
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, Y 1

Context-aware patch-based image inpainting using
Markov random field modelling
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Abstract—In this paper, we first introduce a general approach
for context-aware patch-based image inpainting, where textural
descriptors are used to guide and accelerate the search for
well-matching (candidate) patches. A novel top-down splitting
procedure divides the image into variable size blocks according
to their context, constraining thereby the search for candidate
patches to non-local image regions with matching context. This
approach can be employed to improve the speed and performance
of virtually any (patch-based) inpainting method. We apply
this approach to the so-called global image inpainting with
the Markov random field (MRF) prior, where MRF encodes
a priori knowledge about consistency of neighbouring image
patches. We solve the resulting optimization problem with an
efficient low-complexity inference method. Experimental results
demonstrate the potential of the proposed approach in inpainting
applications like scratch, text and object removal. Improvement
and significant acceleration of a related global MRF-based
inpainting method is also evident.

Index Terms—inpainting, patch-based, Gabor filtering, texture
features, context-aware

I. INTRODUCTION

Image inpainting, or image completion, is an image pro-
cessing task of filling in the missing region in an image in a
visually plausible way. Applications include image restoration
(e.g., scratch or text removal), image coding and transmission
(recovery of missing blocks), photo-editing (object removal),
virtual restoration of digitized paintings (crack removal), etc.
In literature, two categories of image inpainting approaches
can be distinguished: diffusion- and patch-based.

Diffusion-based methods [1]–[4] fill in the missing region
(the “hole”) by smoothly propagating image content from the
boundary to the interior of the missing region. The problem of
propagating linear structures, e.g., object lines and boundaries,
that are interrupted by the hole, is then often formulated in
terms of solving partial differential equations. Although these
approaches yield good results when inpainting long thin re-
gions, they experience difficulties in replicating texture, which
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is largely due to their local nature (using only information in
the immediate surrounding of the missing pixel).

Patch-based methods fill in the missing region patch-by-
patch by searching for well-matching replacement patches
(i.e., candidate patches) in the undamaged part of the image
and copying them to corresponding locations. While these
approaches share some ideas with patch-based texture synthe-
sis [5], [6], they focus additionally on structure propagation
either by defining the filling order [7]–[11], using human
intervention [12] or decomposing the image into structure and
texture components [13]–[15]. Compared to diffusion-based
methods, patch-based methods typically produce better results,
especially when inpainting larger holes.

Patch-based methods can be categorized into “greedy” [7],
[9], [16]–[20], multiple candidate [10], [11], [21]–[23] and
global [8], [12], [24]–[28]. The “greedy” ones choose only
one best match for each patch to be filled, called the target
patch, based on its known pixels. This is achieved in an
iterative process that gradually completes the missing region.
Multiple candidate methods infer the missing region using
weighted average [11], [21] or a sparse combination [10] of
multiple candidate patches at each location. Finally, global
methods define inpainting as a global optimization problem.
Multiple candidates are here typically called labels. A label
is chosen for each position so that the whole set of labels
(at all positions) minimizes a global optimization function.
Many global methods [8], [24], [26]–[28] model global image
context with a Markov random field (MRF). In [8], the
objective function is optimized with a smart algorithm based
on belief propagation, called priority belief propagation (p-
BP), which discards unnecessary labels by visiting them in
some meaningful order. Although such label pruning sig-
nificantly reduces the number of labels, the method is still
very complex and runs into difficulties when applied on large
images. Another global method based on spatial coherency
was proposed in [25].

A crucial aspect of patch-based methods is the search for
candidate patches. Solutions to avoid the time consuming
exhaustive search include confining the search to a local
window [17], directional search [9], [11], search along user-
specified curves [12], and utilizing already existing segmen-
tation of the image [15], [20]. PatchMatch [29], a fast patch
search method, is employed together with the global method
from [25] within Adobe Photoshop’s CS5 Content Aware Fill.
A very recent, advanced method from [30] limits the candidate
set by analysing the statistics of patch offsets, but then it treats
inpainting as a photomontage problem, where shifted images
are combined according to these offsets to yield the inpainted
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image. The authors remarked that this method may fail when
the desired offsets do not form a dominant statistics, i.e., there
is insufficient number of similar patches.

In this paper, we propose a novel context-aware global
MRF-based inpainting method. The main idea is to employ
contextual (textural) descriptors to guide and improve the
inpainting process. Two most important contributions are (i)
a novel context-aware patch selection strategy and (ii) an
efficient inference method for global MRF-based inpainting.
The first contribution is not limited to global inpainting and
it aims at improving and accelerating the search for candidate
patches in patch-based methods in general. Our framework is
general also in the sense that it allows the use of arbitrary
contextual descriptors, e.g., those used in image retrieval [31],
scene classification [32], etc. In our practical method, we
choose to use normalized texton histograms computed from
Gabor filter responses as contextual descriptors. Similar texton
histograms (computed from responses of different filters) were
previously used for image segmentation [33], [34], texture
classification [35] and image retrieval [36]. However, to our
knowledge, the use of textons or texton histograms for image
inpainting has never been explored before. We shall consider
two different strategies for dividing the image into regions
based on the context: a simple division into fixed-size square
non-overlapping blocks and a more sophisticated division into
blocks of adaptive sizes. For the latter strategy, we propose
a novel top-down splitting procedure, which is also based on
contextual descriptors.

