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Tijana Ružić, Aleksandra Pižurica and Wilfried Philips

Department for Telecommunications and Information Processing (TELIN), Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium.
Tel:+32 9 264 34 12, Fax: +32 9 264 42

Abstract

In this paper we propose a novel inference method for maximum a posteriori estimation with Markov random field
prior. The central idea is to integrate a kind of joint ”voting” of neighbouring labels into a message passing scheme
similar to loopy belief propagation (LBP). While the LBP operates with many pairwise interactions, we formulate
”messages” sent from a neighbourhood as a whole. Hence the name neighbourhood-consensus message passing
(NCMP). The practical algorithm is much simpler than LBP and combines the flexibility of iterated conditional modes
(ICM) with some ideas of more general message passing. The proposed method is also a generalization of the iterated
conditional expectations algorithm (ICE): we revisit ICE and redefine it in a message passing framework in a more
general form. We also develop a simplified version of NCMP, called weighted iterated conditional modes (WICM),
that is suitable for large neighbourhoods. We verify the potentials of our methods on four different benchmarks,
showing the improvement in quality and/or speed over related inference techniques.
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1. Introduction

A typical problem in image processing consists of es-
timating some unknown image attributes from the avail-
able image data, which are incomplete or degraded. The
unknown attributes can be the noise free components
of the noisy image pixels, values of disparities from a
stereo pair, missing pixel values, segments of the im-
age to which each pixel belongs etc. This problem is
usually referred to as pixel-labelling: each pixel is as-
signed a label representing the desired attribute. Pixel-
labelling usually involves Bayesian inference like maxi-
mum a posteriori (MAP) estimation with a Markov Ran-
dom Field (MRF) prior [1, 10].

In these MAP-MRF labelling problems computation
is typically exhaustive or even intractable due to a large
number of variables and loopy structure of the graph.
Classical inference algorithms include Monte Carlo
Markov Chain samplers, such as Gibbs and Metropo-
lis sampler [10], which are slow but find an optimal so-
lution with high probability. A popular suboptimal al-
gorithm called iterated conditional modes (ICM) [1] is
a ”greedy” method that reaches only a local optimum.
More recent techniques involve graph cuts (GC) [7, 4]
and message passing algorithms such as loopy belief

propagation (LBP) [14, 21] and tree-reweighted mes-
sage passing [8]. Graph cuts give optimal solution for
binary MRFs and very good result for multi-label MRFs
but with the limitation of being applicable without mod-
ifications to only certain class of problems [9]. An ex-
cellent overview and comparison of these and other in-
ference methods is in [18].

Although LBP gives state-of-the-art results in the
fields of error-correcting codes [6] and computer vision
(stereo matching, super-resolution [5], etc.), it has been
reported to fail for graphs with huge number of nodes
and many short loops [12]. We propose a novel subopti-
mal inference algorithm that performs well also in these
cases, with the robustness of ICM and with the flexibil-
ity of a more general message passing.

We call the proposed method neighbourhood-
consensus message passing (NCMP) because it prop-
agates information through the graph by sending a sin-
gle ”consensus” message from the neighbourhood to the
central node. Similarly to ICM, the message represents
a unified opinion of the whole neighbourhood about the
labels of the central node. Contrasting to ICM, we also
take into account additional information in the form of
probabilities of all neighbouring labels that form their
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”voting” for the labels of the central node. Hence, the
message is a function of beliefs of the neighbouring
nodes representing confidence about their own labels.
The proposed approach can also be considered as a gen-
eralization of iterated conditional expectations (ICE)
[13] within a message passing framework. The ICE
algorithm was developed as an extension of ICM, but
despite its great potentials, it is being neglected in the
recent literature. We revisit this idea here and redefine it
in a message passing framework which makes it suitable
for generalizations and extensions. Furthermore, in this
paper we develop another version of NCMP based on
the same concept. We name this second method in the
NCMP framework weighted iterated conditional modes
(WICM) because additional information constitutes of
weights added to each of the neighbouring nodes.

