. In a non-
decimated wavelet transform that we consider in this paper, downsampling is
excluded, and instead the filters are upsampled at each decomposition stage
as explained later in the text. The outputs of the lowpass filter are the scaling
coefficients and the outputs of the high-pass filter are the wavelet coefficients.
At each decomposition level, the filter bank is applied sequentially to the rows
and to the columns of the image. Low-pass filtering of both the rows and the
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columns yields the low-pass LL subband and other combinations of low-pass
and high-pass filtering yield the wavelet subbands at different orientations:
High-pass filtering of rows and low-pass filtering of columns (HL) yields hor-
izontal edges and the opposite combination (LH) yields vertical edges, while
high-pass filtering of both the rows and the columns (HH) yields diagonal
edges. The jth decomposition level yields the coefficients at the resolution
scale 2j.

In image denoising, redundant wavelet transforms, like the non-decimated
transform yield better results than the critically sampled one. A common
alternative is using a critically sampled representation with cycle spinning [37]
(denoising multiple cyclical shifts of the image and averaging over unshifted
results) which yields a similar improvement over the critically-sampled case
[11].

In this paper we use a non-decimated wavelet transform implemented with
the algorithm à trous [38]. The algorithm inserts 2j − 1 zeroes (i.e., “holes”,
French trous) between the filter coefficients at the resolution level j. The size
of each wavelet subband equals the size of the input image.

For compactness, denote the spatial position vector [m,n] by a single index l,

and denote the scaling coefficients at the resolution level j+1 by a
(j+1)
l and the

wavelet coefficients at the corresponding scale in three orientation subbands
by x

(j+1,HL)
l , x

(j+1,LH)
l and x

(j+1,HH)
l . Let h and g denote, respectively, the low-

pass and the high-pass filters associated with the wavelet function ψ, and let h̄
denote the conjugate complex of h, and hj an up-sampled filter, where 2j − 1
zeroes are inserted between each two coefficients of h. Denoting the discrete
convolution by ?, the non-decimated wavelet decomposition is formally given
by:

a
(j+1)
l = h̄jh̄j

l ? a
(j)
l

x
(j+1,HL)
l = ḡjh̄j

l ? a
(j)
l (1)

x
(j+1,LH)
l = h̄j ḡj

l ? a
(j)
l

x
(j+1,HH)
l = ḡj ḡj

l ? a
(j)
l .

Decomposing an image into J decomposition levels yields a wavelet image
representation consisting of 3J+1 subbands: [a(J), {xj,HL,xj,LH ,xj,HH}16j6J ]:

a
(0)
l = hJhJ

l ? a
(J+1)
l +

J∑
j=1

(
gjhj

l ? x
(j+1,HL)
l + hjgj

l ? x
(j+1,LH)
l

+ gjgj
l ? x

(j+1,HH)
l

)
(2)

where the input image is approximated by a(0) with a negligible error [38].
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2.2 Wavelet processing of multicomponent data

A natural way of exploiting the interband correlations is by vector-based pro-
cessing, operating on all the bands simultaneously. Let s

(j,o,b)
l denote the noise-

free wavelet coefficient at spatial position l, resolution level j , orientation
subband o, and image band b. x

(j,o,b)
l and n

(j,o,b)
l are the corresponding wavelet

coefficients of the observed noisy image and the noise, respectively. A vector
processing approach groups the wavelet coefficients x

(j,o,b)
l of all the B bands at

a given spatial position, within a subband of a given orientation and resolution
level into a B-dimensional vector:

x
(j,o)
l = [x

(j,o,1)
l , ..., x

(j,o,B)
l ]T . (3)

Equivalent processing is typically applied to all the wavelet subbands, and
hence we shall omit the indexes that denote the resolution level j and orien-
tation o. In each wavelet subband, a multicomponent pixel obeys the additive
noise model:

x = s + n (4)

where the probability density function (i.e., density) of n is assumed to be
a multivariate Gaussian of zero mean and covariance matrix Cn: p(n) =
φ(n;Cn). Cx denotes the covariance matrix of the noisy vector x and Ĉs

the estimate of the covariance matrix of the unknown noise-free vector s.