The second main contribution of this paper is specific to
MRF-based inpainting. We introduce a novel optimization
approach, which builds upon our recent inference method [37]
to make it suitable for MRF-based inpainting with huge
number of labels. Compared to the related method from [8],
this approach is faster and consumes less memory, allowing
processing of larger images. Comparative results with other
related inpainting methods demonstrate potentials of the pro-
posed method for scratch or text removal and object removal.

Some preliminary ideas and parts of this work were reported
in conference papers [19], [28]. In this paper, those preliminary
ideas evolved into a solid framework resulting from more
elaborate analysis and validation and from improvements
on various aspects of contextual descriptors, block division
strategy and optimization approach.

The paper is organized as follows. The proposed general
context-aware approach is described in Section II, where
Section II-A explains the proposed context-aware patch se-
lection, Section II-B introduces a novel algorithm for context-
based image division into adaptive-size blocks, Section II-C
discusses alternative choices for context representation, while
Section II-D deals with the choice of contextual descriptors.
Section III presents the complete inpainting method, where
the proposed context-aware approach is employed together
with an efficient inference method and with novelties in
priority definition and label pruning. Section IV describes
the experiments and the results. The paper is concluded with
Section V.
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Fig. 1: An illustration of the proposed context-aware approach
for inpainting.

II. CONTEXT-AWARE APPROACH FOR INPAINTING

In this section, we introduce a general context-aware ap-
proach, which can be used with any inpainting algorithm. The
main idea is to guide the search for patches to the areas of
interest based on contextual features. Fig. 1 illustrates this
concept: contextual descriptors are assigned to image blocks,
which can be of fixed size (like in Fig. 1) or adaptive. For the
missing region within a given block, well-matching candidate
patches will be found in the contextually similar blocks. The
benefit is twofold: the search for well-matching patches is
accelerated and the inpainting result is improved.

A. Context-aware patch selection

Let the input image I be defined on a lattice S. Pixel
positions on this lattice are represented by a single index
p ∈ S, assuming raster scan ordering. Let Ω ⊂ S denote the
region to be filled (target region), and Φ ⊂ S denote the known
part of the image (source region), where Ω∪Φ = S. Suppose
we divide the image into M × N square non-overlapping
blocks, like in Fig. 1 (an extension to adaptive blocks is
described in Section II-B). We denote by Bl an image block
centred at the position l. The central positions of all the blocks
form a set λ, which is determined, together with the block
sizes, by the particular block division scheme.

The idea of our context-aware approach is to constrain the
source region for target patches from a block Bl to a region
Φ(l) ⊂ Φ with the context well matching that of Bl. We assign
to each block Bl a contextual descriptor c(l), which, in general,
is some feature vector that characterizes spatial content and
textures within the block. Let us define a measure of contextual
dissimilarity H̄(l,m) as

H̄(l,m) = d(c(l), c(m)), (1)

where d(c(l), c(m)) is some distance measure between contex-
tual descriptors c(l) and c(m). The more similar context of the
blocks Bl and Bm, the lower H̄(l,m). Let Σ(l) denote the set
of positions of the blocks that are contextually similar to Bl.
In general, we can write

Σ(l) =
{
m|H̄(l,m) ≤ τ ∧m ∈ λ

}
, (2)



RUŽIĆ AND PIŽURICA: CONTEXT-AWARE PATCH-BASED IMAGE INPAINTING USING MARKOV RANDOM FIELD MODELLING 3

Algorithm 1 Context-aware patch selection

1: for all Bl such that l ∈ λ and Bl ∩ Ω 6= ∅ do
2: set Φ(l) = ∅
3: if Bl is reliable then
4: compute H̄(l,m),∀m ∈ λ (Eq. (1))
5: define new source region Φ(l) (Eqs. (2) and (3))
6: else
7: for all neighbouring blocks Bn do
8: repeat steps 2-5
9: add Φ(n) to Φ(l)

10: end for
11: end if
12: end for

where τ is some block similarity threshold. The constrained
source region Φ(l) is then a union of known parts of blocks
indexed in Σ(l):

Φ(l) = ∪m∈Σ(l)(Bm ∩ Φ). (3)

Note that the current block itself is always a part of Φ(l). Some
examples of block matching for fixed-size blocks are shown in
Figs. 1 and 2(a). Current blocks are denoted by a dashed-line
border, and their contextually similar blocks by a solid-line
border of matching color.

In practice, some blocks may be dominated by missing
pixels (e.g., two central blocks in the third row of Fig. 1).
We consider a block with less than half known pixels, as
unreliable and we do not rely on its contextual descriptor, but
we rather determine its constrained source region based on the
neighbouring blocks.1 The proposed context-aware approach
is summarized as pseudo-code in Algorithm 1. It applies also
to the adaptive blocks, just that the set λ is determined by the
adaptive block division scheme (described next).

B. Division into blocks of adaptive sizes

In most natural images some image areas call for finer
division than the others (see the example in Fig. 2). Moreover,
the optimal size of blocks can differ from one image to
another. We introduce a simple top-down splitting procedure
that automatically divides the image into blocks of adaptive
sizes depending on the “homogeneity” of their texture.