Experiments show that NCMP-like methods outper-
form ICM, while giving in many cases better or com-
parable results with LBP in terms of correct labelling.
The improvement is greatly noticeable for large graphs
with high connectivity. Moreover, our method is di-
rectly applicable to different MRF models, e.g. hier-
archical or non-submodular, which is an advantage in
comparison with GC. ICM has the same characteris-
tic, but its performance is limited because it easily gets
trapped in the local optimum. Despite large number
of variables, our method is fast and simple to imple-
ment since it is based on local computations. Plausible
result is achieved in only a few iterations. We stress
that the proposed NCMP framework remains inferior to
the more sophisticated LBP in more demanding applica-
tions, but achieves better performance in terms of qual-
ity and/or speed for certain simpler problems, especially
when they include large graphs with high connectivity.
The proposed method is definitely an interesting alter-
native to other low-complexity methods like ICM.

The paper is organized as follows. In Section 2 we
set the theoretical background by defining MRFs. We
also review briefly ICM, LBP and ICE as reference al-
gorithms. Section 3 introduces a definition of NCMP
and a novel WICM as its special case. Example appli-
cations and performance comparison are given in Sec-
tion 4. Finally, we conclude the paper with Section 5.

2. Background and previous work

2.1. Markov random fields

A general image model that we consider is sketched
in Fig. 1. In this representation, observed nodes repre-
sent given image data y, e.g. image pixels or patches.
Each observed node is connected to the corresponding

Figure 1: A square lattice of observed nodes yi (filled circles) and
hidden nodes xi (empty circles). A pairwise MRF with the first-order
neighbourhood is imposed on the hidden nodes. The edges indicate
pairwise cliques.

hidden node. A set of hidden nodes is denoted as vector
x, the elements of which can take one of L values (usu-
ally referred to as labels). Thus, xi denotes a label of
node i, where xi ∈ {1, ..., L}. xA denotes a set of nodes
with indices in the set A. The connections between the
hidden nodes model their statistical dependencies and
thereby prior knowledge about the image to be encoded
by a Markov random field (MRF).

The Markov property of a random field is formally
P(xi|xS \i) = P(xi|x∂i), where S \i is the set of all nodes
except the node i and ∂i is the neighbourhood of the
node i. In words, the probability of node’s label con-
ditioned on all other labels reduces to the label’s prob-
ability conditioned on its neighbours only. The distant
labels have no influence on label’s probability provided
that its immediate neighbours are specified. Most often
used neighbourhoods are first-order (four nearest nodes)
and second-order neighbourhoods (eight nearest nodes).
A set of nodes, which are all neighbours to one another,
is called a clique. It can be proved that the joint distri-
bution of a MRF p(x) is a special case of Gibbs distri-

bution: p(x) = 1/Z exp
(
− E(x)/T

)
, where T is temper-

ature, and energy function E(x) =
∑

C VC(xC). VC(xC)
is called clique potential and is chosen in practice to
favour certain local spatial dependencies, e.g. to encour-
age smoothness. Z is a normalization constant called
partition function. In belief propagation literature it is
common to consider the joint distribution between ob-
servations y and labels x, which can be under certain
simplifying assumptions [1] written as:

p(x, y) =
1
Z

∏
(i, j)

ψi j(xi, x j)
∏

i

ϕi(xi, yi), (1)

where ψi j(xi, x j) ∝ exp(−Vi j(xi, x j)) denotes the statis-
tical dependency between pairs of neighbouring hidden
nodes (so called pairwise MRF) and ϕi(xi, yi) models
relationship between observed and hidden node and is
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Figure 2: (a) Message update rule - the message that node i sends to
node j accumulates the messages that the node i has received previ-
ously from its neighbouring nodes, other than j. (b) Belief update rule
- belief of the node is calculated from all the incoming messages.

called local evidence. It usually stands for a conditional
probability of an observed node given the value of the
hidden node, ϕi(xi, yi) = p(yi|xi), and it is determined
by the knowledge of the reconstruction mechanism or
by learning.

2.2. Inference

The goal of Bayesian inference in MRFs is to esti-
mate the underlying image x given the observed data y
and a certain optimization criterion. Often, the crite-
rion is to maximize the posterior probability p(x|y) ∝
p(y|x) · p(x) with respect to x, i.e., to compute MAP
estimates. The exact inference is NP-hard, except for
some special classes of problems. However, there exist
a number of approximate inference algorithms that deal
with this problem, as stated earlier in Section 1. Each of
these has different performance in terms of quality and
speed which also depends on the model being used.