The noise covariance in each wavelet subband is in general a scaled version
of the input image noise covariance, where the scaling factors depend on the
wavelet filter coefficients (see, e.g., [39]). With the orthogonal wavelet families
[38], that we use in this paper, the noise covariance in all the wavelet subbands
is equal to the input image noise covariance. In most cases, we will assume
that the input image noise covariance is known. When conducting experiments
with real noisy data, the noise covariance will be estimated separately. The
signal covariance matrix is estimated as

Ĉs = Cx −Cn. (5)

Since Ĉs is a covariance matrix, it needs to be semi-positive definite. This
is assured by performing an eigenvalue decomposition and clipping possible
negative eigenvalues to zero.

Throughout the whole paper, Cx is determined over the entire image: Cx =
〈xlx

T
l 〉l, i.e., it is assumed that the interband correlations are the same for all

wavelet coefficients of a subband.
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2.3 Estimation approach and optimization criterion

Various linear and nonlinear (adaptive) methods can be applied for data de-
noising. We focus on the Bayesian approach, where a priori knowledge about
the distribution of the noise-free data is assumed. In particular, we impose a
multicomponent prior distribution (to be called hereafter prior) on the noise-
free wavelet coefficients in a given subband and we differentiate between sev-
eral approaches based on different specific priors. As an optimization criterion,
we adopt minimization of the mean squared error, i.e., the Bayesian risk is a
quadratic loss function. Estimation that uses this optimization criterion is
referred to as least squares estimation.

The minimum mean squared error (MMSE) estimate is the posterior condi-
tional mean

E(s|x) =
∫ ∞

−∞
sp(s|x)dx =

∫∞
−∞ sp(x|s)p(s)ds∫∞
−∞ p(x|s)p(s)ds

=

∫∞
−∞ sφ(x− s;Cn)p(s)ds∫∞
−∞ φ(x− s;Cn)p(s)ds

.

(6)
Assuming e.g. a Gaussian prior for the noise-free signal p(s) = φ(s;Cs), the
above MMSE estimate becomes the Wiener filter:

ŝ = E(s|x) = Ĉs(Ĉs + Cn)−1x. (7)

3 Least squares denoisers using different priors

The standard Wiener result of the previous section is the result obtained using
a multicomponent Gaussian prior model. It accounts for the multicomponent
covariance, but it assumes that the marginal densities for the wavelet coef-
ficients are Gaussian. It is well-known that this assumption is not justified,
and that these marginals are symmetric and zero mean, but heavier tailed
than Gaussians. Different other priors were proposed to better approximate
the marginal densities. In this section we present three different multicompo-
nent mixture priors and apply them within the MMSE estimation framework
of the previous section.

3.1 The GSM model

The Gaussian scale mixture prior [25] models the probability density function
p(s) by a mixture of Gaussians:

p(s) =
∫
p(s|z)p(z)dz (8)
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where p(z) is the mixing density, and p(s|z) is a zero mean Gaussian with
covariance Cs|z. Under the GSM model, the additive noise model (4) becomes:

x = s + n =
√
zu + n (9)

where both u and n are zero-mean Gaussians, with covariances given by Cu

and Cn respectively. Then, Cs|z = zCu or, by taking expectations over z, with
E(z) = 1: Cs = Cu.

GSM densities are symmetric and zero-mean and heavier tailed than Gaus-
sians. These are known to better model the shape of the wavelet coefficient
marginals than Gaussians. In [25], GSM’s were applied to model local spatial
neighborhoods of wavelet coefficients in greylevel images. In this work, we ap-
ply the GSM to model multicomponent wavelet coefficients. In this way, the
prior fully accounts for the inter-band covariances.

The Bayes least squares estimate E(s|x) is given by:

E(s|x) =
∫

sp(s|x)ds

=
∫ ∫ ∞

0
sp(s, z|x)dzds

=
∫ ∫ ∞

0
sp(s|x, z)p(z|x)dzds

=
∫ ∞

0
p(z|x)E(s|x, z)dz. (10)

Since, using the GSM model s, conditioned on z is Gaussian, the expected
value within the integral is given by a Wiener estimate:

E(s|x, z) = zCu(zCu + Cn)−1x. (11)

The posterior distribution of z can be obtained, using Bayes’ rule:

p(z|x) =
p(x|z)p(z)∫∞

0 p(x|α)p(α)dα
(12)

with p(x|z) = φ(x; zCu + Cn). In [25], the authors motivate the use of the
so-called Jeffrey’s prior [40] for the random multiplier z: p(z) ∝ 1

z
. We also

refer to [25] for further information about the practical implementation of the
determination of (10).