Fig. 3 illustrates the proposed splitting procedure for one
image block Bl. We need to favour that the splits in horizontal
and vertical directions alternate through levels in order to
prevent splitting along one direction only. Therefore, we
assign each block a directional flag δ(l) ∈ {h, v}. This flag
determines the direction, horizontal (h) or vertical (v), along
which the evaluation of the block’s homogeneity will have the
priority. Let Bl1d and Bl2d denote two sub-blocks of Bl along
direction d (see Fig. 4). We measure the inhomogeneity of the
block Bl along direction d as the contextual dissimilarity from
Eq. (1):

1In practical implementation, the constrained source region of an unreliable
block consists of the known part of the block itself, the constrained source
regions of all of its neighbouring reliable blocks and the known parts of its
neighbouring unreliable blocks themselves.

(a) 

(b) 

(c) 

Fig. 2: (a) and (b) Image division into 5×7 blocks of fixed size
and into blocks of adaptive sizes, respectively. The constrained
source region for the current target patch (marked in white)
consists of the current block (in dashed-line pink rectan-
gle) and its contextually similar block(s) (in solid-line pink
rectangle). (c) Result of the graph-based image segmentation
technique [38]. The constrained source region for the current
target patch will consist of the union of orange and green
segments (indicated by pink arrows in the zoomed-in part).

H̄
(l)
d = H̄(l1d,l2d), d = h, v. (4)

Splitting along direction d is allowed only if H̄(l)
d exceeds a

given block similarity threshold τ . H̄(l)
h and H̄(l)

v are evaluated
sequentially, in the order that depends on the directional flag
δ(l). If δ(l) = h, we first evaluate H̄(l)

h , and then only if H̄(l)
h ≤
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Fig. 3: Block diagram of the proposed top-down splitting
procedure (see text for notations).
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Fig. 4: A division of a block into sub-blocks.

τ , we evaluate H̄
(l)
v . The order is reversed when δ(l) = v.

Hence, the block can be split along one direction only.
If neither H̄(l)

h and H̄
(l)
v exceeds τ , Bl is not split any

further. Otherwise, it is split along the direction d into two
new sub-blocks Bljd , j = 1, 2, both of which can be declared
as amenable to further splitting or not, depending on their size
and reliability (fraction of known pixels). The directional flag
is always set to the direction opposite of the splitting direction
of the parent block. Hence, in Fig. 3 δ(ljd) = d̄, where d̄ is
the complement of d.

We initialize the block splitting procedure by dividing the
image coarsely into four (approximately) equal blocks and
assigning them directional flags based on their longer dimen-
sion. The output is the block set {Bl|l ∈ λ}, representing an

adaptive image division as illustrated in Fig. 2(b). This figure
also shows an example of block matching result for adaptive-
size blocks obtained by Algorithm 1.

C. Discussion on context representation

In this paper, we assign contextual descriptors to image
blocks of fixed or adaptive size. An alternative could be to
divide the image into regions using some image segmentation
technique or user input, as explored in [12], [15], [20]. Then,
for the missing region within a given segment (region), well-
matching candidate patches can be found within that segment.
A difficulty with this approach is that the segment bound-
aries coincide with image structures (see Fig. 2(c)), whose
correct propagation inside the missing region is crucial for the
quality of the inpainting result. For example, the target patch
marked in white in Fig. 2(c) contains a boundary between
two segments (see the zoomed-in part). The search for its
candidate patches should thus be confined to the union of these
two segments (all green and orange areas), which excludes
the well-matching patches that can be found on the opposite
side of the missing region, because they belong to a different
segment. Solution to this problem is to first connect the curves
representing the segment boundaries, which leads to better
inpainting results [20].

Our proposed block-based approach (see Figs. 2(a) and (b))
represents a very simple, yet effective alternative to using
image segmentation for context representation. Image segmen-
tation results depend on the chosen segmentation method and
its parameters, which may influence the inpainting quality and
thus, make a fair comparison difficult. Moreover, in our block-
based approach, there is no need for curve connection because
a block and its contextually similar blocks can span over
multiple segments (see the marked blocks in Figs. 2(a) and
(b)). Therefore, for a target patch containing image structure
(e.g., the white patch in Fig. 2), well-matching patches can
be found in contextually similar blocks, which ensures correct
structure propagation inside the missing region.

D. Choice of contextual descriptors

So far, we considered a general formulation of contextual
descriptors as some characterization of spatial content and
textures within blocks. There are many ways to extract texture
features, e.g., computing co-occurrence matrices [39], using
local binary patterns [40], estimating parameters of MRF
models [41], multi-channel filtering [31], [33], etc.

For our problem, multi-channel filtering is well suited,
both in terms of performance and relatively simple imple-
mentation. Let Gn denote one filter from the bank of lin-
ear spatial filters at various orientations and scales, where
n = 1, . . . , Nf and Nf is the total number of filters. After
convolving the image I with such bank of filters, each pixel
p is assigned an Nf -dimensional vector of filter outputs,
F(p) = (F1(p), . . . , FNf (p)), where Fn(p) = (I ∗ Gn)(p).
This vector characterizes the image patch centred at that pixel.