2.2.1. Belief propagation
We will focus in this work on the version of the LBP

algorithm called max-product LBP that produces max-
imum a posteriori (MAP) estimates. For more detailed
view, see for example [21]. The central concept of the
algorithm is the message defined with the message up-
date rule as:

mi j(x j) = αmax
xi
{ψi j(xi, x j)ϕi(xi, yi)

∏
k∈∂i: k, j

mki(xi)}(2)

where α is a normalization constant. These messages
are computed at each node and are sent to all its neigh-
bours. Therefore, by performing local computations,
the information is propagated through the graph. Mes-
sage update is conducted iteratively until convergence.

The second important term in LBP is belief which is
computed for each node after convergence of messages
by the following equation:

bi(xi) = αϕi(xi, yi)
∏
k∈∂i

mki(xi), (3)

which says that the value of node’s belief depends on
its local evidence and on the product of all incoming
messages into the node. Beliefs actually approximate
a posteriori probability of nodes. Therefore, in order
to compute MAP estimates, at each node the label is
chosen to maximize belief at that node:

x̂i = arg max
xi

bi(xi). (4)

In recent years various modifications of the original
LBP algorithm appeared that attempt to correct some of
its disadvantages. Firstly, it has been reported that LBP
has poor performance for graphs with many short loops
and weak evidence [12] in the sense that approximate
beliefs are far from the exact ones and even that MAP
estimates are incorrect. Generalized belief propagation
(GBP) [22] has been proposed as solution. Here mes-
sages are exchanged between groups of nodes because
those are believed to be more informative. The second
modification is the tree-reweighted max-product algo-
rithm [20] that is guaranteed to produce correct MAP
estimates under certain condition. It starts from divid-
ing the graph into a set of trees so that each edge be-
longs to at least one tree. Then a probability distribution
over trees is chosen and each edge is given some coef-
ficient depending on the probability that a tree contains
that edge given that it contains a corresponding node.
The definition of a message is then slightly modified by
the introduction of this coefficient. There is also an im-
proved version of the original algorithm, called sequen-
tial tree-reweighted message passing [8], that is guaran-
teed to converge. We only mention these algorithms for
completeness and we do not treat them further since our
approach does not build upon them.

2.2.2. Iterated conditional modes
ICM is a simple, greedy inference method aiming at

approximate MAP estimates. It starts from an initial
estimate and then visits the nodes in some predefined
order. While the true MAP estimate would maximize
the posterior probability p(x|y), in case of ICM, in each
iteration the new estimate x̂i at each node i maximizes
the conditional probability given the evidence y and the
current estimation x̂S \i elsewhere:

x̂i = arg max
xi

p(xi|y, x̂S \i). (5)
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Figure 3: Graphical representation of information propagation through the binary MRF for different algorithms. The label of the central node is to
be estimated. Grey node - label is to be chosen, black or white node - the label is set to one of the two values. (a) Loopy belief propagation: the
messages propagate in pairwise fashion. (b) Iterated conditional modes: the decision is influenced by the estimated labels in the neighbourhood.
(c) Neighbourhood-consensus message passing: the decision is influenced by the beliefs of neighbouring nodes. (d) Weighted iterated conditional
modes: the decision is influenced by the estimated labels in the neighbourhood and the confidence of their estimation. Different sizes of nodes
represent different weights, i.e. node’s confidence about its assigned label.

Using p(xi|y, x̂S \i) ∝ ϕi(xi, yi)p(xi|x̂∂i) from [1], it fol-
lows:

x̂i = arg max
xi

ϕi(xi, yi)p(xi|x̂∂i). (6)

For pairwise MRF, which is most often used, the ICM
estimate becomes:

x̂i = arg max
xi

ϕi(xi, yi) exp
(
−
∑
k∈∂i

Vik(xi, x̂k)
)
. (7)

Therefore, ICM reduces the spatial-context information
to the number of estimated labels of each type within the
neighbourhood. Once all the nodes are visited, one it-
eration is finished. The procedure is repeated until con-
vergence which is guaranteed to exist and in practice is
very fast. However, only local maximum is reached and
results highly depend on the initial estimate.

2.2.3. Iterated conditional expectations
To overcome some of the limitations of ICM, iter-

ated conditional expectations (ICE) algorithm was in-
troduced [13]. Initially, ICE was developed for pair-
wise MRF model in image segmentation applications
and later was applied to image restoration [23].

