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Abstract—We propose a new statistical model for image been studied in [10]-[19]. Taking advantage of correlation
restoration in which neighbourhoods of wavelet subbands & petween wavelet coefficients either across space, scalé or o
modeled by a discrete mixture of linear projected Gaussian entation, additional improvement in denoising performenc
Scale Mixtures (MPGSM). In each projection, a lower dimen- . L . . -
sional approximation of the local neighbourhood is obtaind, 'S obtained. The Gaussian Scale Mixture (GSM) model, in
thereby mode“ng the strongest correlations in that neighbur- which clusters of coefficients are modeled as the pI’OdUCt ofa
hood. The model is a generalization of the recently develoge Gaussian random vector and a positive scaling variable, has
Mixture of GSM (MGSM) model, that offers a significant im- ~ peen shown to produce results that are significantly better
provement both in PSNR and visually compared to the current than marginal models [17].

state-of-the-art wavelet techniques. However the comput®n o .

cost is very high which hampers its use for practical purposs. The traditional GSM model, as employed in [17], as-
We present a fast EM algorithm that takes advantage of the sumes that both the noise and the signal covariance ma-
projection bases to speed up the algorithm. The results show trices are constant within each subband. Improvements to
that, when projecting on a fixed data-independent basis, eve this approach are obtained by estimating the covariance
computational advantages with a limited loss of PSNR can be matrix locally in non-overlapping regions [20], known as

obtained with respect to the BLS-GSM denoising method, whé . f .
data-dependent bases of Principle Components offer a highe Spatially Variant GSM (SVGSM), or by adapting the local

denoising performance, both visually and in PSNR compareda ~ covariance matrix to the local dominant orientation [21],
the current wavelet-based state-of-the-art denoising mabds.  known as Orientation Adaptive GSM (OAGSM). In [18],
Index Terms—Image denoising, Bayesian estimation, it is noted that the texture boundaries in natural images are
Gaussian Scale Mixtures not sharply defined and that textures may blend into each
other. As a consequence, neighbouring wavelet coefficients
may havedifferentlocal covariance matrices. To obtain this
|. INTRODUCTION adaptability, a mixture of Gaussian Scale Mixtures (MGSM)

The class of natural images that we encounter in daifjodels is proposed in [18], [22]. By clustering the local
life is only a small subset of the set of all possible image§ovariance matrices globally, the model can also exploit
This subset is called an imageanifold [1]. Digital image hon-local redundancy (or repetitivity) in images. Thisules
processing applications are becoming increasingly ingmort in a denoising performance that is significantly better than
and they all start with a mathematical representation of tifee “single” GSM model from [17] and almost as good as
image. In Bayesian restoration methods, the image manifdft¢ best reported in literature of Dabov et al. [23]. Also
is encoded in the form of prior knowledge that express&d® MGSM model is able to deal explicitly witborrelated
the probabilities that given combinations of pixel intensinOise whereas at the time of writing, the non-wavelet based
ties can be observed in an image. Because image spd®&§hod of [23] is not.
are high-dimensional, one often isolates the manifolds by While MGSM is potentially very powerful, there are a
decomposing images into their components and by fittifgimber of issues involved: the most severe is the computa-
probabilistic models on it [1]. During the last decadedional cost that is linear in the number of GSM components
multiresolution image representations, like waveletseha@nd quadratic in neighbourhood size. Moreover, the high
received much attention for this purpose, due to thefjumber of free parameters can cause problems due to
sparseness which manifests in highly non-Gaussian #tatisthe “curse of dimensionality”[24], especially for smaller
for wavelet coefficients. Marginal histograms of waveléf/avelet subbands with few neighbourhood vectors.
coefficients are typically leptokurtotic and have heavystai N this paper, we will address these issues by introduc-
[2], [3]. In literature, many wavelet-based image dencgsining dimension reduction through linear projections in the
methods have arisen exploiting this property, and are oftM{>SM model and we will call this model the mixtures
based on simple and elegant shrinkage rules e.g. [4]-[9f. Projected GSM models (MPGSM). We show that the

In addition, joint histograms of wavelet coefficients haveSe of linear projections not only significantly reduces the
number of model parameters but also allows us to design
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a generalized MGSM model that unifies the SVGSM and
OAGSM methods. To reduce the number of free parameter
of the MGSM model, we use dimension reduction through

linear projections. ﬁ

Dimension reduction methods search for the manifolds
in the high-dimensional space on which the data resides Adaptation (o the local signal covariance matrix (£)
This can be obtained by fitting a linear subspace througt ﬁ (or FE)ower Spectral Densﬁy) through mixtures - MGSM
the observations, using a given criterion. If one minimizes
the Euclidean distance between the observations and the su
space, this results in Principal Component Analysis (PCA) zZﬁgficnogvgii;i;“;‘j;?fxﬂf’&‘F’,“G‘g'i,l'“a'
[27]-[29], also known as the Karhunen-Lovre Transform
(KLT). Because most of the energy is covered by the first
g principle components, we achieve a lower dimensional
approximation of the local neighbourhood, thereby redgicirf’9ure 1. Three layers of the MPGSM model
the number of independent model parameters.

Mixture models that embed PCA projections have al§g,ariance matrices. In Section II-C, we introduce ourlate
been proposed for more general tasks as density modelifgy e model, used for dimension reduction. We select
data visualization and data compression e.g. in [30], [3 rojection bases in Section Il and extend our model to
but for Gaussian distributed data instead of GSM distrithut ixtures of projections in Section IV. In Section V, we
data, although many of the ideas presented in [30], P’Eﬂlarive two Bayesian estimators for our model, both based

are also applicable to the MPGSM model. Compared to “6?1 minimizing the mean square error (MMSE) criterion: the

MGSM model and the GSM model, the proposed MPGSH| o approach MAP-k-MMSE applies first the maximum

model adds a third layer of adaptation as depicted in Fig. 1. ,steriori criterion to find the projection that matches

In this conceptual scheme, the first layer is the GSM scalilage best observation model and estimates the noise-free
factor f[hat provides adaptation to_ the local signal amgétu coefficient from the given projection. The secomserall-

or variance. The second layer is the MGSM componeffy;se approach gives the overall MMSE solution over a
index, which provides adaptation to signal covariance-(te,,mper of projections, but at a slightly higher computaion
tural and edge characteristics). The third layer is add%gst. The mixture model parameter estimation is described

by the proposed model, and it encodes the informatig section vi. Results are given in Section VIIl and the
inside the covariance matrix more efficiently. The model;jusion in Section 1X

training is performed using the Expectation Maximization
(EM) algorithm [32]. The more efficient covariance matrix
representation allows us to reduce the computational dost o
the training phase. Il. SIGNAL-PLUS-NOISE MODEL