3.2 Mixtures of two distributions

Another often used mixture prior in wavelet denoising is a mixture of two
distributions, where one distribution models the “significant” (large) coeffi-
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cients and the other distribution models “insignificant” (small) coefficients
[12, 14, 16, 17, 19, 30, 41]. Examples are the mixture of two Gaussians [16], the
mixture of a Gaussian and a point mass at zero [12, 14, 17, 30] and the mix-
ture of a Laplacian and a point mass at zero [19, 41]. The mixing between
the two distributions is controlled by a Bernoulli random variable q with
P (q = 1) = ε = 1 − P (q = 0).

In general, under this mixture prior the probability density of the vector s is

p(s) = (1 − ε)p(s|q = 0) + εp(s|q = 1) (13)

and the substitution in the minimum mean squared error estimator yields

E(s|x) = E(s|x, q = 0)P (q = 0|x) + E(s|x, q = 1)P (q = 1|x). (14)

From the Bayes’ rule

P (q = 1|x) =
εp(x|q = 1)

(1 − ε)p(x|q = 0) + εp(x|q = 1)
(15)

where

p(x|q = 0) =
∫
φ(x− s;Cn)p(s|q = 0)ds

p(x|q = 1) =
∫
φ(x− s;Cn)p(s|q = 1)ds (16)

and the conditional means are

E(s|x, q = 0) =

∫∞
−∞ sφ(x− s;Cn)p(s|q = 0)ds∫∞
−∞ φ(x− s;Cn)p(s|q = 0)ds

E(s|x, q = 1) =

∫∞
−∞ sφ(x− s;Cn)p(s|q = 1)ds∫∞
−∞ φ(x− s;Cn)p(s|q = 1)ds

. (17)

3.2.1 The Bernoulli-Gaussian prior model

Recently, in [30] a multicomponent Bernoulli-Gaussian prior model was pro-
posed:

p(s|q = 0) = δ(s)

p(s|q = 1) =φ(s;Cs). (18)

To our knowledge, this paper was the first work from the literature where a
multicomponent prior was applied for spatial multicomponent image denois-
ing. For this reason, we will adopt this prior in our work.
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For this prior: p(x|q = 0) = φ(x;Cn) and p(x|q = 1) = φ(x;Cs + Cn).
Besides, substituting (18) into (17) yields E(s|x, q = 0) = 0 and E(s|x, q =
1) = Ĉs(Cn + Ĉs)

−1x and hence

E(s|x) =
εφ(x;Cs + Cn)

(1 − ε)φ(x;Cn) + εφ(x;Cs + Cn)
Ĉs(Cn + Ĉs)

−1x. (19)

In [30], three estimation procedures were described: a Maximum A Posteri-
ori (MAP) technique, an MMSE approach and an extended SURE (ESURE)
approach [42]. Using the MAP approach, the hidden variable is estimated for
each coefficient, where it takes the value 1, leading to the Wiener result, or
zero. For this estimation, the improvements over the Gaussian prior model
seemed to be marginal. Using the MMSE approach, ε is estimated as a con-
tinuous value using absolute moments. In the ESURE approach, ε and Cs will
be free parameters, which are estimated by minimizing the risk. We will adopt
the latter 2 approaches in our work.

3.2.2 The Laplacian mixture model

Another prior is a mixture of two truncated generalized Laplacian distri-
butions [35], where a Bernoulli random variable controls switching between
the central part of the distribution (describing the “insignificant” data) and
its tails (describing the “signal of interest”). Related priors were used, e.g.
in [27,28] where the signal of interest is defined as a noise-free wavelet coeffi-
cient component that exceeds the noise standard deviation. Compared to the
Bernoulli-Gaussian, this prior models more realistically the subband statistics,
but is also more complex and no multicomponent version has been studied
yet. We will adopt the band-wise procedure from [35] and describe it in the
Bayesian multicomponent image denoising framework.