ICE transforms the discrete problem of ICM into a
continuous one by assigning labels only at the end of the
algorithm. In the meanwhile, approximate a posteriori
probabilities of labels, which we denote as pi(xi), are
updated. The ICE update rule for pairwise MRF is then
defined as

pi(xi) ∝ ϕi(xi, yi) exp
(
−
∑
k∈∂i

pk(xk)Vik(xi, xk)
)
. (8)

After a given stopping criterion (convergence or a pre-
defined number of iterations), the labels are chosen so
to maximize these approximate posterior probabilities:
x̂i = arg maxxi pi(xi), i.e.

x̂i = arg max
xi

ϕi(xi, yi) exp
(
−
∑
k∈∂i

pk(xk)Vik(xi, xk)
)
.(9)

By comparing this estimate with the equivalent one
for ICM from (7), it can be seen that the product
pk(xk)Vik(xi, xk) replaces the term Vik(xi, x̂k) from the
ICM estimator. This means that ICE consults all la-
bels of a neighbouring node and makes the decision
based on their posterior probability and pairwise poten-
tials whereas ICM takes into account only the pairwise
potentials derived from the fixed neighbouring labels.
Note that the product pk(xk)Vik(xi, xk) represents ma-
trix multiplication where pk(xk) is a vector of posterior
probabilities of all labels xk of the node k and Vik(xi, xk)
is a matrix of pairwise potentials for all possible combi-
nations of labels xi and xk of two (neighbouring) nodes
i and k. Despite its potential, this method is much less
known than ICM in image processing community and
usually neglected in recent papers.

3. Neighbourhood-consensus message passing

Our idea is to simplify LBP algorithm and make it
better suited for networks with huge number of nodes
and short loops. In this situation, messages are unable
to convey the necessary information globally through-
out the graph. The solution can be to observe a larger
neighbourhood but then the speed and the practicality
become an issue. Our approach is to observe the neigh-
bourhood as a whole entity rather than a set of nodes that
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individually send messages to the central node like LBP
does (Fig. 3(a)). ICM also consults the whole neigh-
bourhood, but using the labels that are fixed in each iter-
ation (Fig. 3(b)), thus neglecting any confidence regard-
ing their estimation. We aim at finding the compromise
between these two.

To derive the new algorithm, we start from interpre-
tations of two basic terms in LBP: message and belief.
The message mi j(x j) should express the support of the
sending node i for each label of the receiving neigh-
bouring node j. In LBP this support depends on lo-
cal evidence, pairwise potential between the two nodes
and incoming messages from other nodes (equation (2),
Fig. 2(a)): mi j(x j) = f (ϕi,Vi j,mki), where ∀k ∈ ∂i : k ,
j. This message is computed for each edge, i.e. each
pair of nodes, and in each direction separately. There-
fore, while computing messages, neighbourhood is not
observed as one complete entity.

Our idea is to consult all neighbours of a node at
once in order to make a decision about its label. ICM
achieves this in a simple manner: just by counting the
labels of each kind that are already fixed within the
neighbourhood (Fig. 3(b)). If we look at ICM as a
rather simple version of message passing, then support
for the labels of a central node consists of estimated
labels of neighbouring nodes. It is hidden in the term

p(xi|x̂∂i) = exp
(
−Vi,∂i(xi, x̂∂i)

)
(equation (6)) which can

be viewed as a joint message that the neighbourhood
sends to the central node. This way we could depart
from pairwise interactions to potentially gain more free-
dom in defining spatial dependencies of the nodes.

The second term in LBP is node’s belief bi(xi), which
can be interpreted as the confidence of a node about
its labels. The belief depends on the local evidence
and on incoming messages into the node (equation (3),
Fig. 2(b)): bi(xi) = f (ϕi,mki), where k ∈ ∂i. For ICM,
this belief is equal to one since it greedily estimates
the label at each iteration being completely confident
about it. This is an obvious limitation. We wish to form
the messages based on the ”voting” of neighbouring la-
bels and their beliefs, in the fashion of ICE. The ICE
algorithm will be a particular instance in our general
approach to neighbourhood-consensus message passing
(NCMP).

