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Image Denoising Using Mixtures of Projected
Gaussian Scale Mixtures

Bart Goossens, Aleksandra Pižurica and Wilfried Philips

Abstract—We propose a new statistical model for image
restoration in which neighbourhoods of wavelet subbands are
modeled by a discrete mixture of linear projected Gaussian
Scale Mixtures (MPGSM). In each projection, a lower dimen-
sional approximation of the local neighbourhood is obtained,
thereby modeling the strongest correlations in that neighbour-
hood. The model is a generalization of the recently developed
Mixture of GSM (MGSM) model, that offers a significant im-
provement both in PSNR and visually compared to the current
state-of-the-art wavelet techniques. However the computation
cost is very high which hampers its use for practical purposes.
We present a fast EM algorithm that takes advantage of the
projection bases to speed up the algorithm. The results show
that, when projecting on a fixed data-independent basis, even
computational advantages with a limited loss of PSNR can be
obtained with respect to the BLS-GSM denoising method, while
data-dependent bases of Principle Components offer a higher
denoising performance, both visually and in PSNR compared to
the current wavelet-based state-of-the-art denoising methods.

Index Terms—Image denoising, Bayesian estimation,
Gaussian Scale Mixtures

I. I NTRODUCTION

The class of natural images that we encounter in daily
life is only a small subset of the set of all possible images.
This subset is called an imagemanifold [1]. Digital image
processing applications are becoming increasingly important
and they all start with a mathematical representation of the
image. In Bayesian restoration methods, the image manifold
is encoded in the form of prior knowledge that expresses
the probabilities that given combinations of pixel intensi-
ties can be observed in an image. Because image spaces
are high-dimensional, one often isolates the manifolds by
decomposing images into their components and by fitting
probabilistic models on it [1]. During the last decades,
multiresolution image representations, like wavelets, have
received much attention for this purpose, due to their
sparseness which manifests in highly non-Gaussian statistics
for wavelet coefficients. Marginal histograms of wavelet
coefficients are typically leptokurtotic and have heavy tails
[2], [3]. In literature, many wavelet-based image denoising
methods have arisen exploiting this property, and are often
based on simple and elegant shrinkage rules e.g. [4]–[9].
In addition, joint histograms of wavelet coefficients have
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been studied in [10]–[19]. Taking advantage of correlations
between wavelet coefficients either across space, scale or ori-
entation, additional improvement in denoising performance
is obtained. The Gaussian Scale Mixture (GSM) model, in
which clusters of coefficients are modeled as the product of a
Gaussian random vector and a positive scaling variable, has
been shown to produce results that are significantly better
than marginal models [17].

The traditional GSM model, as employed in [17], as-
sumes that both the noise and the signal covariance ma-
trices are constant within each subband. Improvements to
this approach are obtained by estimating the covariance
matrix locally in non-overlapping regions [20], known as
Spatially Variant GSM (SVGSM), or by adapting the local
covariance matrix to the local dominant orientation [21],
known as Orientation Adaptive GSM (OAGSM). In [18],
it is noted that the texture boundaries in natural images are
not sharply defined and that textures may blend into each
other. As a consequence, neighbouring wavelet coefficients
may havedifferent local covariance matrices. To obtain this
adaptability, a mixture of Gaussian Scale Mixtures (MGSM)
models is proposed in [18], [22]. By clustering the local
covariance matrices globally, the model can also exploit
non-local redundancy (or repetitivity) in images. This results
in a denoising performance that is significantly better than
the “single” GSM model from [17] and almost as good as
the best reported in literature of Dabov et al. [23]. Also
the MGSM model is able to deal explicitly withcorrelated
noise whereas at the time of writing, the non-wavelet based
method of [23] is not.

While MGSM is potentially very powerful, there are a
number of issues involved: the most severe is the computa-
tional cost that is linear in the number of GSM components
and quadratic in neighbourhood size. Moreover, the high
number of free parameters can cause problems due to
the “curse of dimensionality” [24], especially for smaller
wavelet subbands with few neighbourhood vectors.