For noise-free images, marginal subband statistics is modeled by a generalized
Laplacian (also called generalized Gaussian) density [8, 11, 18,21]:

p(s) =
λν

2Γ( 1
ν
)
exp(−(λ|s|)ν) (20)

where Γ(x) =
∫∞
0 tx−1e−tdt is the Gamma function, λ > 0 is the scale pa-

rameter and ν is the shape parameter, which is typically ν ∈ [0, 1] for natural
images. The marginal conditional densities are:

p(s|q = 0) =

B0 exp(−(λ|s|)ν), if |s| 6 σ

0, if |s| > σ
(21)
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and

p(s|q = 1) =

 0, if |s| 6 σ

B1 exp(−(λ|s|)ν), if |s| > σ
(22)

where σ is the noise standard deviation in the corresponding wavelet subband,

and the normalization constants are [35] : B0 = λν
(
2Γ( 1

ν
)Γinc

(
(λT )ν , 1

ν

))−1

andB1 = λν
(
2Γ( 1

ν
)
[
1−Γinc

(
(λT )ν , 1

ν

)]
)−1, where Γinc(x, a) = 1

Γ(a)

∫ x
0 t

a−1e−tdt

is the incomplete gamma function.

To construct a multicomponent extension of the generalized Laplacian mixture
prior, will adopt a simple solution from [35]. The estimator is applied band-wise
and the correlation between the bands is taken into account by calculating
a band activity indicator (BAI) from the different image bands. Define the
BAI, z, at a given spatial position in a given wavelet subband as the wavelet
coefficient magnitudes, averaged over all B image bands:

z =
1

B

B∑
b=1

|x(b)|. (23)

The band-wise ProbShrink estimator, for band b (we omit the index b) is given
by:

ŝ = P (q = 1|x, z)x =
η(x)ξ(z)µ

1 + η(x)ξ(z)µ
x (24)

where

η(x) =
p(x|q = 1)

p(x|q = 0)
, ξ(z) =

p(z|q = 1)

p(z|q = 0)
and µ =

ε

1 − ε
. (25)

The local MMSE estimator is E(s|x, z) = P (q = 1|x, z)E(s|x, q = 1) + P (q =
0|x, z)E(s|x, q = 0), but under the assumed mixture prior, the second term is
close to zero and E(s|x, q = 1) is close to x. The prior probability is in [35]
derived as P (q = 1) = ε = 1−

∫ σ
−σ p(s)ds, which for the generalized Laplacian

prior yields ε = 1−Γinc

(
(λσ)ν , 1

ν

)
. The conditional densities p(x|q) (q = 0, 1)

are derived from p(s|q) using a scalar version of (16). From these and (23),
p(z|q) are calculated.

4 Experiments

In order to validate the proposed multicomponent noise reduction framework,
we performed experiments on multicomponent data sets with simulated and
real noise. In a first experiment, we simulated uncorrelated as well as corre-
lated additive Gaussian noise on a Landsat multispectral image. In the second
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experiment, real noisy data were used. For this, radiance data from an AVIRIS
hyperspectral image in the near infra-red part of the spectrum was taken. The
image contains spectral bands near the absorption window of atmospheric wa-
ter vapor and carbon dioxide, where the signal to noise ratio tends to be low.
In the second group of experiments, simulated MRI datasets were used; one
containing images acquired with different MRI acquisition schemes and an
other containing diffusion tensor imaging data with 6 components.

For the wavelet decomposition, a four-level decomposition (J = 4) of the non-
decimated wavelet transform, described in Sec.2.1, is used. For the wavelet
filters h and g, we use the Daubechies symmlets family [7]. Experiments show
that these filters generally rendered the best results.