'_I'he dimension reducti_on through a linear projection_ i/g‘_ Original GSM model
quite general. We consider two approaches: data-driven ) ) ) )
and data-independent projection bases. We show that thid Ne linearity of the wavelet transform yields the following
approach easily allows for variable sized neighbourhood§ationship between the noise-free coefficientsthe noise
which are more efficient for representing edges. When orffy and_ the qbserved noisy coefficients on a given scale
using data-independent projection bases, the EM trainidgd orientation:
can even be completely skipped, resulting in computational yj =%, +mn, 1)

savings up to factors 4 even compared to the BLS-GSfhere a one-dimensional indgxdenotes the spatial position
method [17], with limited loss of PSNR. (like raster scanning). The vectogs, n; andy;, random
We note that another very recent direction in the relatgftocess realizations of respectivety n andy, are formed
literature includes Fields of Gaussian Scale Mixture mededy extracting wavelet coefficients in a locl x A/ window
(FOGSM) [33]. This approach combines the GSM modekentered at positiori. The local windows are overlapping.
with a Markov Random Field model and currently yieldShe dimensionality of this original model ¢ = M2. We
better denoising performance on average than MGSM (sgs&sume that the noisa is spatially stationary Gaussian
[25], [33]). We include a comparison to this approach in thgoise, with mear®, but not necessarily white. Next, we use
experimental Section. periodical boundary extension at the subbands boundaries.
This paper is organized as follows. Section Il describesltis well known that the orthogonal discrete wavelet trans-
the problem we address and gives necessary backgrouiodm does not fully decorrelate the signal, and noise-free
in Section 1I-A, we introduce the signal-plus-noise modebavelet coefficients exhibit strong local correlationsisTis
used in the wavelet domain. We start from the originallso the case for undecimated wavelet transforms, obtained
prior GSM model from [17]. In Section II-B, we briefly by skipping the decimation operations [3]. In the context
investigate the directional information that is storedpat&al of denoising, redundant transforms are often preferred ove

Adaptation to the local signal amplitude - GSM (Z)




X107 B vector. These dependencies can be expressed using the
x covariance matrix, defined by:
- i C,=E(y-EW)y-EX)") 3)
- A \
’;’0&0““ -

For ad-dimensional vectoy, the covariance matrix has size
dxd, it is symmetrical and contain¥d+1)/2 independent
parameters. We further denote by:

-20 -10 0 10 20
4 R(p,q) = (Cy)p,q (4)

(b)
Figure 2. (a) Probability density of a bivariate Gaussiaal&dixture
(with an exponential distribution on) (b) Iso-probability contours of (a)

the covariance between the components corresponding to the

positionsp and q of the local window, i.e., the element at

row (p1 + Mpy + 1) and column(gq; + Mgo + 1) of C,,.

Herep; andg; are thei-th component of respectively and

non-redundant transforms, because the latter ones are @oWVhen eitherp or q are outsidethe local window, we

shift invariant. This practically means that the local gyer @ssume that the corresponding covariafi¢p, q) = 0, thus

at edges in the transform domain can be disturbed dependi¥gy only consider correlations between wavelet coefficients

on shifts of the input signal, creating visually disturbindgnside the local window.

artifacts in the reconstructed signal. When assuming spatial stationarity of the observed
Marginal probability density functions of noise-freavavelet coefficients, the covariance (or correlation) leemw

wavelet coefficients in a given band of the wavelet transforf0 noisy wavelet coefficients at positiopsand q of the

are typically symmetric around the mode and highly kurtoti¢ocal window only depends on the vector difference between

This suggests the use of elliptically symmetric distribat, the two positions:

like Gaussian Scale Mixtures (GSM), used in [17] (see _ _ _

Fig 2). A random variablex conforms to a GSM[m<])deI (Cy)pa = Fp.a) = £(0,a-p) ©®)

if it can be written as the product of a zero mean Gaussidie scalar functiod(0, p) is also called thautocovariance

random vectoru and a scalar random variabté/? where function and its normalized version is called the autocorre

z>0: lation function.
d _1/2 d 12 In Fig. 3, the autocorrelation function is illustrated for
x=2z/"u, suchthaty =2/ u+n (2)  the highpass bands of the Full Steerable Pyramid transform

where denotes equality in distribution. Prior distributiond1/]: [36] of the House test image. The Steerable Pyramid
f.(z) for the hidden variablez include Jeffrey’s non- decomposes_an image mtq a nu_mber _of o_rlented frequency
informative prior [17], theexponentialdistribution [34] and subbands, with clearly defined filter directions (the angles

the Gammadistribution (see e.g. [8], [19], [35]). To ease thére multiples ofr/ K, with K the number of orientations).

comparison with the results of Portilla et al. [17], we will " Fig. 3 we notice that the spatial correlations are
adapt Jeffrey’s non-informative prior (i.¢.(z) ~ ') in typically the strongest in the directiormthogonalto the
this workl filter direction. In other directions, the pyramid coeffitig

Here we will focus on the intra-scale dependencies b&f€ oftenuncorrelated In Section I1I-C we show that the

tween wavelet coefficients (i.e. dependencies within tfiimber of degrees of freedom within the model can be

same subband). We apply the wavelet transform on tﬁeeduced by ignoring th@on-significantcorrelations, by a

observed noisy image, denoise each subband independet{figa" Projection. Therefore we decompose each signal (and

and reconstruct the original image using the inverse wavenf?'se) vector into two vector components: a_Iow—dlmenshqna
transform vector that has a dense covariance matrix and a residual

vector with a diagonal covariance matrix, modeling non-
significant correlations. Motivated by the autocorrelatio
functions such as the ones displayed in Fig. 3, we will
ﬁhow how to choose data-independent projection bases (see
Section 1lI-A).

) ) _ o ) In the next SectionsC, and C,, will denote the co-
This Subsection provides some further insight into thgsriance matrices of the random vectarand the noise
model and notation, and it also gives an intuitive moti\nation, respectively. Together with (1) and (2), this yields the

for the dimension reduction of the model. additive relationshigC, = E (z) C,, + C,, [17]. We assume
Elliptically symmetric distributions model linear depenthat the noise covariance is known or estimated using a
dencies (correlations) between components of a rand@@parate technique (e.g. [37), is estimated from the noisy

band, andC, usingC, = (C, — C E (), where(-
1Because Jeffrey’s prior is improper, we set the prior to zmrtside the u USING &y (Cy .”)+/ (%) . ( )+
interval [Zmin , Zmaz] @s in [17], such that the medn(z) does exist. For replaces negative ?'genvalges_ with a Sma”_ posmve value,
full details, see [17]. such that the resulting matrix is positive definite [17].

B. Covariance matrices for modeling intra-scale depende
cies



0° 22.5° 45° 67‘2 by means of the orthogonal projectioddV?. We remark
thatr; is not the image noise, but the approximation error

' ' ;/ ‘, w4 in the complementary spagdg-. Using equation (7), we can
! 1M ! S onil I write the covariance matrix of as:
. o C, = VC,VT + VoV’ 8)
-5 -5 -5 -5
. o & of % o| Wy whereC,; = E (z) C,+C,,. C, andC,, areq x ¢ covariance
matrices of respectively andn. If we transformC, to a
° ° ° ° new coordinate system, with basis vectors fronand Y+,
05 05 05 05 the transformedC,, takes the form:
90° 112.5° 135° 157.5°
(Ct>11 (Ct>1q
o ’ l ; ! ! Cy _ (Ct>q1 (Ct)qq
= ] (‘I')n
-5 -5 -5 -5 .
of of i of & of @ (‘I’)q/q,
5 5 5 5 (9)
with (C;),. the element at row and column; of C, and
-5 0 5 -5 0 5 -5 0 5 -5 0 5 tJ

' ' _ ¢ = d—q. Since ¥ is diagonal, this means that only
Figure 3. Highpass bands of the House image (black correspaith = oo re|ations between components within the latent spage ar
large coefficient magnitudes), for the different oriertat of the Full .