Often, dimensionality reduction is applied to the resulting
vector. For example, in [32], filter outputs were averaged
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within square non-overlapping blocks to obtain coarse descrip-
tion of textures called a gist, which was employed for various
computer vision tasks [32], [42], [43], and also in our previous
inpainting work in [19], [28].

We observed, however, that an alternative approach, using
the so-called texton histograms similar to those from [33]–
[36], yields similar or even slightly better results in our setting,
while requiring less parameters. Therefore, in our practical
method, we implement contextual descriptors as texton his-
tograms defined next.

Let Gn, n = 1, . . . , Nf , now be specified as a bank
of complex Gabor filters, and suppose we apply K-means
clustering to the magnitudes of complex responses, |F(p)|.
Each of the K cluster centres represents a texton [33] and
each pixel p is assigned to one of the K textons. T (p) will
denote this pixel-to-texton mapping, which takes one of the K
possible values, for K textons, i.e., T (p) = n, n = 1, . . . ,K.
Now we can concretize the contextual descriptor c(l) of the
block Bl as a vector of bin counts:

c(l)n =
1

|Bl ∩ Φ|
∑

p∈(Bl∩Φ)

ξ[T (p) = n], n = 1, . . . ,K, (5)

where | · | denotes the cardinality of the set and ξ is the
indicator function (returning one if its argument is true and
zero otherwise). The contextual dissimilarity H̄(l,m) (Eq. (1))
can now be expressed as any distance between the histograms
c(l) and c(m). Here, we employ the common χ2-test:

H̄(l,m) = χ2(c(l), c(m)) =
1

2

K∑
n=1

(c
(l)
n − c(m)

n )2

c
(l)
n + c

(m)
n

. (6)

Texton histograms as described above will be used in all
the results in this paper. Note, however, that our general
framework as described in Sections II-A and II-B can be
used with other contextual descriptors as well. Optimizing the
choice of contextual descriptors is out of the scope of this
paper.

III. CONTEXT-AWARE MRF-BASED INPAINTING

Now we employ the proposed context-aware approach
within a novel context-aware MRF-based inpainting algorithm.
After constraining the search for candidate patches to the
regions of well matching context, the number of labels is still
too big and most of the existing inference methods will be
inefficient. We propose a novel optimization approach suitable
for global inpainting problem with large number of labels.

A. Notations and definitions

Let the patches be square image blocks of size W ×W ,
where W = 2w + 1.2 We will treat the patches from the
source region, which are the candidate patches for the target
region, as labels of an MRF. By assuming an MRF model
for image inpainting, as proposed in [8], spatial consistency
among the candidate patches as well as their agreement with
the undamaged image parts is imposed.

2An extension to rectangular patches of arbitrary size is straightforward.
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Fig. 5: An illustration of MRF notations. The green circles
represent MRF nodes i, j, k ∈ ν, and the orange circles repre-
sent the central positions xi, xj and xk of their corresponding
labels, which are the whole patches of pixel values centred at
these positions. The labels of each node are chosen from its
corresponding constrained source region (e.g., for the node i,
the labels are chosen from Φ(β(i))). The black areas in the
patches centred at i and xi mark the locations of missing
pixels at the node i. The label cost Vi(xi) is computed over
the non-black areas of these patches. The pairwise potential
Vjk(xj , xk) is computed over the light yellow region.

Let a discrete lattice L consist of points, which are w pixels
apart in horizontal or vertical direction on the image lattice S.
Let G = (ν, ε) denote an MRF with the set of nodes ν and the
set of edges ε. The MRF is imposed over the target region Ω,
meaning that ν consists of all lattice L points whose W ×W
neighbourhood intersects Ω and edges ε consist of all first-
order neighbours 〈i, j〉 on the lattice L, where i, j ∈ ν denote
MRF nodes.

In [8], the labels Λ of the MRF were all possible patches
that are completely inside the source region Φ. In our context-
aware approach, for each node i, the set of labels Λi ⊂ Λ will
depend on the context around i. Let β(i) be a function that
returns the central position of the block to which i belongs.
Hence, the block Bβ(i) contains the node i. The labels Λi are
all possible patches that are completely inside the constrained
source region Φ(β(i)) defined in Eq. (3), with l = β(i). For the
sake of compactness, each image patch, and thus each MRF
label, will be referred to by its central position, thus the label
set Λi is actually the label position set. The assignment of a
label to the node i amounts to copying the patch centred at
xi ∈ Λi to the position of the node i in the image. Fig. 5
illustrates the notations introduced above.

Finding an optimal combination of the candidate patches
for the target region will result in a problem of minimizing
the MRF energy

E(x) =
∑
i∈ν

Vi(xi) +
∑
〈i,j〉∈ε

Vij(xi, xj), (7)

where Vi(xi) is the label cost and Vij(xi, xj) is the pairwise
potential. The label cost measures the agreement of a node
with its labels, thus it is defined as the distance measure
between the values of the known pixels in the W × W
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neighbourhood of the node i and the corresponding pixel
values of the label centred at xi (see Fig. 5). By using the
common sum of squared differences (SSD) as a distance
measure, the label cost Vi(xi) can be expressed as

Vi(xi) =
∑

di∈[−w,w]×[−w,w]

M(i+di)
(
I(i+di)−I(xi+di)

)2
,

(8)
where M is a binary image, whose pixel values are one in the
source region and zero in the target region Ω.3 Note that if
the W ×W neighbourhood of a node is completely inside Ω,
the label cost is zero. These nodes are called interior nodes
(e.g., nodes j and k in Fig. 5). Finally, the pairwise potential
Vij(xi, xj) is similarly defined as the SSD between labels
centred at xi and xj in their nodes’ overlap region (see Fig. 5).