The proposed denoising techniques are compared to each other and to other
denoising procedures, in the real and wavelet domain. In the experiments the
following denoising procedures are compared:

• For the remote sensing experiments, the Minimum Noise Fraction (MNF )
transform [3] is applied for comparison. MNF denoises the imagery by decor-
relation of the noise followed by decorrelation of the spectral signal. By re-
taining only the decorrelated bands with highest signal to noise ratio, it is
assumed that the noise is contained in the low SNR bands. By retaining
the first N bands and then making the reconstruction, a denoised image is
obtained. In the simulated noise case, we optimized the retained number of
bands by maximizing the peak signal-to-noise ratio (PSNR).

• A first wavelet-based method applies denoising separately on each band b.
Minimum mean squared error detail coefficient shrinkage is applied on each
wavelet scale and orientation. Here, all detail coefficients are rescaled by

ŝb =
σ2

xb − σ2
n

σ2
xb

xb

the ratio of signal variance over noise variance. It is clear that this band-wise
procedure does not take any band correlation into account, not in the noise,
nor in the signal.

• An extension of the band-wise approach is a hybrid Gaussian approach.
Before employing the band-wise procedure, a forward MNF transform is
applied. After band-wise denoising, the data is transformed back. In this
procedure, interband correlations are taken into account by the use of MNF,
which assures the decorrelation of the transformed bands.

• Then, the multiband MMSE denoising techniques that are proposed in this
work are applied. First, a multidimensional Gaussian prior is assumed to
describe the signal correlation between the bands. As a result, for each
wavelet subband the vector shrinkage is given by (7), the vector Wiener
filter.

• Next, the Gaussian scale mixture (GSM ) prior is assumed, as presented in
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section 3.1.
• Further on, we implemented the MMSE denoising, assuming the Bernoulli-

Gaussian signal prior (noted by BG-Moments) from [30], and as described
in section 3.2.1.

• Also, using the same Bernoulli-Gaussian prior, the extended E-sure (BG-
Sure) from [30] is applied.

• Then, we apply LM Probshrink, using the Laplacian mixture prior model,
as described in section 3.2.2. This approach assumes uncorrelated noise of
equal intensity. Therefore, when applying this technique the noise covari-
ance is first whitened, such that the noise covariance matrix becomes the
unity matrix. After denoising, the data is then rotated back. As a matter
of fact, using this prior, the interband correlations are only partly taken
into account, and as such, this procedure should be regarded as a hybrid
band-wise approach.

The performance of the different denoising techniques is quantitatively de-
scribed by the PSNR (in dB), defined for 8 bit images of size N2, with B
bands as:

PSNR(Ŝ,S) = 10 log

(
2552

mse(Ŝ,S)

)

mse(Ŝ,S) =
1

BN2

N∑
i,j=1

B∑
b=1

(Ŝ
(b)
i,j − S

(b)
i,j )2 (26)

4.1 Experiment 1: Landsat dataset with simulated noise

In the first experiment, a Landsat 7 TM 7-band image acquired over the
Winnipeg area, containing both urban and rural parts, was taken. All bands
except for the thermal band (band 6) were used, obtaining a 6 band 8-bit
image. On this image, additive Gaussian noise was simulated. We simulated
both correlated and uncorrelated noise. In the uncorrelated case the covariance
was Cn = σ2I, with I the unity matrix. In the correlated case, the covariance
was set to Cn = σ2C, with all values of C set to .5, except for the diagonal
elements, which were set to 1. σ was set to the values 5, 10, 15, 20 and 25. In
this experiment, Cn is assumed to be known. Here, we use noise variances
which are rather high compared to the expected values in remote sensing.
These values were taken arbitrarily to evaluate the denoising procedures.

Table 1 shows the results for the uncorrelated noise case. The results obtained
for the image corrupted with correlated noise is shown in table 2. Figure 1
shows a detail of the denoising result for the red band, after corrupting the
original with uncorrelated noise with σ = 15. Based on the obtained PSNR
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initial 34.21 28.24 24.77 22.32 20.44