In this paper, we will address these issues by introduc-
ing dimension reduction through linear projections in the
MGSM model and we will call this model the mixtures
of projected GSM models (MPGSM). We show that the
use of linear projections not only significantly reduces the
number of model parameters but also allows us to design
fast training algorithms. In this sense, the paper further
builds upon the MGSM model from [18], [22], [25] and
is also a continuation of our previous work in [26]. We
also show that the resulting model can be interpreted as
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a generalized MGSM model that unifies the SVGSM and
OAGSM methods. To reduce the number of free parameters
of the MGSM model, we use dimension reduction through
linear projections.

Dimension reduction methods search for the manifolds
in the high-dimensional space on which the data resides.
This can be obtained by fitting a linear subspace through
the observations, using a given criterion. If one minimizes
the Euclidean distance between the observations and the sub-
space, this results in Principal Component Analysis (PCA)
[27]–[29], also known as the Karhunen-Lovre Transform
(KLT). Because most of the energy is covered by the first
q principle components, we achieve a lower dimensional
approximation of the local neighbourhood, thereby reducing
the number of independent model parameters.

Mixture models that embed PCA projections have also
been proposed for more general tasks as density modeling,
data visualization and data compression e.g. in [30], [31],
but for Gaussian distributed data instead of GSM distributed
data, although many of the ideas presented in [30], [31]
are also applicable to the MPGSM model. Compared to the
MGSM model and the GSM model, the proposed MPGSM
model adds a third layer of adaptation as depicted in Fig. 1.
In this conceptual scheme, the first layer is the GSM scaling
factor that provides adaptation to the local signal amplitude
or variance. The second layer is the MGSM component
index, which provides adaptation to signal covariance (tex-
tural and edge characteristics). The third layer is added
by the proposed model, and it encodes the information
inside the covariance matrix more efficiently. The model
training is performed using the Expectation Maximization
(EM) algorithm [32]. The more efficient covariance matrix
representation allows us to reduce the computational cost of
the training phase.

The dimension reduction through a linear projection is
quite general. We consider two approaches: data-driven
and data-independent projection bases. We show that this
approach easily allows for variable sized neighbourhoods,
which are more efficient for representing edges. When only
using data-independent projection bases, the EM training
can even be completely skipped, resulting in computational
savings up to factors 4 even compared to the BLS-GSM
method [17], with limited loss of PSNR.

We note that another very recent direction in the related
literature includes Fields of Gaussian Scale Mixture models
(FoGSM) [33]. This approach combines the GSM model
with a Markov Random Field model and currently yields
better denoising performance on average than MGSM (see
[25], [33]). We include a comparison to this approach in the
experimental Section.

This paper is organized as follows. Section II describes
the problem we address and gives necessary background:
in Section II-A, we introduce the signal-plus-noise model
used in the wavelet domain. We start from the original
prior GSM model from [17]. In Section II-B, we briefly
investigate the directional information that is stored in spatial

Adaptation to the local signal amplitude - GSM

Adaptation to the local signal covariance matrix
(or Power Spectral Density) through mixtures - MGSM

(z)

(k)

Recoding of the information in the local
signal covariance matrix - MPGSM

Figure 1. Three layers of the MPGSM model

covariance matrices. In Section II-C, we introduce our latent
variable model, used for dimension reduction. We select
projection bases in Section III and extend our model to
mixtures of projections in Section IV. In Section V, we
derive two Bayesian estimators for our model, both based
on minimizing the mean square error (MMSE) criterion: the
first approach,MAP-k-MMSE, applies first the maximum
a posteriori criterion to find the projection that matches
the best observation model and estimates the noise-free
coefficient from the given projection. The second,overall-
MMSE approach gives the overall MMSE solution over a
number of projections, but at a slightly higher computational
cost. The mixture model parameter estimation is described
in Section VI. Results are given in Section VIII and the
conclusion in Section IX.

II. SIGNAL -PLUS-NOISE MODEL

A. Original GSM model

The linearity of the wavelet transform yields the following
relationship between the noise-free coefficientsxj , the noise
nj and the observed noisy coefficientsyj on a given scale
and orientation:

yj = xj + nj (1)

where a one-dimensional indexj denotes the spatial position
(like raster scanning). The vectorsxj , nj and yj , random
process realizations of respectivelyx, n andy, are formed
by extracting wavelet coefficients in a localM ×M window
centered at positionj. The local windows are overlapping.
The dimensionality of this original model isd = M2. We
assume that the noisen is spatially stationary Gaussian
noise, with mean0, but not necessarily white. Next, we use
periodical boundary extension at the subbands boundaries.