The problem of optimizing the energy in Eq. (7) could
be solved using loopy belief propagation (LBP) [44], where
the solution is found by communicating messages between
the nodes. However, applying LBP (or any standard inference
method) directly may be prohibitive due to the huge number
of labels of each node. Different optimization solutions have
been proposed to deal more efficiently with such problems.
In [24], coarse-to-fine LBP strategy was suggested. The idea is
to first cluster the labels and then perform LBP at the first level
on the cluster centers, resulting in the choice of one cluster
per node, while at the second level, LBP is performed on the
labels belonging to the chosen cluster. In [8], an improved
version of BP called priority BP (p-BP) was introduced. In
particular, a specific priority message scheduling and label
pruning are applied. Priority is assigned to each node as
inversely proportional to the number of labels whose relative
belief is higher than some threshold. This means that the
nodes with more confidence about their labels will have
higher priority and therefore, will be visited first (in practice
the ones lying on image structures and having more known
pixels). Even with label pruning (discarding unlikely labels),
the method of [8] is still in practice very slow, especially
for bigger images. We introduce next a new faster inference
method for this problem.

B. Efficient energy optimization

We now propose a computationally and memory efficient
inference method for the patch-based inpainting problem in
Eq. (7). The major differences with respect to p-BP [8]
are the following. Firstly, instead of having a fixed label
position set Λ, we consider a context-aware label position
set Λi ⊂ Λ for each node i. Therefore, by applying context-
aware label selection, we limit the number of labels. Secondly,
we introduce new formulations of priority scheduling and
label pruning, resulting in faster and more memory efficient
computation. Finally, we employ a different message passing
inference algorithm to obtain the final inpainting result.

We divide the optimization process into three steps: initial-
ization (computing priorities of nodes), label pruning (based on

3For multi-channel images, e.g., color images in this paper, SSD is
computed as the sum of SSDs computed per each channel.

Algorithm 2 Efficient energy minimization

1: initialization:
2: for i = 1 to |ν| do {|ν| is the total number of nodes}
3: compute Vi(xi) (Eq. (8))
4: compute priority P (i) (Eq. (11))
5: set vi = 0 {indicates whether the node is unvisited

(vi = 0) or visited (vi = 1)}
6: end for
7: label pruning:
8: compute VWi (xi), ∀i ∈ ν (Eq. (12))
9: for t = 1 to |ν| do

10: î = arg maxi:vi=0 P (i)
11: apply label pruning: choose L � |Λî| labels xî that

yield L smallest VW
î

(xî) and discard the rest
12: for any neighbour j of î such that vj = 0 do
13: update Vj(xj) (Eq. (13)), VWj (xj) and P (j)
14: end for
15: set vî = 1
16: end for
17: inference: x̂ = arg minE(x)

nodes’ priorities) and the actual inference. A pseudo-code of
the proposed energy optimization is given under Algorithm 2.

1) Initialization: This step assigns priorities to all MRF
nodes, which determine their visiting order in the next phase
(label pruning). Like in p-BP, we shall assign higher priority
to nodes which are more confident about their labels. Since
in our case the number of labels |Λi| for each node i can be
different, we define the priority in terms of the relative number
of confident labels RNCi as

P (i) = (RNCi)
−1. (9)

Our idea is to determine RNCi without the need to compute
beliefs, but rather based on the label cost Vi(xi) defined in
Eq. (8). To this end, let us define the relative label cost as

V reli (xi) = Vi(xi)− min
q∈Λi

Vi(q). (10)

Now we define RNCi and the corresponding priority P (i) as

P (i) = (RNCi)
−1 =

( 1

|Λi|
∑
q∈Λi

(
τR − V reli (q)

)
+

)−1

(11)

where (ζ)+ = 1 if ζ > 0 and zero otherwise, and τR is the
threshold for the relative data cost, under which the assignment
of a label to a node is considered as confident (practical
computation of this parameter is explained in Section IV). In
words, Eq. (11) says that the priority of the node i is directly
proportional to the number of labels in the set Λi and inversely
proportional to the number of labels from that set whose label
cost is lower than the threshold τR.