MNF 34.21 28.71 25.88 24.13 22.59

Wavelet Band-wise

Gaussian 34.87 30.00 27.54 25.98 24.84

Wavelet hybrid band-wise

hybrid Gaussian 34.87 31.28 29.07 27.60 26.50

LM Probshrink 35.23 30.85 28.60 27.11 25.95

Wavelet multicomponent

Gaussian 35.66 31.38 29.16 27.69 26.56

GSM 37.70 31.60 29.43 27.96 26.82

BG-Moments 35.81 31.70 29.53 28.06 26.50

BG-Sure 35.80 31.66 29.47 27.93 26.68
Table 1
PSNR values for Landsat experiments with simulated uncorrelated noise (in dB).
The 5 columns show the results for values of σ given by 5, 10, 15, 20 and 25
respectively.

initial 34.22 28.24 24.77 22.32 20.43

MNF 34.22 28.24 25.04 22.81 21.14

Wavelet Band-wise

Gaussian 34.87 29.99 27.54 25.95 24.83

Wavelet hybrid band-wise

hybrid Gaussian 35.01 30.35 28.06 26.55 25.47

LM Probshrink 35.09 30.48 28.15 26.66 25.59

Wavelet multicomponent

Gaussian 35.15 30.52 28.20 26.66 25.55

GSM 35.43 30.91 28.57 27.00 25.85

BG-Moments 35.39 30.93 28.65 27.10 25.95

BG-Sure 35.38 30.90 28.60 27.05 25.98
Table 2
PSNR values for Landsat experiments with simulated correlated noise (in dB). The
5 columns show the results for values of σ given by 5, 10, 15, 20 and 25 respectively.

values of both experiments we can conclude the following:

• All wavelet-based approaches perform better that the traditional MNF
transformation. The main reason for this is that the MNF transformation
only uses spectral information. The wavelet based techniques also take spa-
tial correlations into account. It has been demonstrated many times that the
spatial decorrelation and the good energy concentration properties makes
the wavelet domain suited for image and signal denoising.
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• When comparing the multiband approaches to the band-wise approach, we
can conclude that the use of information on the spectral band dependency of
both noise and signal improves the denoising results. The hybrid approaches
obtain a substantial improvement over the band-wise approach in the case of
uncorrelated noise. A more modest improvement is obtained for correlated
noise. Remark that treating LM Probshrink as a hybrid approach proves to
be correct by these results.

• Applying the fully multiband approaches improves the results even further.
The difference between band-wise and multiband techniques is larger in
the uncorrelated noise case. Apparently, noise correlations between bands
diminish the gain that can obtained from the multiband approaches. This
can be explained in the following way: assume noise correlation that is equal
to the signal correlation; then the ratio in equation (7) becomes diagonal
(because Cs is just a scaled version of Cs + Cn), meaning that all bands
are treated separately, like in the band-wise case.

• The more accurate the description of the prior distributions is, the more
improvement one obtains. The use of Bernoulli-Gaussian (BG-Sure, BG-
Moments) and Gaussian scale mixtures (GSM) improves the denoising qual-
ity over the use of the Gaussian prior. In the correlated noise case there is
barely a distinction between the techniques based on the BG prior and the
GSM prior. This is also true in the uncorrelated case, except for low noise,
where GSM seems to be superior.
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(a) original (b) noisy (c) Band-wise Gaussian

(d) LM Probshrink (e) Hybrid Gaussian (f) Gaussian

(g) GSM (h) BG-Moments (i) BG-SURE

Fig. 1. a): detail of original red band of the Landsat image; (b): noise corrupted
image; (c)-(i):results for the band after denoising with the presented wavelet based
techniques.
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4.2 Experiment 2: AVIRIS dataset

In the second experiment an AVIRIS image over Cuprite, Nevada, was taken.
Here, we concentrated on the infra-red (IR) part of the spectrum, containing
noisy bands near the water vapor absorption band. For this experiment, 25
bands were uniformly selected in the 2 − 2.5µm region. No additional noise
was added. Figure 2 shows one band of the image near 2.5µm.