It is well known that the orthogonal discrete wavelet trans-
form does not fully decorrelate the signal, and noise-free
wavelet coefficients exhibit strong local correlations. This is
also the case for undecimated wavelet transforms, obtained
by skipping the decimation operations [3]. In the context
of denoising, redundant transforms are often preferred over
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Figure 2. (a) Probability density of a bivariate Gaussian Scale Mixture
(with an exponential distribution onz) (b) Iso-probability contours of (a)

non-redundant transforms, because the latter ones are not
shift invariant. This practically means that the local energy
at edges in the transform domain can be disturbed depending
on shifts of the input signal, creating visually disturbing
artifacts in the reconstructed signal.

Marginal probability density functions of noise-free
wavelet coefficients in a given band of the wavelet transform
are typically symmetric around the mode and highly kurtotic.
This suggests the use of elliptically symmetric distributions,
like Gaussian Scale Mixtures (GSM), used in [17] (see
Fig 2). A random variablex conforms to a GSM model
if it can be written as the product of a zero mean Gaussian
random vectoru and a scalar random variablez1/2 where
z ≥ 0:

x
d
= z1/2u, such that y

d
= z1/2u + n (2)

where
d
= denotes equality in distribution. Prior distributions

fz(z) for the hidden variablez include Jeffrey’s non-
informative prior [17], theexponentialdistribution [34] and
theGammadistribution (see e.g. [8], [19], [35]). To ease the
comparison with the results of Portilla et al. [17], we will
adapt Jeffrey’s non-informative prior (i.e.fz(z) ∼ z−1) in
this work.1

Here we will focus on the intra-scale dependencies be-
tween wavelet coefficients (i.e. dependencies within the
same subband). We apply the wavelet transform on the
observed noisy image, denoise each subband independently,
and reconstruct the original image using the inverse wavelet
transform.

B. Covariance matrices for modeling intra-scale dependen-
cies

This Subsection provides some further insight into the
model and notation, and it also gives an intuitive motivation
for the dimension reduction of the model.

Elliptically symmetric distributions model linear depen-
dencies (correlations) between components of a random

1Because Jeffrey’s prior is improper, we set the prior to zerooutside the
interval [zmin, zmax] as in [17], such that the meanE (z) does exist. For
full details, see [17].

vector. These dependencies can be expressed using the
covariance matrix, defined by:

Cy = E
(

(y − E (y)) (y − E (y))
T
)

(3)

For ad-dimensional vectory, the covariance matrix has size
d×d, it is symmetrical and containsd(d+1)/2 independent
parameters. We further denote by:

R(p,q) = (Cy)p,q (4)

the covariance between the components corresponding to the
positionsp andq of the local window, i.e., the element at
row (p1 + Mp2 + 1) and column(q1 + Mq2 + 1) of Cy.
Herepi andqi are thei-th component of respectivelyp and
q. When eitherp or q are outside the local window, we
assume that the corresponding covarianceR(p,q) = 0, thus
we only consider correlations between wavelet coefficients
inside the local window.

When assuming spatial stationarity of the observed
wavelet coefficients, the covariance (or correlation) between
two noisy wavelet coefficients at positionsp and q of the
local window only depends on the vector difference between
the two positions:

(Cy)p,q = R(p,q) = R(0,q − p) (5)

The scalar functionR(0,p) is also called theautocovariance
function and its normalized version is called the autocorre-
lation function.

In Fig. 3, the autocorrelation function is illustrated for
the highpass bands of the Full Steerable Pyramid transform
[17], [36] of the House test image. The Steerable Pyramid
decomposes an image into a number of oriented frequency
subbands, with clearly defined filter directions (the angles
are multiples ofπ/K, with K the number of orientations).