2) Label pruning: This step reduces the number of labels
at each node i to a relatively small number L � |Λi| of the
“best” candidate labels. To decide which labels are the best
candidates, we need a suitable distance measure. This distance
measure needs to take into account:



RUŽIĆ AND PIŽURICA: CONTEXT-AWARE PATCH-BASED IMAGE INPAINTING USING MARKOV RANDOM FIELD MODELLING 7

• data fidelity, as the agreement between the undamaged
image part at the node i and the corresponding part of
the label centred at xi,

• contextual similarity between the regions (blocks) Bβ(i)

and Bβ(xi) that contain i and xi, respectively.
One such possible label-pruning distance measure is con-

textually weighted label cost that we define as

VWi (xi) =

(
1− e−H̄

(β(xi),β(i))−τ
)
Vi(xi), (12)

where H̄(β(xi),β(i)) is the contextual dissimilarity defined in
Eq. (1) and τ is the block similarity threshold from Eq. (2).
Note that the weighting factor 1 − e−H̄(β(xi),β(i))−τ becomes
very small when the blocks Bβ(xi) and Bβ(i) are contextually
similar and tends to one when the contextual dissimilarity is
very large. The constant τ in the exponent prevents that the
weighting factor becomes zero when H̄(β(xi),β(yi)) = 0 and
enables in this way that the labels centred at xi coming from
the contextually ideally matching region can still be ordered
based on their label cost Vi(xi).

After computing the label-pruning distance measure
VWi (xi) for each node, the nodes are visited in the order of
their priority (Eq. (11)) keeping L labels with the smallest
VWi (xi) and discarding the rest. When one node chooses its
labels, this information can be propagated to its neighbouring
nodes. In this way, those neighbours have more information
based on which they can perform label pruning, while also
enforcing the agreement of labels of neighbouring nodes. As
mentioned earlier, the label cost Vi(xi) of interior nodes and
consequently, initial value of VWi (xi), is zero. Therefore, the
only available information at the interior nodes is the one
coming from the neighbours. We propagate the neighbouring
information by updating the label cost at neighbours j of the
current node î as

V
(t+1)
j (xj) = V

(t)
j (xj) + min

xî
Vî,j(xî, xj). (13)

The current node î is the node with the highest priority (see
step 10 in Algorithm 2) and t denotes the update step. This
updated measure can now be used directly in Eq. (12) to update
VWj (xj). Such update definition is motivated by the update
of beliefs within the global framework in p-BP, but we do
not require the computation of messages. Note that each node
is visited only once during label pruning, thus once chosen
set of L labels per node remains fixed throughout the rest
of the energy optimization algorithm. Therefore, the update is
only necessary for unvisited neighbouring nodes, because their
labels have not been pruned yet (see Algorithm 2).

3) Inference: After all the labels have been pruned, we
can turn to minimizing the energy in Eq. (7). We employ
here neighbourhood-consensus message passing (NCMP) [37],
which is much faster than LBP while offering similar per-
formance in this type of problems. In this method, one joint
message, which is a function of beliefs, is sent from the whole
neighbourhood ∂i to the central node i:

m∂i→i(xi) = exp
(
−
∑
j∈∂i

∑
xj

bj(xj)Vij(xi, xj)
)
. (14)

The node’s belief bj(xj) is updated as follows:

bj(xj) = αΘj(xj)m∂j→j(xj), (15)

where Θj(xj) = exp
(
− Vj(xj)

)
and α is a normalization

factor so that beliefs sum up to one. We start the algo-
rithm from the initial mask formed by maximum likelihood
estimation, x̂i = arg maxxi Θi(xi), and then we set belief
initially to the value that favours the label of that node in the
initial mask. After initialization, algorithm runs iteratively until
some stopping criterion is satisfied (e.g., specified number of
iterations is reached or the difference between two successive
results becomes negligible). At that point, for each node
we choose the label that maximizes the node’s belief from
Eq. (15). The chosen labels are copied to their nodes’ positions
(in parallel), resulting in filling of the whole missing region.
Since neighbouring labels overlap (see Fig. 5), a minimum
error boundary cut [5] or a similar stitching method can be
employed to find the seam along which the transition between
two neighbouring patches (labels) is the least visible.

IV. EXPERIMENTS AND RESULTS

We evaluate the proposed method in applications of scratch
and text removal, and image editing (object removal). The
reference methods for comparison are chosen from all three
categories: “greedy”, multiple candidate and global. For all
the analysed methods we show the best inpainting result, by
optimizing the patch size (where possible). Furthermore, for
our method, if not stated otherwise, we use Nf = 18 filters
(over 3 scales and 6 orientations), K = 16 textons, block
similarity threshold τ = 0.15, L = 10 chosen labels and 10
iterations of the inference algorithm. Threshold for priority,
τR, is computed as a median value of SSDs between each pair
of patches in the source region, as suggested in p-BP, just that
in our case this source region is constrained and it differs from
one block to another. For all the results, we used the division
into blocks of adaptive sizes obtained by the top-down splitting
procedure. This procedure was conducted until the block size
reached 1/4 of the image size for images in Section IV-A and
1/8 of the image size for images in Section IV-B, because the
former images contain a close-up of the object (see Fig. 6),
thus finer division would not be beneficial.

A. Experiments and comparisons for scratch and text removal

For the task of scratch and text removal, we use the dataset
of four images from [10] (top row of Fig. 6), where the
ground truth is available. The reference methods include the
“greedy” approach from [7]4, commercial software Content
Aware Fill of Adobe PhotoShop, based on [25], [29], multiple
candidate sparsity-based method (MCS) [10]5, and the global
p-BP method [8]6, which is mostly related to ours. Peak signal-
to-noise ratio (PSNR) values indicated in Fig. 6 are computed
only in the missing region, with pixel values in the range

4MatLab software from http://www.cc.gatech.edu/∼sooraj/inpainting/.
5Test images and results were received from the authors.
6We use our own implementation in MatLab with Lmin = 3, Lmax=10

and 10 iterations of the p-BP algorithm.
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Fig. 6: Comparison of different inpainting methods for scratch and text removal (see text for details).
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Fig. 7: Comparison of different inpainting methods for “bungee” (top) and “ski resort” image (bottom). From left to right:
input image with missing region in black, result of Content Aware Fill, result of p-BP [8] with w = 5 (“bungee”) and w = 4
(“ski resort”), and the result of the proposed method with w = 6 for both images. Area in the red rectangle in the original
image is shown enlarged in the results.