Steerable Pyramid transform (see e.g. [17]). Below eachl kmthespatial  considered. In the complementary space, the components are

autocorrelation functionRy (p) for that band cropped to & x 17 window ~ assumed to be independent of each other and also indepen-

(black corresponds to high correlations). dent of components in the latent space. This means that we
will have to select the basis vectors of the latent spacd) suc
that the strongest correlations between the coefficiems ca

C. Latent variable models for dimension reduction be captured and such that the energy in the complementary

. . ) space (i.etr(¥)) is minimized (see Section IlI-B).
First we introduce the general latent variable model, useB (1. ex(W)) ( )

) . . . i According to the observation model from Section II-A,
for reducing the dimensionality of the local neighbourhoogyy, ¢ -~ and'r; contain contributions of the signal and the
and then we specify it for our problem. / ’

noise:
A latent variable model [38] describes the set of observed

d d
signal vectory; in ad-dimensional vector spad® in terms t Sv+n =:"%u+n (10)
of a set ofg-dimensional latent variables;, according to: r < p+w (11)
y; =h(t;) +g; (6) wherev andn denote the signal and nofsén the space

YV, and p and w represent the signal and noise in the
complementary spac&-. As equation (11) shows, we

such that we obtain a lower dimensional description of t{Bdelt Using a Gaussian scale mixture plus Gaussian noise
observed signal vector. These models are sometimes 4yle r is simply assumed to be a Gaussian vector with

called generative[30], in the sense that a high—dimensionaﬁj'agonal covariance matrix. Becguse we minimize the energy
vectory; can be obtained by mapping a low-dimensional the complementary space, this assumption will cause the

vectort; to a higher dimensional space, followed by addin%bserved prqbability function to h_:?ve ? sm:_;mll deviatipmfro
a residualg;. In our application, we consider the following e non-projected GSM probability function, but instead

linear latent variable model: the likelihood computation becomes significantly simpler

- (Section II-A):

y; = Vt; + Vr; @) — -
_ o ! ! _ fer(VTy, Vyg) = fo(VIy) f:(VTy5)
wheret; is ag-dimensional zero mean random vector, with _ +o00
covarianceCy, r; is (d—q) dimensional zero mean Gaussian = fr(VTYj)/ fo:(VTyjl2) f2(2)dz (12)
distributed residual vector, with diagonal covariangeand e
independent ot; and Vr; = g;. V is ad x ¢ matrix, the wherer ~ N(0, ¥) andt|z ~ N(0, 2C,+C,). For denois-
columns of which are orthonormal basis vectors of the loviRg this has the consequence thatfothe component-wise
dimensional spack. V is adx (d—q) matrix, containing the Wiener filter can be used (Section V). An illustration is in
orthonormal basis vectors of the orthogonal complementary, . .

b L hthatV — V@ VL. Here “o” denotes the We note thatr_l does not correspond to the observed noise as in
subspac ,.SUC -7 " ! Section II-A, but is here the projection of the observed aoiector in
orthogonal direct sum. The dimension reduction takes plae latent space.

whereh(-) is a function of random variable;, andg; is
a residual process, independenttgf In general,g < d,
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Figure 5. (a) A set of four simple neighbourhood structueggesenting
bases of three unit vectors in the Cartesian coordinatersy$ach structure
models correlations in a specific direction, e.qg. the finstcttire is sensitive
to horizontal edges, the second structurevirtical edges, etc. (b) A set of

Figure 4. lllustration of the decomposition of the vectpronto two neighbourhood structures with variable sizes and oriemst

componentst and r. t is modeled using a GSM distribution andis
Gaussian distributed.

is not capable of modeling a wide variety of images (the
Fig 4. The figure depicts the projection of the coefficienthodel covariance will rarely match the data). Therefore it
vector onto two components §s= t +r: vectort consists s necessary to combine several of these local models with
of correlated components modeled by a GSM distributiafifferent neighbourhood structures (see Section 1V).
and the residual vector consists of uncorrelated Gaussiaf\joreover, when designing the neighbourhood structures,
distributed components. Finally, we remark that §0K- d  gne is not limited to neighbourhoods of the same size. As
the non-projected signal vectoss = y; — (Vn+Vw) jjustrated in Fig. 5, one could e.g. usé a1 neighbourhood
will no longer strictly follow a GSM, as opposed to the priokor wavelet coefficients with small (negligible) magnitsde
model in Section II-A, although the resulting distributitn 5 3 » 3 neighbourhood for modeling textures and & 1
still greatly capable of modeling elliptical contours oh&l nejghbourhood for edges. This limits the number of model

in empirical joint-histograms of wavelet coefficients. parameters but at the same time allows to retaif a5
window size globally.
[1l. BASIS SELECTION Despite the computational efficiency of these bases, for
A. Data-independent bases observed data the covariance mati¥ C,V is generally

In this Section, we consider the choice of the bases 3Pt diagonal (hencel will not be diagonal), which may

the projection (i.e. matrice¥ andV). First, we investigate result in a slightl_y deteriorated pe_rfqrmance in practice.
data independent bases, that do not depend on the noisyBIB@refore’ we \.N'" assess the. yal|d|ty Of. the d"?‘gona"
servation. The spatial autocorrelation functions from elew 'Fy assumption in (9) by denmsmg experiments. in Seq—
bands of natural images (see Fig. 3) reveal that the strong 5 _VIII. Next, we also conS|der_ data_-de_pendent bases in
correlations are along straight lines passing through ¢me ¢ ection [11-B, that do not have this limitation.

ter (0, 0), like the horizontal, vertical and diagonal line. As

mentioned in Section II-B, when a multiresolution transfior
is used with a good directional selectivity, this usuallgos
in the direction orthogonal to the filter direction. Based In order to better adapt to the observed data, we can also
on this information, it becomes possible to construct da&stimate the projection bases from the observed data, e.g.,
independent bases that have a large proportion of the signsing PCA. The matrixV then contains the eigenvectors
and noise energy in the latent space. A computationatty the covariance matrixC, that correspond to the largest
attractive choice are bases made of unit vectors consisfingeigenvalues olC,. The matrixC; is diagonal and has the
d—1 zeros. This results in simple neighbourhood structurdargest (most dominant} eigenvalues ofC, as diagonal

For the3 x 3 neighbourhood structure of Fig. 5.a (leff;, elements. Note that the diagonality &; does not en-