In Fig. 3 we notice that the spatial correlations are
typically the strongest in the directionsorthogonal to the
filter direction. In other directions, the pyramid coefficients
are oftenuncorrelated. In Section II-C we show that the
number of degrees of freedom within the model can be
reduced by ignoring thenon-significantcorrelations, by a
linear projection. Therefore we decompose each signal (and
noise) vector into two vector components: a low-dimensional
vector that has a dense covariance matrix and a residual
vector with a diagonal covariance matrix, modeling non-
significant correlations. Motivated by the autocorrelation
functions such as the ones displayed in Fig. 3, we will
show how to choose data-independent projection bases (see
Section III-A).

In the next Sections,Cu and Cn will denote the co-
variance matrices of the random vectoru and the noise
n, respectively. Together with (1) and (2), this yields the
additive relationshipCy = E (z)Cu +Cn [17]. We assume
that the noise covariance is known or estimated using a
separate technique (e.g. [37]).Cy is estimated from the noisy
band, andCu using Ĉu = (Ĉy − Cn)+/E (z), where(·)+
replaces negative eigenvalues with a small positive value,
such that the resulting matrix is positive definite [17].
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Figure 3. Highpass bands of the House image (black corresponds with
large coefficient magnitudes), for the different orientations of the Full
Steerable Pyramid transform (see e.g. [17]). Below each band is thespatial
autocorrelation functionRy(p) for that band cropped to a17×17 window
(black corresponds to high correlations).

C. Latent variable models for dimension reduction

First we introduce the general latent variable model, used
for reducing the dimensionality of the local neighbourhood
and then we specify it for our problem.

A latent variable model [38] describes the set of observed
signal vectorsyj in ad-dimensional vector spaceW in terms
of a set ofq-dimensional latent variablestj , according to:

yj = h(tj) + gj (6)

whereh(·) is a function of random variabletj , andgj is
a residual process, independent oftj . In general,q < d,
such that we obtain a lower dimensional description of the
observed signal vector. These models are sometimes also
calledgenerative[30], in the sense that a high-dimensional
vector yj can be obtained by mapping a low-dimensional
vectortj to a higher dimensional space, followed by adding
a residualgj. In our application, we consider the following
linear latent variable model:

yj = Vtj + V̄rj (7)

wheretj is a q-dimensional zero mean random vector, with
covarianceCt, rj is (d−q) dimensional zero mean Gaussian
distributed residual vector, with diagonal covarianceΨ and
independent oftj and V̄rj = gj. V is a d × q matrix, the
columns of which are orthonormal basis vectors of the low-
dimensional spaceV . V̄ is ad×(d−q) matrix, containing the
orthonormal basis vectors of the orthogonal complementary
subspaceV⊥, such thatW = V⊕V⊥. Here “⊕” denotes the
orthogonal direct sum. The dimension reduction takes place

by means of the orthogonal projectionVVT . We remark
that rj is not the image noise, but the approximation error
in the complementary spaceV⊥. Using equation (7), we can
write the covariance matrix ofy as:

Cy = VCtV
T + V̄ΨV̄T (8)

whereCt = E (z)Cu+Cn. Cu andCn areq×q covariance
matrices of respectivelyu andn. If we transformCy to a
new coordinate system, with basis vectors fromV andV⊥,
the transformed̃Cy takes the form:

C̃y =





















(Ct)11 · · · (Ct)1q
...

. . .
...

(Ct)q1 · · · (Ct)qq

(Ψ)11
. . .

(Ψ)q′q′





















(9)
with (Ct)ij the element at rowi and columnj of Ct and
q′ = d − q. Since Ψ is diagonal, this means that only
correlations between components within the latent space are
considered. In the complementary space, the components are
assumed to be independent of each other and also indepen-
dent of components in the latent space. This means that we
will have to select the basis vectors of the latent space, such
that the strongest correlations between the coefficients can
be captured and such that the energy in the complementary
space (i.e.tr(Ψ)) is minimized (see Section III-B).