Fig. 2. AVIRIS 2.479µm band of the cuprite image

In order to denoise this 25 band image, the noise covariance is required. The
noise covariance was estimated as follows: let x1,HH,b denote the wavelet coef-
ficients of the first resolution level and orientation subband HH from spectral
band b. Then the diagonal elements of the noise covariance are estimated by
the classical median estimator [42]:

√
Cbb =

median(|x1,HH,b|)
0.6745

. (27)

The off-diagonal elements between spectral bands b and b′ are estimated, as
in [30]:

Cbb′ =

√
CbbCb′b′

4


median(|x1,HH,b

√
Cbb

+ x1,HH,b′
√

Cb′b′
|)

0.6745


2

−

median(|x1,HH,b
√

Cbb
− x1,HH,b′

√
Cb′b′

|)

0.6745


2
 (28)

All denoising techniques were applied on the image. For the MNF transform,
12 bands were retained to reconstruct the image. Again, for the hybrid band-
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wise procedure a MNF transformation is used prior to denoising. Noise whiten-
ing is applied before the Probshrink procedure.

(a) original 2.479µm band (b) Minimum Noise Frac-
tion

(c) Band-wise Gaussian

(d) LM Probshrink (e) Hybrid Gaussian (f) Gaussian

(g) GSM (h) BG-Moments (i) BG-SURE

Fig. 3. (a): detail of original 2.479µm band of the AVIRIS cuprite image; (b): de-
noising result from MNF transformation; (c)-(i):results for the 2.479µm band after
denoising with the presented wavelet based techniques.

In Figure 3, a detail of the denoising results for the AVIRIS image are shown.
We can conclude:

• Using MNF, the noise in the spatial domain is hardly smoothed.
• From the wavelet-based approaches, visually, the band-wise approach re-

tains most noise structure. This can be explained by the fact that no inter-
band correlation is accounted for in this technique.
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• The hybrid band-wise techniques already show an improvement in the re-
constructed image. Yet, the result is visually smoother than for the other
multiband techniques. In case of Probshrink, this result indicates that the
local spatial indicator does not carry sufficient information of the interband
correlations to denoise the image properly.

• Looking closer to the results of the full multiband techniques, one only sees
minor differences: GSM seems to denoise the image more than the other
techniques, rendering smoother regions.

4.3 Experiment 3: MRI simulation dataset

The MRI data set consists of 4 different simulated MRI acquisitions of the
same subject (two T1, a T2 and a PD acquisition). The data set was obtained
from the the Brainweb site [43]. On these images Rician distributed noise of
different amplitude is simulated. The noise was independent for each compo-
nent. The images are shown in Figure 4. In Table 3, the obtained PSNR values
are shown, and Figure 5, the denoised T1 image is shown, with σ = 15.

(a) T1 normal (b) T2 (c) PD (d) T1 higher flip
angle

Fig. 4. Simulated MRI images using different acquisition schemes

The background pixels where not considered in the calculation of parameters
used in the denoising procedures and to obtain the PSNR values. This would
otherwise offset the estimation of the signal correlation, since it is calculated
globally over the entire wavelet subband image. In the MRI experiment MNF
did not improve the image quality, even not for high noise levels, and is not
included in the table. In these experiments, the standard deviation of denoising
performance over different instances of the noise is less than 0.1 dB. Similar
conclusions as in the first experiment can be drawn.
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initial 34.13 28.17 24.67 22.13 20.25

Wavelet Band-wise

Gaussian 36.83 32.80 30.49 28.70 27.45

Wavelet hybrid band-wise

hybrid Gaussian 37.58 33.32 30.94 29.09 27.78

LM Probshrink 39.07 35.21 32.99 31.17 29.93

Wavelet multicomponent

Gaussian 38.35 34.25 32.00 30.32 29.22

GSM 40.43 35.99 33.51 31.53 30.22

BG-Moments 40.45 36.03 33.58 25.92 30.14

BG-Sure 40.13 35.42 32.25 30.58 25.98
Table 3
PSNR values for Brainweb data experiments with simulated Rician noise (in dB).
The 5 columns show the results for values of σ given by 5, 10, 15, 20 and 25
respectively.
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(a) original (b) noisy (c) Band-wise Gaussian

(d) LM Probshrink (e) Hybrid Gaussian (f) Gaussian

(g) GSM (h) BG-Moments (i) BG-SURE

Fig. 5. a): original T1 image of four band set; (b): noise corrupted image;
(c)-(i):results for the band after denoising with the presented wavelet based tech-
niques.
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4.4 Experiment 4: MRI diffusion tensor imaging dataset