[0,1]. We varied the parameter w that determines the patch
size from 2 to 6 and chose the one with the highest PSNR
for each method (shown in the brackets). Only Content Aware
Fill does not require explicit specification of the patch size.

The results in Fig. 6 demonstrate that the proposed method
gives visually pleasing result, with almost no disturbing arte-
facts. Compared to [7], [8] and Content Aware Fill, our method
yields the best result for all images, both quantitatively (in
terms of PSNR) and qualitatively. Compared to the MRF-
based p-BP [8], the increase in PSNR ranges from 0.6 to
2.8dB. Our PSNR values are lower than those of MCS [10]
(PSNR difference ranging from 0.5 to 1.3dB). This can be
partly due to the fact that [10] is ideally suited for this type of
problems (thin missing regions), while our method is generally
formulated to cope with larger “holes”. Nevertheless, this
example shows that our method can also deal with scratch/text
removal and achieve comparable, and in many cases better
results than related and state-of-the-art methods.

B. Experiments and comparisons for object removal

In this subsection, we deal with a more demanding task
of object removal, which requires large missing regions to
be inpainted. The bigger the missing region is, the more
ambiguity there is on how to fill it in.

Fig. 7 compares the results of the proposed method with
Content Aware Fill and p-BP [8] on two different images.
Our method seems to be more successful in preserving image
structure and produces the most visually pleasing result. For
example, in the “bungee” image (top), see artefacts on the
building’s roof and the grass area below it in the result of
Content Aware Fill and the artefact in the green area above
the building and the water/land border in the result of p-BP [8].
For the “ski resort” image (bottom), our method does better
job in continuing the border between house and snow and
inpainting the windows of the house, especially the windows
in the bottom row.

The results in Figs. 8 and 9 also show improvements over
p-BP [8]. Additionally, Fig. 8 shows clear advantage over the
“greedy” method from [7], which is also the case for all other
test images (not shown due to the lack of space). Compared to
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Fig. 8: Comparison of different inpainting methods for “baseball” image. From left to right and top to bottom: input image
with missing region in black, result of [7] with w = 4, result of Content Aware Fill, result of [23], result of p-BP [8] with
w = 3, and the result of the proposed method with w = 7.

TABLE I: Comparison of computation times.

Image p-BP [8] Proposed
(patch size) method

“bungee” (w = 6) 253.88s 113.76s
“ski resort” (w = 6) 871.93s 742.44s
“baseball” (w = 7) 1295.95s 499.5s

“wall” (w = 3) 103.33s 18.54s
“lake” (w = 3) 138.76s 45.14s

“office” (w = 2) 214.23s 58.42s

Content Aware Fill, our results are better (see images in the
second and third column of Fig. 9) or comparable. Finally,
we also show the results of two multiple candidate state-of-
the-art methods7: very recent super-resolution-based method
from [23] in Fig. 8 and method from [11] in Fig. 9. Our result
is comparable to that of [23], although our method preserves
better the border between snow and sky. Compared to [11],
our method gives superior results on all images in Fig. 9.

C. Complexity analysis

Table I shows the computation times of the p-BP [8] and
the proposed method, using our own MatLab implementation
of both methods on Intel i5-2520M 2.5 GHz CPU with 6GB
RAM, on several test images from Figs. 7, 8 and 9. For the
sake of fair comparison, we tested the algorithms for the same
patch size (adapted to the image), as indicated in the first
column of the table. The proposed method is obviously much
faster (for some images up to 6 times).

Most of the computation time for both methods is spent
on label pruning, as illustrated in Table II. Therefore, accel-
eration of our method is largely due to the use of contextual
information, which yields a smaller (constrained) label set,

7Results are available on the website of the authors.

TABLE II: Computation times per each phase of the algo-
rithms for image in Fig. 8 for w = 7.

Phase p-BP [8] Proposed method
threshold computation 144.44s 73.35s

initialization 20.29s 7.88s
label pruning 1126.45s 400.76s

inference 2.67s 0.82s
overhead computations 2.1s 16.69s

TABLE III: Comparison of time and space complexity, where
κ = maxi |Λi| and κ < |Λ|.

Phase Time Space
p-BP [8] Proposed p-BP [8] Proposed

initialization O(|Λ|) O(κ) O(|Λ|) O(κ)
label pruning O(L|Λ|) O(Lκ) O(6|Λ|) O(2κ)

inference O(L2) O(L2) O(L2 + 6L) O(L2 + 3L)

and hence there is less work for pruning. Initialization is
also much accelerated due to the same reason. Finally, our
inference method is also faster than p-BP, for about 3-4 times
on the “baseball” image (Fig. 8), with the same number
of iterations (10) and the same number of pruned labels
(L = 10). Overhead computations include patch stitching
and in the proposed method, texton computation, adaptive
division into blocks and block matching. Note also in Table II
that significant amount of time is needed for the threshold
computation. These computations are for the most images still
much faster than label pruning, except for the “ski resort”
image (bottom of Fig. 7), which is also the reason for less
significant speed-up over p-BP on this image.