According to the observation model from Section II-A,
both tj and rj contain contributions of the signal and the
noise:

t
d
= v + n

d
= z1/2u + n (10)

r
d
= ρ + ω (11)

wherev and n denote the signal and noise2 in the space
V , and ρ and ω represent the signal and noise in the
complementary spaceV⊥. As equation (11) shows, we
modelt using a Gaussian scale mixture plus Gaussian noise
while r is simply assumed to be a Gaussian vector with
diagonal covariance matrix. Because we minimize the energy
in the complementary space, this assumption will cause the
observed probability function to have a small deviation from
the non-projected GSM probability function, but instead
the likelihood computation becomes significantly simpler
(Section II-A):

ft,r(V
T yj , V̄

Tyj) = ft(V
T yj)fr(V̄

T yj)

= fr(V̄
T yj)

∫ +∞

−∞

ft|z(V
T yj |z)fz(z)dz (12)

wherer ∼ N(0,Ψ) andt|z ∼ N(0, zCu+Cn). For denois-
ing this has the consequence that forr, the component-wise
Wiener filter can be used (Section V). An illustration is in

2We note thatn does not correspond to the observed noise as in
Section II-A, but is here the projection of the observed noise vector in
the latent space.
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Figure 4. Illustration of the decomposition of the vectory onto two
componentst and r. t is modeled using a GSM distribution andr is
Gaussian distributed.

Fig 4. The figure depicts the projection of the coefficient
vector onto two components asy = t + r: vectort consists
of correlated components modeled by a GSM distribution
and the residual vector consists of uncorrelated Gaussian
distributed components. Finally, we remark that forq < d
the non-projected signal vectorsxj = yj −

(

Vn + V̄ω
)

will no longer strictly follow a GSM, as opposed to the prior
model in Section II-A, although the resulting distributionis
still greatly capable of modeling elliptical contours observed
in empirical joint-histograms of wavelet coefficients.

III. B ASIS SELECTION

A. Data-independent bases

In this Section, we consider the choice of the bases for
the projection (i.e. matricesV andV̄). First, we investigate
data independent bases, that do not depend on the noisy ob-
servation. The spatial autocorrelation functions from wavelet
bands of natural images (see Fig. 3) reveal that the strongest
correlations are along straight lines passing through the cen-
ter (0, 0), like the horizontal, vertical and diagonal line. As
mentioned in Section II-B, when a multiresolution transform
is used with a good directional selectivity, this usually occurs
in the direction orthogonal to the filter direction. Based
on this information, it becomes possible to construct data
independent bases that have a large proportion of the signal
and noise energy in the latent space. A computationally
attractive choice are bases made of unit vectors consistingof
d−1 zeros. This results in simple neighbourhood structures.
For the3 × 3 neighbourhood structure of Fig. 5.a (left),V

is given by:

V =





0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0





T

(13)

This has the advantage that the dimension reduction and
reconstruction are very fast. The subsequent denoising (see
Section V) comes down to filtering with1×3 horizontal filter
masks. The covariance matrixCt is obtained fromCy using
Ct = VT CyV (see (8)), which results in simply extracting
elements ofCy. Analogously, the diagonal elements ofΨ

are computed asΨii =
[

V̄T CyV̄
]

ii
. However, it is clear

that oneuniversalneighbourhood structure like in Fig. 5.a

(a)

(b)

Figure 5. (a) A set of four simple neighbourhood structures representing
bases of three unit vectors in the Cartesian coordinate system. Each structure
models correlations in a specific direction, e.g. the first structure is sensitive
to horizontaledges, the second structure tovertical edges, etc. (b) A set of
neighbourhood structures with variable sizes and orientations.

is not capable of modeling a wide variety of images (the
model covariance will rarely match the data). Therefore it
is necessary to combine several of these local models with
different neighbourhood structures (see Section IV).

Moreover, when designing the neighbourhood structures,
one is not limited to neighbourhoods of the same size. As
illustrated in Fig. 5, one could e.g. use a1×1 neighbourhood
for wavelet coefficients with small (negligible) magnitudes,
a 3 × 3 neighbourhood for modeling textures and a5 × 1
neighbourhood for edges. This limits the number of model
parameters but at the same time allows to retain a5 × 5
window size globally.

Despite the computational efficiency of these bases, for
observed data the covariance matrixV̄T CyV̄ is generally
not diagonal (henceΨ will not be diagonal), which may
result in a slightly deteriorated performance in practice.
Therefore, we will assess the validity of the diagonal-
ity assumption in (9) by denoising experiments in Sec-
tion VIII. Next, we also consider data-dependent bases in
Section III-B, that do not have this limitation.