In the fourth experiment, denoising on another MRI dataset is performed.
For this, we used a simulated MRI diffusion tensor imaging (DTI) data set
(Figure 6), that was constructed using DTI simulation software that is built
in-house. This set consists of 6 diffusion weighted images (DWI). In each im-
age the grey values are related to the diffusion of water in different directions.
Due to the nature of the acquisition, these DWI have a low SNR. As in the
third experiment, we simulated Rician distributed noise, and applied the mul-
ticomponent denoising procedures on the 6 band image (the 6 DWI). Finally,
the PSNR of the reconstructed bands is calculated and represented in table
4. Again, The standard deviation of denoising performance over different in-
stances of the noise is less than 0.1 dB. In Figure 7, the results are shown for
noise with σ = 15. Again, similar results as in the previous experiments are
obtained. In this case, however, hybrid bandwise LM Probshrink is for higher
noise levels slightly better than the multicomponent GSM model.

initial 34.21 28.11 24.58 22.11 20.18

Wavelet Band-wise

Gaussian 36.48 32.47 30.29 28.76 27.35

Wavelet hybrid band-wise

hybrid Gaussian 36.73 32.70 30.49 28.97 27.49

LM Probshrink 38.50 34.61 32.45 30.87 29.21

Wavelet multicomponent

Gaussian 37.04 33.24 31.32 29.97 28.75

GSM 39.21 34.79 32.43 30.72 29.18

BG-Moments 38.84 34.41 31.93 30.37 29.05

BG-Sure 38.47 34.19 31.70 30.64 29.44
Table 4
PSNR values for DTI data experiments with simulated Rician noise (in dB). The 5
columns show the results for values of σ given by 5, 10, 15, 20 and 25 respectively.

4.5 Time complexity

Finally, the time complexity of the different techniques is studied. Table 5
shows the timings relative to Gaussian band-wise denoising which is set to one
time unit. Here, only the time to process the wavelet coefficients is taken into
account, since all techniques need the same computation of the wavelet and a
inverse wavelet transform. One can clearly see the large range of computational
complexity. The introduction of the multicomponent heavy tailed distributions
increases the computational cost several orders. One exception is the BG-
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Simulated MRI diffusion weighted images of different directional acquisition

Moments technique which seems preferable. This large difference in execution
time between BG-Moments and the other multicomponent techniques can be
explained by the existence of an analytic expression for ε in (19) which makes a
swift implementation possible. Compared to this, ESURE needs optimization
of ε and Cs, while Probshrink and GSM need a numerical integral evaluation,
operations which increase the computational burden.

band-wise

Gaussian 1.0

hybrid band-wise

LM Probshrink 15

multicomponent

Gaussian 2.8

GSM 24

BG-Moments 4.5

BG-Sure 43

WT and inverse WT 5.1
Table 5
Relative time comparison for Winnipeg image experiment. The timings are without
the wavelet transformations, for which the timing is separately indicated in last row
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(a) original (b) noisy (c) Band-wise Gaussian

(d) LM Probshrink (e) Hybrid Gaussian (f) Gaussian

(g) GSM (h) BG-Moments (i) BG-SURE

Fig. 7. a): one band of original DTI image; (b): noise corrupted image 24.7 dB;
(c)-(i):results for the band after denoising with the presented wavelet based tech-
niques.

5 Conclusions

In this paper, spatial wavelet-based denoising of multicomponent images was
aimed at. We presented a Bayesian least-squares optimization framework, us-
ing different multicomponent prior models for the wavelet coefficients: Gaus-
sian scale mixture models, Bernoulli-Gaussian mixture models and Laplacian
mixture models. The presented procedures are compared to standard spectral
denoising and single-band denoising procedures. We analyzed the suppres-
sion of non-correlated as well as correlated white Gaussian noise on Landsat
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data and on MRI data with simulated noise. From the experimental results,
we can conclude that superior denoising performance is obtained when a)
applying spatial (wavelet-based) denoising, compared to spectral denoising;
b) accounting for the interband correlations, compared to denoising on each
band separately; c) using prior models that fully account for the interband
covariances; and d) using prior models that better approximate the wavelet
coefficients marginal densities.
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