B. Bases of Principal Components

is given by: force uncorrelatedness on the underlyimgse-freesamples
T or the noise because only the sum of their covariances
000100000 C;.=E(2)C, + C, is diagonal. Next, the complementary
V=10000 110000 (13) projection matrix V. contains thed — ¢ least dominant
00 0 0 01 000

eigenvectors ofC; and diagonal matrix consists of the
This has the advantage that the dimension reduction ahd- ¢ least dominant eigenvalues @&;. Projection onto
reconstruction are very fast. The subsequent denoisirgg ($8e principal subspacehas the property that the squared
Section V) comes down to filtering withx 3 horizontal filter reconstruction errozj.\’:1 llyj—v;l> = Z?’:l lly;—Py;|?
masks. The covariance mati®; is obtained fromC,, using is minimized [30]. In the context of denoising, this allows
C, = VT C,V (see (8)), which results in simply extractingus to only estimate the noise-free signal components in the
elements ofC,. Analogously, the diagonal elements ¥f principal subspace, followed by reconstruction.

are computed a¥; = [V''C, V], . However, it is clear ~ To estimate the dimensionality of the model in a data-
that oneuniversalneighbourhood structure like in Fig. 5.adriven way, we consider the cumulative proportion of the



and V{'y identifies the position on this manifold. Because
of the complexity of the manifolg, or more specifically the

global likelihood functionfy (y), the parameters cannot be
estimated directly from the data. Hence a training prooedur

04y Lena is required, that updates the model parameters iteratively

0.2 T paben based on some initial estimates. In a next step, the mixture
0 : ‘ ‘ : ‘ model is used to obtain estimates for the noise-free input
0 10 20 30 40 50

signal (ie. denoising). In the Section V, we go deeper into
the denoising itself. For this, we assume that the model

Figure 6. The cumulative proportion of the varianeg explained by the parameters are obtained from the training step, that is@ebrk
first ¢ Principal Components for all samples in7ax 7 window. In this out in Section VI

example, we use the first highpass band of a Full Steerablenfiyr[17] ’
with 8 orientations, for each image in the legend.

q

V. BAYESIAN ESTIMATION OF THE NOISEFREE
COEFFICIENTS

In this Section we face the estimation of the noise-
q d q free wavelet coefficients. Therefore, we impose a prior
ag =Y N/Y A=) N/tr(Cy) (14) distribution on the noise-free wavelet coefficients, in a
i=1 i=1 i=1 Bayesian approach [41]. Each component of the MPGSM
where)\; is thei-th eigenvalue of the covariance mat@,. model is aGaussian Scale Mixture plus Gaussian noise
To determiney we select a proportion of the total variancésee Section II-A). This allows us to estimate the noise-fre
and solve this equation tg numerically. In Fig. 6 it can coefficients for each hypothesi$, (as@ = Viix + Vipr),
be seen that for common test images, this yields dimensi@ilowed by aggregation of the resulting estimates acecwydi
reduction parameters < d. For example, if we select to the posterior probability of each hypothesis.Condiitn
a, = 88% for the Lena image, we obtaip = 15 < 49, on the hypothesist,, the Minimal Mean Square Error
as illustrated by the solid lines in Fig. 6. Other approaché¥IMSE) estimator for the noise-free coefficients is equiva-
estimate the dimensionality by looking for a drop in the lent to that for the observation model in [17]:
decrease of the reconstruction error wheimcreases [39], ..

. . ] = E (v|t, H,
are based on the eigenvalues of the covariance matrix ot (:;'o’ k)

samples in a local neighbourhood [40], or determinby :/ Foreutn, (216, Hy)2Co g (2Cu i + Coy ) tedz
comparing distances between data vectors [40]. o TR ’ ’ ’ ’ (16)

IV. DISCRETE MIXTURES OF LATENT VARIABLE MODELS  Here v, is a weighted average of local Wiener solutions
So far, we only considered one single GSM (or projectefdr different z in latent spacek. Unfortunately, we cannot
GSM) model, which comprises one constant covarianegways assume that, has been chosen large enough (see

matrix. To allow for multiple signal covariance matricesSection IlI-B), such that the greatest proportion of thergpe
we consider a set ok = 1,..., K latent variable models is inside the principal subspace. As a result, it is necggsar
conforming toy = V;t + V,r. Following the same estimate the signal component in the complementary space
reasoning as in [30], [31], we obtain mixtures as follow®- as well. If we denote the covariance matricesrpfp,
(called MPGSM): w (see Section 1I-C) respectively aB;, P, and Q, we

K estimatep;, as follows:

fy(y) =Y P(H) fym, (y|Hr) pr =E(plr, Hy) =Py (P + ) ' Viy  (17)

variance explained by the firgtPrincipal Components [29]:

E
Il
—

~ By the diagonality of the covariance matrices in (17) each

P(Hy) fom, (VEy|Hi) fejmr, (Vi y|Hi) (15) component can be estimatéddependently which offers
computational advantages especially when< d. To

where H;, denotes the hypothesis that mixture componeRtoceed, we have two options:
k is the “correct one”, i.e. the most likely according to « Two-step solution: detectl,, first, then estimatev,
the observed data. Each mixture component has its own using (16), withk = k. This involves ahard decision of
set of model parameters: projection matridég, V., Sig- the GSM model at each position of the wavelet subband
nal covarianceC,; and noise covarianc&, such that (Section V-A).
the covariance matrix of each component is given by e Single-step solution: estimate, by an overall opti-
V. C: VI +V, ¥, VI Each component contributes to the  mization overK modelsHj, ..., Hx. We do not make
global mixture with a weight given by, = P (H). When a hard decision here, but evaluate estimates according
regarding the space of all possibyeas a high-dimensional to every GSM model. Finally we average all obtained
manifold, Hy, identifies the low-dimensional manifold (in estimates according to their posterior probability (Sec-
this case hyperplane) that stores most of the signal energy tion V-B).

I
] =

=~
Il
_



The two approaches are further explained in the remaindzstimate ofv, and p for everyk = 1,..., K as apposed
of this Section. to doing it only once in (21). Note that we typically choose
K > 8, which means thatOveral-MMSE has a high

A. MAP-k-MMSE: detect first, then estimate computational demand comparedMAP-k-MMSE.

We select the latent model as the one that fits the available
data best, according to a given criterion (Bayesian MAP,
Neyman Pearson), which is @ecision problemIf the a ) o
priori probabilitiesP(Hy),k = 1,..., K of the hypotheses A Data-driven bases of Principal Components
are available, the Bayesian MAP decision rule is given by Because the hidden varialitas not directly observed, itis

VI. MIXTURE MODEL PARAMETER ESTIMATION

[41]: generally not possible to estimate the component covagianc
i o matrices and the projection bases directly from the data.
= k?{glma;} Frly (Hily) Instead, a recursive procedure is employed, based on the
T Expectation Maximization (EM) algorithm. The EM algo-
= mrgmax fyia, (y | Hy )P (Hy) (38) " fithm [32] is a general method for finding the maximum

likelihood (ML) estimate of the model parameté&ds when
the data has missing values. If we denote the mixing weights
as m, = P(Hy), the set of model parameters is given

where the conditional likelihoody , (y|Hy) is obtained
by integrating ovet::

Sy 51 HR) = e, (VEy|Hi) % (19) by ©® = {m. Vi, Vi, Cop, Ui,k = 1., K} with the
+o0 constraintsy ", 7, = 1 and¥,, diagonal. In the Appendix,
/ Jam (2| H) fo) 2 0 (VIyl|z, Hy)dz it is shown that for iteration, the model parameters can be
0 (20) estimated as follows:

N N N
Because the parameters of the conditional likelihood func-7(% _— 1 o' ands® = N o0y T ald
tion are already available from the training procedure,find = N ]z::l "7 g jz_:l b Y3Ys /JZ_; "
ing Hj, involves brute-force evaluation of the likelihoods (23)
function fyx, (v|Hx), €ach time with different parameter _ ) a
sets. Fortunately, this evaluation can be implemented maygere the posterior probabilities,”; = P(Hy|y;, ©(~1)
efficiently. We will go deeper into this in Section VII. (or responsibilities) are computed using Bayes’ rule:
A_ft.er the sele_ction of the “best” m_o_del for the given a,(j), _ P(Hk|yj’®(i71)>
position, the noise-free wavelet coefficient vector can be &

reconstructed from its estimated componehsand p;, for B W;(f_l)fy\Hk,e(ylek, eli-1) (24)
the selected hypothesi§; (see Fig. 7): N ZlL—l Wl(i_l)fy‘Hl o(y;|H;, ®G-1)
X =Vivi +Vip; (21) The ML estimates forVy,V;, C,, and ¥, are ob-

During the reconstruction, the projection matricés and t@ined through a d|agona_l|zz(ait)|on. of thecal responsibility-
V,, are used to transform the estimate back to the originjfightedcovariance matrxS, ”, similar to the explanation

space. Note that the MMSE estimator minimizes the isom&tlvén in Section 111-B. _
ric distance in the projection space. Because the projectio AS it iS common for most EM algorithms, the algo-

matrices are orthonormal, the isometric distance is preger "thm above may converge to poor non-global maxima of
the objective function [32]. Therefore, careful parameter

initialization of the initial projection bases is requirelh
[31], [42], other non-linear dimension reduction methouds a
B. Overall-MMSE: estimate once used to obtain these initial estimates, like the Local Linea

, . Embedding algorithm [43]. In our experiments described in
The second approach also incorporates uncertainty assQGiztion viil, we initialize the parameters using a uniform
ated with the detectioi/;,, and averages over the So'”“"”%istribution for the mixture Weightﬁ,(co) — 1/K and initial-

of all K MPGSM components (see Fig. 8): ize the sample covariance matrices heuristically as falow

K

A . A & s 2k

x=E(xly) = >_P(Hily)(Vivi+ Vipr)  (22) $ =B(2) Cugr + Cn, (25)
k=1

where the posterior probabilit (Hy|y) shows the adapt- W“,@ trfe scaling factor2k/(X + 1) chosen such that

(0)&0) _ S ;
ability of the model: the final estimate is a weighted meadk=17r St = E(2) Cu + Cy, the expected covariance
of estimates according to different projection spaces afftrix of the signal and the nois&, is estimated as
covariance matrices. explained in Section II-B.

It is clear that this approa_ch requires_ more (:_omDUtationgNote that some simplications are possible when considesirgata-
than the approach of Section V-A, since it involves aindependent projection basis, see Section VI-B.
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Unfortunately, the EM training algorithm is computationeptimized as follows:
ally very intensive, even0 to 20 times slower than the P(H v ©-D
denoising procedure discussed in the previous Section. We kzr{gl?i}({} (Hly;, )
therefore investigated approximations to this technicue t .
speed up this part of the algorithm. One way to speed up argmax 7P (yj|Hkv@(%1))

the training phase is by maximizing the log-likelihood for kel K} 4

the expected value of the hidden variableinstead of nu- = argmax (10g 7, + log P (Yj|Hk; 9(’_1)))

merically integrating over all possiblevalues (as explained ~ *€{1:K}

in the Appendix). Practically, the signal probability dips o ! (nyg‘)fn < (\_f{yj)fn
function is then computed as being Gaussian. We found that kirglma;} 08 M)~ Z (Cin) Z D)

an additional significant improvement in computation time =~ = m=1 " rmem m=1 '"””(27)
can be realized by using a “winner-take-all” variant of the

EM algo_rit.k_lr.n [44]. Thi_s comes down to replacing the localith log W;c = 2logm, — Y0 _ log (Ctvk)m,m _
responsibilities (24) with binary values: pOA log (®),,, .- We particularly note that the terms in

equation, the computations can be stopped whenever the
current accumulated sum becomes smaller than the last
maximum. In this case, we would never be able to improve
Section V-A, in the sense that a MAP decision is maqtge "T"St maximum. To get the most benefit of this t”.Ck as

W . : possible, we first completely evaluate (27) for the mixture
for the “correct” mixture component selection and that thi . ; ;

S . . component* that we predict to be the most likely. For EM
selection is used for accumulating the sample covariancgs . N )
T . - ” . iterationi = 1, we therefore usé* that has the highest-.

y;y; - Sadly, in the EM context the “winner-take-all” vari- . S o
. . or subsequent iteratioris> 1 we reuse the classification
ant does not necessarily converge to a maximum of tﬁe . .
i : . ._result from the previous estimate. Moreover, we can expect
log-likelihood function. However we can still apply this L . .
. . T ) thc? most benefit if the terms in the summations (27) are
technique during the first iterations and use the standar :
: . ordered such that they are decreasing and such that the
approach (24) only when the winner-take-all variant has ; . . ) .
converged [44] current maximum is attained as quickly as possible. Because
’ C.  and¥ usually are obtained from a SVD algorithm that
orders the eigenvalues in decreasing order, this autoatigtic

is the case.

B {1 k= argmaxge (s k) P(Hk|yj7@(i—1)) the summations in (27) are positive. While evaluating this

0 else
(26)
This approach is similar to tHdAP-k-MMSEapproach from

This way, the EM algorithm fully takes advantage of the
Another advantage of the “winner-take-all” approach iBnear projections. This technique finds the desired marimu
that the MAP classification in (26) and in (18) can b@®(Hy|y,;,®~Y) exactly, but in a reduced number of
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When estimating only the central coefficient of the neigh-
bourhood, for the strateg9verall-MMSE(Section V-B) this
results in the estimate:

K K
%] = > P(Hily) [Vivi] 4D P(Hily) [Vipr], (29)

k=1 k=1
i X with ¢ = 1 4 |d/2], using our indexing conventions (see
(@) (b) Section 1I-B), and[x]. is the c-th component of the vector

Figure 9. (a) Magnitude of a noisy wavelet subband of BarbBtack X S'_m'lar asin [17], We S|mpl|f_y the eSt'mate (29) by diago-
corresponds to high magnitudes (b) Label image of the mostimmt Nalizing the observation covariance matrixygfconditioned
MPGSM component. The number of MPGSM componentd iand the on > and k:

size of the neighbourhood & x 5. We usedg = 20.