B. Bases of Principal Components

In order to better adapt to the observed data, we can also
estimate the projection bases from the observed data, e.g.,
using PCA. The matrixV then contains the eigenvectors
of the covariance matrixCy that correspond to the largest
eigenvalues ofCy. The matrixCt is diagonal and has the
largest (most dominant)q eigenvalues ofCy as diagonal
elements. Note that the diagonality ofCt does not en-
force uncorrelatedness on the underlyingnoise-freesamples
or the noise, because only the sum of their covariances
Ct = E (z)Cu + Cn is diagonal. Next, the complementary
projection matrix V̄ contains thed − q least dominant
eigenvectors ofCt and diagonal matrixΨ consists of the
d − q least dominant eigenvalues ofCt. Projection onto
the principal subspace, has the property that the squared
reconstruction error

∑N
j=1 ||yj−ŷj ||

2 =
∑N

j=1 ||yj−Pyj ||
2

is minimized [30]. In the context of denoising, this allows
us to only estimate the noise-free signal components in the
principal subspace, followed by reconstruction.

To estimate the dimensionalityq of the model in a data-
driven way, we consider the cumulative proportion of the
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variance explained by the firstq Principal Components [29]:

αq =

q
∑

i=1

λi/
d
∑

i=1

λi =

q
∑

i=1

λi/tr(Cy) (14)

whereλi is thei-th eigenvalue of the covariance matrixCy.
To determineq we select a proportion of the total variance
and solve this equation toq numerically. In Fig. 6 it can
be seen that for common test images, this yields dimension
reduction parametersq ≪ d. For example, if we select
αq = 88% for the Lena image, we obtainq = 15 ≪ 49,
as illustrated by the solid lines in Fig. 6. Other approaches
estimate the dimensionalityq by looking for a drop in the
decrease of the reconstruction error whenq increases [39],
are based on the eigenvalues of the covariance matrix of
samples in a local neighbourhood [40], or determineq by
comparing distances between data vectors [40].

IV. D ISCRETE MIXTURES OF LATENT VARIABLE MODELS

So far, we only considered one single GSM (or projected
GSM) model, which comprises one constant covariance
matrix. To allow for multiple signal covariance matrices,
we consider a set ofk = 1, ..., K latent variable models
conforming to y = Vkt + V̄kr. Following the same
reasoning as in [30], [31], we obtain mixtures as follows
(called MPGSM):

fy(y) =

K
∑

k=1

P(Hk)fy|Hk
(y|Hk)

=
K
∑

k=1

P(Hk)ft|Hk
(VT

k y|Hk)fr|Hk
(V̄T

k y|Hk) (15)

whereHk denotes the hypothesis that mixture component
k is the “correct one”, i.e. the most likely according to
the observed data. Each mixture component has its own
set of model parameters: projection matricesVk, V̄k, sig-
nal covarianceCt,k and noise covarianceΨk such that
the covariance matrix of each component is given by
VkCt,kV

T
k +V̄kΨkV̄

T
k . Each component contributes to the

global mixture with a weight given byπk = P (Hk). When
regarding the space of all possibley as a high-dimensional
manifold, Hk identifies the low-dimensional manifold (in
this case hyperplane) that stores most of the signal energy

andVT
k y identifies the position on this manifold. Because

of the complexity of the manifoldy, or more specifically the
global likelihood functionfy(y), the parameters cannot be
estimated directly from the data. Hence a training procedure
is required, that updates the model parameters iteratively
based on some initial estimates. In a next step, the mixture
model is used to obtain estimates for the noise-free input
signal (ie. denoising). In the Section V, we go deeper into
the denoising itself. For this, we assume that the model
parameters are obtained from the training step, that is worked
out in Section VI.