3.1. NCMP framework

The main underlying idea of our work is to propagate
belief through the graph by sending a single joint mes-
sage to each node from its whole neighbourhood. We
define a joint message from neighbourhood ∂i to node

(a)

(b)

Figure 4: (a) Oriented sub-neighbourhoods from [15]. (b) Another
possible set of larger larger oriented neighbourhoods.

i as a function of neighbourhood potential Vi,∂i(xi, x∂i)
and neighbourhood belief b∂i(x∂i) (Fig. 3(c)):

m∂i→i(xi) = f
(
b∂i(x∂i),Vi,∂i(xi, x∂i)

)
. (10)

Note that if #∂i = N and xk ∈ {1, ..., L}, there are
{1, ..., LN} possible label combinations for the set x∂i.
Neighbourhood potential is usually defined in MRF the-
ory as sum of clique potentials VC(xC) within a given
neighbourhood [10]. With this definition, the joint mes-
sage in equation (10) becomes:

m∂i→i(xi) = exp
(
−
∑

C⊂i∪∂i

bC\i(xC\i)VC(xC)
)
. (11)

bC\i(xC\i) is clique belief, where C\i denotes a set of
all nodes in C except the central node i. In this manner,
the message m∂i→i(xi) represents a unified opinion of the
neighbourhood ∂i regarding the labelling of the central
node i. Further on, in analogy to the classical belief
definition from equation (3), we define node belief:

bi(xi) = αϕi(xi, yi)m∂i→i(xi), (12)

where α is a normalization constant because beliefs
have to sum up to one. Note that in this formulation,
instead of separate messages from each neighbouring
node in (3), now one joint message per neighbourhood
affects the value of belief. In case of pairwise cliques,
clique belief bC\i(xC\i) from (11) reduces to node belief
defined in (12). In general, for cliques containing more
than two sites, we average the beliefs from (12) of the
corresponding nodes:

bC\i(xC\i) = β
∑

k∈C\i
bk(xk), (13)

where β = 1
#C\i .

By comparing (11) and (12) with (8), we can see that
NCMP represents a generalization of ICE in addition to
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being the novel message passing setting. Due to this
generalization, we are not limited to pairwise interac-
tions. Generalization gives room for improvement of
the spatial prior by, for example, defining special clique
potentials on redefined cliques within the neighbour-
hood or by using higher-order MRFs. We will illus-
trate advantages using oriented sub-neighbourhoods as
in Fig. 4(a). These oriented sub-neighbourhoods can
better model edges in different directions and retain the
homogeneity of the structure.

Like in ICM, we need to start from some initial con-
figuration. In practice, we form the initial mask by max-
imum likelihood estimation, x̂i = arg maxxi ϕi(xi, yi),
and then we initialize belief of each node by setting it to
the value that favours the label of that node in the initial
mask. After initialization, algorithm runs through iter-
ations until some stopping criterion is satisfied or until
the specified number of iterations is reached.

3.2. Weighted iterated conditional modes
So far we have defined NCMP algorithm by placing

ICE in the context of message passing algorithms and
generalizing it beyond the pairwise MRF. Now we in-
troduce a simplified version of NCMP where we retain
the discrete nature of ICM by assigning labels to nodes
at each iteration while propagating additional informa-
tion which is the uncertainty of that assignment. This
scheme is much simpler and can be of special interest
when working with large neighbourhoods. The message
is now defined as an alternative to (11) as:

m∂i→i(xi) = exp
(
−
∑

C⊂i∪∂i

bC\iVC(xi, x̂C\i)
)

(14)

∀k ∈ ∂i : x̂k = arg max
xk

ϕk(xk, yk)m∂k→k(xk). (15)

Note that in equation (14) labels of neighbouring nodes
are already set to the value that maximizes posterior
probability forming that way a part of the joint neigh-
bourhood message. The other part of the message is
clique belief bC\i that still has an interpretation of a con-
fidence of a clique about labels of its nodes. However,
that belief now has a single value rather than being com-
puted for each possible combination of labels of the in-
cluded nodes like in NCMP. This means that each node
belief also has a single value computed as maximum of
approximation of a posteriori probability:

bk = max
xk

ϕk(xk, yk)m∂k→k(xk). (16)

We can then define the clique belief, for example, as an
average value of node beliefs that belong to the consid-
ered clique.