Cyiop = Vi(2Cup + Crp) Vi + Vi BV]

computations. In the best case scenario, Kisimes faster; = (ViUrQi) (Apz + 1) (ViUr Qi) + Vil Vi
in the worst case (ify; = 0 and 7, = 7,k = 1,.., K, (30)
which never occurs in practical situations) the computatiavhere U, is the symmetric square root of the positive
time remains the same. definite matrixC,, , (UyUL = C,x), and Q, and Ay

To illustrate the effectiveness of the “winner-take-allare obtained by the SV, ' C,, Uy = Q A, Qx. Hence
variant of the EM-algorithm for this task, we add whiteU,, Q, andA, are allq x ¢ matrices. This diagonalization
Gaussian noise (with varian@s?) to the Barbara image. does not depend om and has to be performefl times
In Fig. 9.a, the magnitude of a wavelet subband of tifer each wavelet subband. It is interesting to note that the
noisy image is depicted. Fig. 9.b shows the inderf the projection (V,U,Qx)? that diagonalizes both the signal
most dominant MPGSM component of each position in thend noise covariance matrix, independentpfs generally
wavelet subband. Even though the noise level is quite highet an orthogonal projection, sindé;, is not an orthogonal
the method is able to capture the repetitivity in the imageansform in general. Unfortunately, this projection riegsi
neighbourhoods that are similar are also classified aS4SUQ{”nowledge of the noise covariance matrix, and cannot be
estimated from the observed wavelet coefficient vectors
using standard PCA. Nevertheless, this decomposition is
. computationally attractive, because in this way the evalu-
B. Data-independent bases ation of £y s, (=]t, Hy,) in (16) andP(Hyly) in (22) only

It is convenient to only estimate the central coefficient gfyolves diagonal covariance matrices. Next, applying thi
the considered local window [17]. For the data—independe(mhgonmization to equation (21), yields:
bases of Section IlI-A, we select the bases such that the Sl vl
central coefficient of the window is retained after projenti £ (x[y, 2) = (ViUrQrArz (Arz+1) " Q. U "V,
(i.e., [Vi]e: = 1 for exactly onei € {1,...,d}). With this + VP, (P, + Qk)*lvg)y (31)
choice thec-th row of V; only contains zeros, such that ] ) o )
[Vipr], = 0, making the estimation o, unnecessary in By precomputlrlg 71theT matrix mult|pI|cat|oinls_T(|.e.
this case. For some well chosen neighbourhood structurés UxQrAs, QU "V and Vi Py (Pr + Qx) " Vi)
as in Fig. 5.a, we see, by comparing covariance matricager the EM-training phase, the computational complexity
Cyp = VkCt,ng + qu,vg corresponding to different (for each modek) is essentially _reduced to the complexity
modelsk, that a non-diagonal element @, , appears to be ©f the standard BLS-GSM estimator [17] when = d
non-zero, for at most on&. If we further assume that the@nd becomes even more efficient wherc d because the
model probabilitiesP(H;) are prior knowledge, the EM- second term in (31) is simply a linear (Wiener) estimate,

algorithm is not required, which is a big computationdldependent of.
advantage. Because the probabiliflei§f;) are not known

. ; . o _ VIIl. RESULTS
in practice, we estimate them empirically from the data as: ] .
A. Using data-independent bases
——— 1

N
P(Hy) = — ZI (k: = arg maXP(ylek,)) (28) !n this Subsection, the results for our method are produced
N K/ using the Dual Tree Complex Wavelet Transform (DT-CWT)
- . . 45], with 6 tap Q-shift filters. In Table I, the performance
where!(-) denotes the indicator function. For efficiency, thes ihe estimatorsMAP-k-MMSEand Overall-MMSE (Sec-
probabilities P (y;| Hy,) are computed only once for everyy,, vy is evaluated for thes data-independerttases from
subband and stored in the memory of the computer. Fig. 5. For K = 1, only the horizontal neighbourhood is

“ery recently, in parallel to our research, in [25] a simikasult is US€d. FOrK = 2, both horizontal and Verti(‘f""' neighbour-
obtained for the noise-free House image. hoods are used. The speed-up w.r.t. [17] is calculated by

j=1
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PFSP |

01 | [ o | PSNRi, | 6] | 231 |
Barbara 10 28.13 34.83 | 35.38 | 35.12
OF - === ===~~~ =0~ -~ - - -0~ Gl2x5l2) | 15 | 2451 | 3209 ] 3345 | 3302
2 o4l '2 ¢ ,8 s % 25 | 2017 | 29.82 | 30.93 | 30.31
x 8 % v Y% LCena 10 | 2813 | 3550] 3589 | 3574
n 02f (512 x 512) | 15 24.61 33.70 | 34.23 | 34.04
& O - Peppers 20 22.11 32.40 | 33.01 | 32.80
0.3 ¢ Lena 25 20.17 31.28 | 32.04 | 31.81
v v ¥ -+ House
04 ‘ ‘ ‘ ‘ : : Table I
\114" ﬁ«\ (,'\;,\ 7’};\ /%/‘ ﬁ‘ COMPARISON WITH RECENTNoN-local METHODS FOR WHITE NOISE
< & < < 3 & K-SVD (ELAD ET AL.) [46], BM-3D [23]. PSNR[dB] RESULTS ARE
& 7] 7] 7 g 7] GIVEN.
S S S S S S
7 0 z 0 z 7
d g 4 : 4 g
s S s S s S
represents a signal of interest. The results for this teghani

Figure 10. Average Decreasin PSNR (DPSNR) fodata-independerbases from are reported for the undecimated wavelet transform, with
Fig. 5, compared to the method of [17]. Results arg averaged @}diﬁerent hoise Symlet 8, as in [9] Tha&iShrink method of [16] estimates
IeveISq € {5,15,25,35,50,80}. The corresponding computational savings arethe noise-free wavelet coefficients based on a bivariate
shown in Table I.
statistical model for wavelet coefficients and their parent
coefficients, in the DT-CWT domain. The GSM-BLS filter
dividing execution times, averaged over 30 runs. In ordgr7], already explained before, uses Full Steerable Pydami
to have a fair comparison, we implemented the referen(eSP), with 8 orientations and3ax 3 local window,without
method of [17] in C++, using the DT-CWT and the saménclusion of a parent coefficient in the local neighbourhood
level of optimization as for our method. A good trade-off iThe SV-GSM filter [20] uses the same settings as GSM-
the methodverall-MSEfor K = 2, which is approximately BLS and additionally a fixed block size 82 x 32. We also
three times faster than the reference method, with only aompare our results to the Fields of Gaussian Scale Mixtures
average PSNR decrease @fl28dB. For this choice, the model from [33], that combines a spatial Markov Random
average computation time is 3 sec. on an Intel Pentium Ca*eld model with a GSM Model. Because at the time of
2 CPU 2.40 GHz processor with 2 Gb RAM (fot2 x 512 writing the implementation is not publicly available, we
grayscale images; the implementation is single-threaded)copied the results from [33] whenever the same input image
and input SNR is used. For the proposed technique, we
report results for both the DT-CWT and the FSP transform.
Our method is very competitive to the technique from [17]

K=1
DPSNR;,, Speedup
MAP-k-MMSE 0.260 4.25 and performs significantly better in the presence of strong
Overall-MMSE 0.260 4.25 edges or patterns, e.g. the Barbara image (see Fig. 11). A
K=2 result for artificial correlated noise is shown in Fig. 12ngs
DPSNR;, | Speedup the same parameter set as mentioned above. The method
MAP-k-MMSE 0.184 3.10 using data-independent bases still leaves some stripégin t
Overal-MMSE 0.128 2.95 image, while the method using data-dependent bases is able
K=4 to completely remove the noise pattern.
DPSNR;, | Speedup In Table Ill, we compare the data-adaptive MP-GSM
MAP-K-MMSE 0.183 1.08 method to two recent nonlocal techniques: K-SVD [46] and
Overal-MMSE 0123 175 BM-3D [23]. Although the performance of our method is
significantly better than K-SVD, it is slightly outperforishe
by BM-3D. We believe the main reason is that our method
uses exploits non-local information only partially (i.a.the

Table |
Average Decreasel PSNR (DPSNR)dB] AND speed-ug-oR data-independent
BASES FROMFIG. 5, COMPARED TO THE METHOD OF17]. RESULTS ARE
AVERAGED OVER Leng Barbara House Couple PeppersanD Hill, AND 6
DIFFERENT NOISE LEVELSo € {5, 15,25, 35, 50,80}

EM training phase and not the denoising phase), and can be
further improved by enabling the estimation in Section V
to use information from other neighbourhoods as well. This
will be topic of our future research.