V. BAYESIAN ESTIMATION OF THE NOISE-FREE

COEFFICIENTS

In this Section we face the estimation of the noise-
free wavelet coefficients. Therefore, we impose a prior
distribution on the noise-free wavelet coefficients, in a
Bayesian approach [41]. Each component of the MPGSM
model is aGaussian Scale Mixture plus Gaussian noise
(see Section II-A). This allows us to estimate the noise-free
coefficients for each hypothesisHk (as x̂ = Vkv̂k + V̄kρ̂k),
followed by aggregation of the resulting estimates according
to the posterior probability of each hypothesis.Conditioned
on the hypothesisHk, the Minimal Mean Square Error
(MMSE) estimator for the noise-free coefficients is equiva-
lent to that for the observation model in [17]:

v̂k = E (v|t, Hk)

=

∫ +∞

0

fz|t,Hk
(z|t, Hk)zCu,k (zCu,k + Cn,k)

−1
tkdz

(16)

Here, v̂k is a weighted average of local Wiener solutions
for different z in latent spacek. Unfortunately, we cannot
always assume thatαq has been chosen large enough (see
Section III-B), such that the greatest proportion of the energy
is inside the principal subspace. As a result, it is necessary to
estimate the signal component in the complementary space
V⊥ as well. If we denote the covariance matrices ofr, ρ,
ω (see Section II-C) respectively asΨk, Pk and Ωk, we
estimateρ̂k as follows:

ρ̂k = E (ρ|r, Hk) = Pk (Pk + Ωk)
−1

V̄T
k y (17)

By the diagonality of the covariance matrices in (17) each
component can be estimatedindependently, which offers
computational advantages especially whenq ≪ d. To
proceed, we have two options:

• Two-step solution: detect̂Hk first, then estimatêvk

using (16), withk = k̂. This involves ahard decision of
the GSM model at each position of the wavelet subband
(Section V-A).

• Single-step solution: estimatêvk by an overall opti-
mization overK modelsH1, ..., HK . We do not make
a hard decision here, but evaluate estimates according
to every GSM model. Finally we average all obtained
estimates according to their posterior probability (Sec-
tion V-B).
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The two approaches are further explained in the remainder
of this Section.

A. MAP-k-MMSE: detect first, then estimate

We select the latent model as the one that fits the available
data best, according to a given criterion (Bayesian MAP,
Neyman Pearson), which is adecision problem. If the a
priori probabilitiesP(Hk), k = 1, ..., K of the hypotheses
are available, the Bayesian MAP decision rule is given by
[41]:

k̂ = arg max
k∈{1,...,K}

fHk|y(Hk|y)

= arg max
k∈{1,...,K}

fy|Hk
(y|Hk)P(Hk) (18)

where the conditional likelihoodfy|Hk
(y|Hk) is obtained

by integrating overz:

fy|Hk
(y|Hk) = fr|Hk

(V̄T
k y|Hk)× (19)

∫ +∞

0

fz|Hk
(z|Hk)ft|z,Hk

(VT
k y|z, Hk)dz

(20)

Because the parameters of the conditional likelihood func-
tion are already available from the training procedure, find-
ing Ĥk involves brute-force evaluation of the likelihoods
function fy|Hk

(y|Hk), each time with different parameter
sets. Fortunately, this evaluation can be implemented more
efficiently. We will go deeper into this in Section VII.

After the selection of the “best” model for the given
position, the noise-free wavelet coefficient vector can be
reconstructed from its estimated componentsv̂k̂ and ρ̂k̂ for
the selected hypothesiŝHk (see Fig. 7):

x̂ = Vk̂v̂k̂ + V̄k̂ρ̂k̂ (21)

During the reconstruction, the projection matricesVk and
V̄k are used to transform the estimate back to the original
space. Note that the MMSE estimator minimizes the isomet-
ric distance in the projection space. Because the projection
matrices are orthonormal, the isometric distance is preserved.

B. Overall-MMSE: estimate once

The second approach also incorporates uncertainty associ-
ated with the detection̂Hk, and averages over the solutions
of all K MPGSM components (see Fig. 8):

x̂ = E (x|y) =
K
∑

k=1

P(Hk|y)(Vkv̂k + V̄kρ̂k) (22)

where the posterior probabilityP(Hk|y) shows the adapt-
ability of the model: the final estimate is a weighted mean
of estimates according to different projection spaces and
covariance matrices.