We call this algorithm weighted iterated conditional
modes (WICM) because we add weights to clique po-
tentials in the form of belief (see Fig. 3(d) for graphi-
cal representation). WICM is a simple modification of
ICM that falls into the category of message passing. It
follows the idea of NCMP while retaining the simplicity
of ICM, especially when it comes to generalization be-
yond pairwise potentials. However, certain loss of infor-
mation occurs in comparison with general NCMP due to
sampling, i.e. choosing labels in each iteration, making
that way a trade-off between complexity and qualitative
performance.

For all the above mentioned algorithms, we have to
make the following remark. There are two possible
update schemes: parallel and sequential. For discrete
algorithms, ICM and WICM, sequential approach up-
dates the labels as nodes are being visited, while in par-
allel case all labels are updated at once at the end of
each iteration. In the continuous case, i.e. LBP and
NCMP, sequential approach uses messages and beliefs,
respectively, calculated in the current iteration and par-
allel scheme uses that data from previous iteration. Both
schemes have certain disadvantages: the former pro-
duces directional effects due to the scan order and the
latter is prone to oscillations and therefore unable to
converge [1]. We choose the parallel scheme because
we are not concerned with convergence properties in our
example applications.

4. Experiments and results

In this section we present a few example applications
that illustrate the potentials of the proposed approach.
We consider both binary and multi-label MRFs with
second and first-order neighbourhoods. For compari-
son with GC [4, 9, 3] and LBP [19], we used the code
available at http://vision.middlebury.edu/MRF/ that ac-
companies comparative study [18].

4.1. Noise removal from a binary image

In this example, the goal is to remove noise from an
observed noisy image y whose pixel values are yi ∈
{−1, 1}, ∀i ∈ S . We assume that the image is obtained
by randomly flipping the sign of certain percent of pix-
els in a noise free image x, xi ∈ {−1, 1}, ∀i ∈ S . The
correlation between the observed and hidden nodes is
ϕi(xi, yi) = exp(ηxiyi), where η is a positive constant.
The spatial correlation of hidden nodes that favours
clustering of the labels of the same type is modelled by
an Ising MRF with ψi j(xi, x j) = exp(−Vi j(xi, x j)), where
Vi j(xi, x j) = −γxix j and γ is a positive constant. This is
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Figure 5: Top: noisy version of image from [2] of size 1259x1703 with 10% of the pixels flipped and resulting images of ICM and GC. Bottom:
resulting images obtained with LBP, NCMP and WICM.

a very simple example of MRF application but is typical
of more sophisticated applications and very convenient
for result comparison.

The performance of the algorithm is illustrated on a
binary image from [2]. The noisy version is obtained
by randomly flipping 10% of the pixels in a noise free
image. Denoising result depends on the value of the
parameters η and γ. The only significant noise reduc-
tion is obtained for η = 0.5 and γ = 1.0, second-order
neighbourhood and maximum of 500 iterations, shown
in Fig. 5. It is obvious that ICM gives by far the worst
result because it quickly gets trapped in the local opti-
mum. While its performance improves on smaller im-
ages (see later Table 1), on this large image it fails com-
pletely. The proposed methods, on the contrary, work
well in this case and give comparable results with the
state-of-the-art methods GC and LBP. GC method gives
the optimal solution for the energy function on binary
MRF in only one iteration, which makes it the fastest
method, but some errors in pixel-labelling are notice-
able, e.g. the letter e in the second row. Finally, if
we compare the two proposed methods, WICM yields
slightly poorer results than NCMP because of isolated
dots in the background, while still outperforming ICM.

We can also measure the quantitative performance
by comparing the percentage of misclassified pixels
with the original. For the above mentioned parameters,
the percentage of misclassified pixels is 0.3679% for
NCMP and 0.4176% for WICM compared to 6.3027%
for ICM and 0.4255% for LBP. GC method yields an

Table 1: Comparison of misclassified pixel percentage for different
sizes of test image from Fig. 5 with parameters η = 1 and γ = 0.5

% of the ICM GC LBP NCMP WICM
original size

100% 7.68 1.21 7.64 6.34 6.33
80% 0.36 0.07 0.23 0.14 0.14
50% 0.57 0.11 0.4 0.2 0.2

optimal solution of the overall best quality with only
0.3423% misclassified pixels, although visually the re-
sult of LBP and NCMP would probably be preferred
(see Fig. 5). Other parameter values give significantly
poorer results for all methods.