A final point of interest is the evolution of the denoising
performance for a fixed neighbourhood size, whenis

B. Using data-driven bases of Principal Components

In Table 1l, we compare our data-adaptive MP-GSMaried. For this experiment, we add white Gaussian noise
method Overall-MSE including the EM-algorithm from with standard deviatiorr = 15 to the Barbara, Lena
Section VI with current wavelet domain state-of-the-art deand House image. Next, we apply the proposed denoising
noising algorithms. Our method uses local windows of sizaethod for different values af, and measure the denoising
5x5 anda, = 92%. TheProbShrinkmethod from [9] scales performance in terms of PSNR. The neighbourhood has the
each wavelet coefficient according to the probability that size 7 x 7. In Fig. 13, the difference in PSNR (DPSNR)
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| | | | PSNRout |
| [ o | PSNR., | 1O | [16] [ 71 | [20] | [33] | PCWT | P-FSP|
Barbara 5 34.15 37.75 | 37.10 | 38.32 | 3850 B 3850 | 38.65
(512 x 512) | 10 28.13 33.83 | 3351 | 3450 | 34.97 B 3487 | 3512
15 24.61 3146 | 31.28 | 32.21 | 32.76 B 32.75 | 33.02
20 22.11 20.77 | 29.76 | 3056 | 31.15 B 31.24 | 31.50
25 20.17 2845 | 28.63 | 29.30 | 29.90 B 30.07 | 30.31
Lena 5 34.15 38.18 | 38.01 | 38.40 | 3853 | 38.66 | 38.61 | 38.63

(512 x 512) | 10 28.13 35.06 | 35.29 | 3559 | 35.64 | 35.94 35.63 35.74
15 24.61 33.23 | 3358 | 33.85 | 33.91 | 34.28 33.87 34.04

20 22.11 3190 | 32.32 | 3257 | 3261 - 32.58 32.80
25 20.17 30.87 | 31.35 | 3158 | 31.59 | 32.11 31.56 31.81
House 5 34.15 38.04 | 38.01 38.69 | 38.88 38.98 39.30 39.30

(256 x 256) | 10 28.13 34.61 | 34.78 | 3537 | 35,50 | 35.63 35.66 35.86
15 24.61 32.69 | 33.01 | 33,59 | 33.67 | 33.89 33.62 33.99

20 2211 31.27 | 31.74 | 32.27 | 32.32 - 32.17 32.67

25 20.17 30.18 | 30.74 | 31.22 | 31.25 | 31.64 31.09 31.62

Peppers 5 34.15 37.02 | 36.42 | 37.15 | 37.32 - 37.62 37.60
(512 x 512) | 10 28.13 3424 | 34.41 | 3458 | 34.63 - 34.69 34.77
15 24.61 32.67 | 32.14 | 33.13 | 33.16 - 33.17 33.32

20 22.11 31.50 31.64 32.03 32.05 - 32.03 32.25

25 20.17 31.13 30.74 31.13 31.13 - 31.10 31.38

Table Il

DENOISING RESULTS INPSNR[B] FORWhiteNOISE WITH STANDARD DEVIATION o. P-CWT: THE PROPOSED METHOD IN THEDT-CWT DOMAIN, P-FSP:THE
PROPOSED METHOD USINGFULL STEERABLE PYRAMIDS

is reported compared to the case of using no projections
(the MGSM model). It can be seen that for > 30 or
equivalently, foro, > 0.7, only a marginal improvement
(~ 0.2dB) in denoising performance can be achieved when
using no projections, but at a much higher computational
cost (the number of model parameters increases quadrati-
cally in ¢, see Fig. 13c). We note that smaller neighbourhood
sizes can be obtained by using special cases of the prajectio
matrices (see Section IlI-A), hence this result suggesis th
the denoising performance may further increase when using|
larger neighbourhood sizes, likd x 11, but this requires
a proper selection of the projection subspaces, which is not
yet possible using the EM-algorithm in Section VI and will
be a topic for our future work.

C. Discussion

So far we only considered dependencies between wavelgtire 12. Denoising results for artificiabrrelated noise, fors = 25.
coefficients within the same subband or scale, but one demm left to rri]ght and frgmm ;?r?o Jou;ggogtat?ﬁdeogiegrigzuisrr&zgé;e;
also take interscale dependencies into account using y Image, the propose - =
a Hidden Markov Tree (HMT) model [11]. The MPGSMPSNQ ::33%3((1)]%]3 the proposed method using data-dependent bases
component indice& are then hidden nodes (states) of the
HMT. The EM training can be easily extended to include the
Baum-Welch algorithm. After applying the training phase, « If K is chosen too small, then local adaptation to the
one can use the state transition probability to find matching spatially varying covariance is lost. The performance
MPGSM components across scales, e.g. to arrive at a multi- falls back to thesingle GSM model whenK — 1.
scale texture segmentation. « If K is too large, some mixture components will obtain

For the results in this paper, the number of MPGSM a very low weight after the model training. As noted in
componentss is selected to be constant for every wavelet  [25], under-utilized mixture components may attribute
subband. IdeallyK should represent the number of groups to a large part of the computation time. Fortunately,
of neighbourhoods that share the same local spectral glensit in our approach we can solve this problem by using
(when ignoring the phase information in the covariance the “winner-take-all” variant of the EM algorithm (Sec-
matrix, the local spectral density is the Fourier transform tion VI) and by the incremental computation of the
of the local autocovariance function). This number may be likelihood function, under-utilized mixture components
difficult to determine in advance. However, we find that: are quickly rejected, without altering the final training
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(d)

Figure 11. Denoising results favhite noise: two different parts of the Barbara image, foe= 25. (a) the original image, (b) the noisy image, (c)
GSM-BLS [17], (d) SV-GSM [20], (e) the proposed MPGSM metheing DT-CWT.
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Figure 13. Influence of the parameteror o, on the denoising performance ftana barbara and housecorrupted with white Gaussian noise with
o = 15. The local neighbourhood size Tsx 7. (a) Difference in PSNR, with respect o compared to using no projectiong € d = 49). (b) Difference
in PSNR, with respect tay,, compared to using no projectiong £ d = 49). (c) Total number of model parameters with respect,téor MPGSM
(K (g(g+1)/24+d —q+1) and for MGSM (K (d(d + 1)/2 + 1).