The computation times presented above are mostly influ-
enced by the number of required SSD computations, which
depends on the number of labels of each node. SSD com-
putations are used for the computation of label cost and
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Fig. 9: Comparison of different inpainting methods on images “wall” (left), “lake” (middle) and “office” (right) from [45].
From top to bottom: input image with missing region in black, result of Content Aware Fill, result of [11], result of p-BP [8]
with w = 3 for all three images, and the result of the proposed method with w = 3, w = 3 and w = 2 for the left, middle
and right image, respectively.
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Fig. 10: Effect of block selection on the inpainting result. Top: An illustration of three different block selection strategies (see
text for details), corresponding to different values of τ (0.05, 0.15 and 0.5, from left to right), all starting from the same block
division. Bottom: The corresponding inpainting results.

pairwise potential (see Section III-A). Table III shows time and
space complexity comparison between p-BP and the proposed
algorithm for each phase in terms of the maximum number of
labels. Time complexity refers to the number of computations
performed by the algorithm: label cost computation in ini-
tialization (per node), pairwise potential computation in label
pruning (per edge), and pre-computation of pairwise potential
in inference (per edge). Space complexity refers to memory
requirements. In our analysis, the most memory is needed
to store label costs, beliefs and/or messages, each being a
vector of dimensionality equal to the number of labels per
node. Specifically, we need to store label costs in initialization
of both algorithms. Label pruning of p-BP requires storing
four messages (one from each neighbour), belief and label
cost (total of 6 vectors), compared to two label costs in label
pruning of our method. Finally, inference in both methods
requires storing pairwise potential, label cost and belief, plus
four messages in p-BP compared to only one message in
NCMP (used for inference in our algorithm). This analysis
confirms that the main reason for the reduced complexity (and
thus the computation time) of our algorithm is the reduced
number of labels per node due to the context-aware approach
(κ < |Λ|, where κ is the maximum number of labels per
node across all nodes). Furthermore, our algorithm requires
less variables to be computed and stored.

D. Effect of the parameters

A crucial aspect in our approach is the block selection,
which is determined by the block similarity threshold τ
(Eq. (2)). Fig. 10 illustrates the selected blocks (top) and the
corresponding inpainting results (bottom) for the three values
of τ : 0.05, 0.15 and 0.5 (for the purpose of illustration, the
block division and all the other parameters are kept fixed). The
current (query) blocks are marked with rectangles of different
colors, while their block matches (including the current blocks

themselves) are marked with a cross of the matching color.
Note that the yellow block is unreliable (see Section II-A),
thus its block matches are the block matches of neighbouring
blocks. We can see that for small τ , most of the blocks are
contextually similar only to themselves, which limits severely
the search for good candidate patches and yields a poor
inpainting result (left of Fig. 10). A too high τ yields too
many block matches, thus the source region is insufficiently
constrained. This not only produces worse result (right of
Fig. 10), but also decreases computational efficiency. The
best inpainting result was obtained with some intermediate
threshold (τ = 0.15 for the middle image in Fig. 10), which
allows the selection of sufficient but limited number of blocks
with well-matching context. Changing the value of τ around
this value has little influence on the block selection.

We found by experimental evaluation over multiple images
and block sizes, that τ = 0.15 is a good choice for a block
similarity threshold when using Nf = 18 filters (over 3 scales
and 6 orientations) and K = 16 textons (as we did for all
the images). We also made experiments with Nf = 24 filters
(over 3 scales and 8 orientations) and K = 32 textons. The
optimal value of τ was slightly higher in this case (0.2) and
we were able to obtain somewhat finer contextual division for
most images. However, the resulting slight differences did not
justify the increase in complexity.

Another parameter is L, the number of labels kept after
pruning. We found L = 10 to be a good trade-off between
algorithm’s computational complexity and quality of the result.
Optimal patch size, like in most other patch-based inpainting
methods, depends on the resolution and the content of the
image, and it is therefore tuned for each image.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel MRF-based inpaint-
ing method that uses context-aware approach to reduce the



RUŽIĆ AND PIŽURICA: CONTEXT-AWARE PATCH-BASED IMAGE INPAINTING USING MARKOV RANDOM FIELD MODELLING 13

number of possible labels per MRF node and choose them
in such a way that they better fit the surrounding context.
Context is represented within blocks of fixed or adaptive sizes
using contextual descriptors in the form of normalized texton
histograms. Additionally, to divide the image into blocks
of adaptive size, a novel top-down splitting procedure was
introduced. We also proposed a simple and efficient way to
perform optimization by first pruning the labels of each node
to some small number, using both the agreement of the node
with its labels and the contextual similarity between regions to
which the node and the label belong. Results demonstrated the
benefits of such an approach in comparison with the state-of-
the-art methods and improved speed in comparison with the
related MRF-based method.
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