In terms of speed, our method is slower than GC be-
cause of multiple iterations, but it is faster than LBP by
an order of magnitude in addition to being simpler for
implementation.

We also noted that the performance of all the meth-
ods depends on the size of the image being processed.
The image on Fig. 5 is large in size, 1259x1703, so we
also tested the performance on smaller images (80% and
50% of the original size). The results are summarized in
Table 1. In general, for smaller images all the methods
perform better and the difference in results of different
methods becomes smaller.

4.2. Detection of signal of interest in wavelet domain
Another example is detection of signal of interest,

i.e. meaningful edge coefficients in noisy wavelet sub-
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Figure 6: Top: a noise-free and the corresponding noisy wavelet sub-
band (σ = 20) of Lena image. Bottom: detected edges by threshold-
ing the two sub-bands respectively.

bands. As illustrated on Fig. 6, true edge coefficients
cannot be detected by simply thresholding the noisy
sub-band.

One solution is to encode prior knowledge about spa-
tial clustering of edge coefficients using Ising MRF
model [11, 15]. In this case, the labels of hidden nodes
xi ∈ {−1, 1} represent absence and presence of signal of
interest, respectively. Conditional likelihoods describe
distributions of the magnitudes of wavelet coefficients
given each label and we estimate these as described
in [15]. Spatial information is given by the isotropic
model with pairwise potentials Vik(xi, xk) = −γxixk (γ is
a positive constant), that assigns a higher probability to
edge continuity. We used the second-order neighbour-
hood. By performing inference on this model an edge
map is obtained for each wavelet band that can be later
used for subsequent processing in wavelet domain, e.g.
for denoising.

The performance of inference algorithms LBP, ICM,
NCMP and WICM on the noisy wavelet sub-band from
Fig. 6 is illustrated on Fig. 7. The result was obtained
for maximum of 20 iterations and γ = 0.7. Unlike
in previous application from Sec. 4.1, we can see that
here LBP performs poorly because it deletes most of
the edges leaving the mask to be barely recognizable.
On the other hand, ICM gives quite good results in this
example, better than LBP. Both NCMP methods per-
form slightly better than ICM, yielding more consis-
tent edges, with clearer boundaries and without inter-

ruptions. We also included the results of Metropolis
sampler [10] that was originally used in [15]. The ad-
vantage of Metropolis sampler is that it estimates accu-
rately the probabilities of each label, but in terms of the
final binary mask its performance is similar to ICM. Fi-
nally, we tested GC on this model, but due to the way
the model is defined, it gave no meaningful results, i.e.
it recognized no signal of interest in the noisy wavelet
sub-band.

Another advantage of the proposed methods and ICM
in comparison with LBP, is that they can be directly
applied to anisotropic models like those in Fig. 4.
These models can be defined in such a way to fur-
ther improve the results of edge detection. For exam-
ple, in [15] the potential of sub-neighbourhood p is de-
fined as V∂i,p(xi, x∂i,p) = −γxi

∑
k∈∂i,p xk and potential of

complete second-order neighbourhood is Vi,∂i(xi, x∂i) =
−γxi maxp{

∑
k∈∂i,p xk}. This choice of neighbourhood

potential results from the following reasoning: label
xi = 1 should be assigned high probability if any of
the sub-neighbourhoods indicates existence of a signal
of interest, while label xi = −1 is given preference if
none of the sub-neighbourhoods has that indication.

The benefits of using the anisotropic model were al-
ready demonstrated in [15] using Metropolis sampler.
In Fig. 8 we show that the performance of the pro-
posed NCMP method also improves largely with this
anisotropic model (denoted as NCMP-A). The same is
true for ICM (denoted as ICM-A). These methods give
also similar results to that of the Metropolis sampler
(not shown here). LBP cannot be applied directly on
this hierarchical, anisotropic model and its performance
is thereby inferior in this case.

4.3. Image segmentation
Another application is segmentation of a noisy im-

age: each pixel is assigned one label that represents the
segment to which the pixel belongs. In the first experi-
ment, we used a synthetic image with artificially added
white zero mean Gaussian noise of standard deviation
σ. Local evidence is then the Gaussian function with
mean value equal to the pixel value in the non-degraded
image and standard deviation σ. The pairwise poten-
tial is determined by the discontinuity preserving Potts
model Vi, j(xi, x j) = KT (xi , x j), where T () is one if its
argument is true and zero otherwise.