result. the following local responsibility function:
1 jeB
ay,j = P(Hly;, ®) = I =P

0 else

Based on this, we chood€ rather large enough’{ = 8 or

K = 12) to obtain maximal benefit of the model comparehere{Bi, k = 1,..., K} is the set of all wavelet coefficient
to thesingle GSM model. Future research could e.g. invedllocks. Becausey, ; is constant for a give, the recursive
tigate the effect of the recently developed greedy mixtufeéM algorithm is not required for the model training. This
learning [47], [48], where starting from one componenf,eSU“S in computational savings, the only limitation fgein

a new component is iteratively added and the compldfeat the signal covariance matrix cannot change from point
mixture is updated. to point except when block boundaries are crossed (whereas

MPGSM does allow changes from point to point). However

MPGSM is a generalization of earlier related models (sé js still possible_ to use the SVGSM. method as initial_izatio
Fig. 14): the SVGSM method [20] assumes that the locq the EM alg_orlthrp(,o?s an alternative for _(25)' In th|s_ case
signal covariance matrix is constant with# x B blocks ¢ could estimates;” as the local covarlance matrix in
of wavelet coefficients. It is interesting to note that th8!0CK B
MAP-k-MMSE strategy generalizes this tephniqu_e: if the |nstead of adapting the MPGSM model to the local
wavelet subband has siz¥, x N, then it consists of .o\ ariance, it is also possible to adapt it the local origora
[N2/B] x [Ny/B] blocks. Let us choose the number oy features in a given band as in [21]. A Steerable Pyramid
MPGSM componentss = [2=] |22 |. Then the MAP-k- (SP) transform is used for this, with 2 orientation bands. Le
MMSE is equivalent with the SVGSM method if we choos@s assume that the vectokg,y;,n; are column stacked
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MP-GSM
(proposed)

[ M-GSM [42]] EOA—GSM [21]]

SV-GSM [20]

versions of the wavelet coefficients in a locAM x M
window centered at positiof of both bands, such that the
dimensiond = 2M2. The SP transform has the nice property
that oriented features can be computed as a linear sum of
coefficients in different orientation bands. More specifica

we have:

y; = R(6;)t; (32)

with R(#) a spatial rotation operator that rotates the patch
by 6; radians, chosen such that the dominant orientation of
t; is along the first coordinate axis. For the construction of
R(0) we refer to [21]. However, there are some practical
problems in this method:

« 6, is continuous {; € [0,2x]), while in practice a

discrete number of; values have to be evaluated.
« 0; has to be estimated from the noisy SP subband itself

and there is no guarantee that a “dominant” orientatiqﬁnmrove upon the recently proposed MGSM model. The
exist (for example: rotational invariant patches) new model is a generalization of the existing SVGSM,
An alternative method is obtained by noticing that (32) i§AGSM and MGSM techniques and allows for a lot of
a special case of the latent variable model introduced flexibility with regard to the neighbourhood size, spatial
Section II-C:y; = Vit; + Vir;, with V,, = R(6;) and adaptation and even when modeling dependencies between
d = q. Instead of estimating;, we “learn” V;. from the different wavelet subbands. We developed a fast EM algo-
image itself. Hence we can consider the OAGSM-methafihm for the model training, based on the “winner-take-
also as a special case of the MPGSM model, where th# strategy, taking advantage of the Principal Component
SP transform is used and the neighbourhood is extendeditgses. We discussed how this technique can also be used
different orientation bands. to speed up the denoising itself. We discussed how data-
We also note that the MPGSM model specializes to thedependent projection bases can be constructed to allow
MGSM model from [25] when we choose= d and identity flexible neighbourhood structures, offering computationa
matrices for the projection bas&s, = I. This is equivalent savings compared to the GSM-BLS method which can
to not incorporating dimension reductions into the modehe useful for real-time denoising applications. Finally we
hence the third layer in Fig. 1 is missing. showed the PSNR improvement of the complete MPGSM-

The Mixtures of Principal Component Analyzers model.S method compared to recent wavelet-domain state-of-
from [30] and the Mixtures of Factor Analyzers model fromhe-art methods.

[31] have in common with the MPGSM model that the
mixtures all incorporate dimension reductions, eitheotigh

PCA or Factor Analysis. However, the underlying model is
different: in [30], [31] the low dimensionapproximation (1] A. Srivastava, A. B. Lee, E.P. Simoncell, and S-C. zhu,0n*

GSM [18]

Figure 14. Schematic overview of recent GSM prior models. airow
denotes: “is a generalization of”. Also see text.
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APPENDIX: EM ALGORITHM FOR THEMPGSM MODEL

In this Section, we describe the EM-algorithm for the
algorithm proposed in Section VI. For the EM-algorithm,
“Analysis of Complex of Statistical vatles into the expected complete data log-likelihood is given by [32]:

Q(©,0") =E (log fy ke (Y, kO)Y,0)

K N K N
= Z Zp(kb’jvok)%c,j = Zzak,ﬂk,j

k=1 j=1 k=1 j=1
(33)

wherefy, = {Vy, Vy, Ci, ¥} is the set of parameters for
mixture component and g ; = log 7y + log fyo(y;|0k).

For computational reasons, we maximize the likelihood
function for a fixedz = zg = E (z) instead of integrating
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and Machine Intelligencevol. 28, no. 8, pp. 1236-1250, 2006.
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over all possiblez, and approximatey, ; using:

+oo
qk,j = log g, +/ (2) fy)z,0(yjl2, 0k)dz
0

~ log 7y +log fy|..0(yjlz = 2E, Ok)
= log 7 +10g fo|..0(VE Y|z = 28, 0k)+
10g fe20(Viyjlz = 25, 0k) (34)
Finding the stationary points a@f. ; with respect toV, leads
to:

Oqr.;
oV,

(ijjT (cht,kvz)_l Vi — Vk) Cir=0 (36)

— (VkCixVE) ™ x (35)

and an analogous expression can be found%f%fk% = 0.
A solution of (36) is given byVC; .V} = y;y]. By
averaging this solution over (i.e. for finding the stationary
points of Q(©, ®’)), we arrive at the following update rule:

N
e i VY, Vi

Ct,k = N (37)
Zj:l Qk,j
and similarly we find a solution fO%;@l) =0:
N V, T T
ok i Viyiy: V
v, — ZJ_l kjVkYiY; Vi (38)

N
23:1 Qk,j

Requiring thatC; , and ¥, are diagonal yields that the
columns of V,, and V, must be eigenvectors of the
responsibility weighted sample covariance matfix =
S anyyiyT /YO0 au . With this choiceCy . and @y,

will contain the eigenvalues d§; on its diagonal. We can
further minimize the energy in the complementary space
tr(¥y) by taking the most dominant eigenvectors 1y,

and the least dominant eigenvectors M. Surprisingly,
this is equivalent to using the standard EM algorithm for
Gaussian mixtures (by the approximation in (34)) and apply-
ing a diagonalization afterwards on the estimated coveeian
matrix for each mixture component.