The segmentation results for σ = 20, second-order
neighbourhood, K = 1 and maximum of 50 iterations
are shown on Fig. 9. ICM has the weakest perfor-
mance leaving obviously misclassified areas. NCMP
and WICM yield similar results to LBP. Although LBP
converged in fewer iterations, it was still around five

8



Figure 7: Masks of horizontal edges at the first scale for σ = 20. Top: initial mask and results of LBP and Metropolis sampler. Bottom: results of
ICM, NCMP, and WICM.

times slower than NCMP. GC gave similar results to
LBP and NCMP for the same setting.

In the second experiment, we apply the tested
methods to the foreground/background segmentation
from [16], where test image from Fig. 10 is used and
a MRF with first-order neighbourhood. Again, our
method outperforms ICM and yields a similar result to
LBP in much shorter time. GC method gives the best re-
sult for this example in shortest time but note that its ap-
plicability is limited to special potential functions (see
Sec. 4.4), while the proposed method is more general.

4.4. Super-resolution

For super-resolution example, we used the approach
similar to [5]. The idea is to find a high-resolution
(HR) patch from some candidate set for each position
in the HR image so it best fits the neighbouring over-
lapping patches and the corresponding low-resolution
(LR) patch from the input LR image. The candidate set
is formed by finding k nearest neighbours in some set
of LR patches of each input LR patch and taking their
corresponding HR patches as candidate patches. The
difference with [5] is that in our case the LR and HR
patches are obtained from the input image itself, rather
than some external database of images. Local evidence
is taken to be the matching error, i.e. sum of squared
differences, between starting LR patch op and found k

nearest neighbours yn
p:

ϕp(yn
p, op) = exp(−∥yn

p − op∥2/2σ2
R). (17)

The pairwise potential is the error in the region of over-
lap Rov of two neighbouring HR patches in the first-
order neighbourhood:

Vi, j(xn
i , x

m
j ) = ∥Rovn

j,i − Rovm
i, j∥2. (18)

This problem is non-submodular [17] which makes it
difficult for GC. In [17] its simplified binary form was
used for comparison of different inference algorithms
with the proposed modification of GC. Here we keep
the original problem and compare the proposed method
with LBP. Fig. 11 shows the cropped version of zebra
image. On the left is the result of choosing the best
match at each position, i.e. when no MRF modelling is
applied. In the middle and on the right are the results
of LBP and the proposed method, respectively. We can
see that MRF modelling brings improvement and that
our method performs equally well as LBP while being
about ten times faster.

5. Conclusion and future work

In this paper, we propose a new inference method
which generalizes iterated conditional expectations
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Figure 8: Masks of vertical edges at the first scale for σ = 30. Top: initial mask and results of LBP and ICM for isotropic model. Bottom: results
of NCMP for isotropic model and ICM and NCMP for anisotropic model (denoted with an extension -A).

within a message passing framework. Practically, this
approach is a simple modification of ICM but formu-
lated as message passing similar to that in LBP. We call
this method neighbourhood-consensus message passing
(NCMP) since a joint message is sent from the speci-
fied neighbourhood to the central node which enables
information to propagate through the graph. Informa-
tion consists of beliefs of neighbouring nodes as confi-
dence measure of their own labels. On the one hand,
ICM is improved by adding additional information, and
on the other hand, working with a whole neighbourhood
is facilitated in comparison with LBP. Additionally, we
develop a simplified version of NCMP, called weighted
iterated conditional modes (WICM), to overcome po-
tential difficulties while working with larger neighbour-
hoods. Results on different example applications show
that the proposed methods outperform ICM, while giv-
ing comparable or, in some cases, even favourable re-
sults in comparison with LBP in much shorter time. Fu-
ture work will focus on investigating the benefits of the
proposed method for higher-order MRFs.
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Figure 10: Binary segmentation of the flower image. Top: user data and result of ICM. Bottom: result of GC, LBP and NCMP.

Figure 11: Cropped version of zebra image 2x magnification. From left to right: best match result, MRF result with LBP as inference method,
MRF result with NCMP as inference method.
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