It is clear that this approach requires more computations
than the approach of Section V-A, since it involves an

estimate ofv̂k and ρ̂k for every k = 1, ..., K as apposed
to doing it only once in (21). Note that we typically choose
K ≥ 8, which means thatOverall-MMSE has a high
computational demand compared toMAP-k-MMSE.

VI. M IXTURE MODEL PARAMETER ESTIMATION

A. Data-driven bases of Principal Components

Because the hidden variablek is not directly observed, it is
generally not possible to estimate the component covariance
matrices and the projection bases directly from the data.3

Instead, a recursive procedure is employed, based on the
Expectation Maximization (EM) algorithm. The EM algo-
rithm [32] is a general method for finding the maximum
likelihood (ML) estimate of the model parametersΘ, when
the data has missing values. If we denote the mixing weights
as πk = P(Hk), the set of model parameters is given
by Θ = {πk,Vk, V̄k,Ct,k,Ψk, k = 1, ..., K} with the
constraints

∑K
k=1 πk = 1 andΨk diagonal. In the Appendix,

it is shown that for iterationi, the model parameters can be
estimated as follows:

π̂
(i)
k =

1

N

N
∑

j=1

α
(i)
k,j andS

(i)
k =

N
∑

j=1

α
(i)
k,jyjy

T
j /

N
∑

j=1

α
(i)
k,j

(23)

where the posterior probabilitiesα(i)
k,j = P(Hk|yj ,Θ

(i−1))
(or responsibilities) are computed using Bayes’ rule:

α
(i)
k,j = P(Hk|yj ,Θ

(i−1))

=
π

(i−1)
k fy|Hk,Θ(yj |Hk,Θ(i−1))

∑L
l=1 π

(i−1)
l fy|Hl,Θ(yj |Hl,Θ(i−1))

(24)

The ML estimates forVk, V̄k,Ct,k and Ψk are ob-
tained through a diagonalization of thelocal responsibility-
weightedcovariance matrixS(i)

k , similar to the explanation
given in Section III-B.

As it is common for most EM algorithms, the algo-
rithm above may converge to poor non-global maxima of
the objective function [32]. Therefore, careful parameter
initialization of the initial projection bases is required. In
[31], [42], other non-linear dimension reduction methods are
used to obtain these initial estimates, like the Local Linear
Embedding algorithm [43]. In our experiments described in
Section VIII, we initialize the parameters using a uniform
distribution for the mixture weightŝπ(0)

k = 1/K and initial-
ize the sample covariance matrices heuristically as follows:

Ŝ
(0)
k = E (z) Ĉu

2k

K + 1
+ Cn, (25)

with the scaling factor2k/(K + 1) chosen such that
∑K

k=1 π̂
(0)
k Ŝ

(0)
k = E (z) Ĉu + Cn, the expected covariance

matrix of the signal and the noise.̂Cu is estimated as
explained in Section II-B.

3Note that some simplications are possible when consideringa data-
independent projection basis, see Section VI-B.



8

y Projections

t

r

Estimate,
according to model k

Estimate,
according to model k

Select model with 
highest P(Hk|t,r) (MAP)

k̂
v̂

k̂
ρ̂

Reconstruction x̂

^

^

k̂

Figure 7. Schema for the “detect first, then estimate” strategy.

y Projections

Estimate for model 1

Compute model 
probability P(H1|t,r)

Weight
estimates

1
v̂

Kρ̂

R
e

co
nstruction x̂

Estimate for model K K
v̂

Compute model 
probability P(HK|t,r)

Estimate for model 1

Estimate for model K

1
ρ̂

:

:

:

1x̂

K
x̂

:

:

:

..

1t

Kt

1r

Kr

:

:

Figure 8. Schema for the “estimate once” strategy.

Unfortunately, the EM training algorithm is computation-
ally very intensive, even10 to 20 times slower than the
denoising procedure discussed in the previous Section. We
therefore investigated approximations to this technique to
speed up this part of the algorithm. One way to speed up
the training phase is by maximizing the log-likelihood for
the expected value of the hidden variablez, instead of nu-
merically integrating over all possiblez-values (as explained
in the Appendix). Practically, the signal probability density
function is then computed as being Gaussian. We found that
an additional significant improvement in computation time
can be realized by using a “winner-take-all” variant of the
EM algorithm [44]. This comes down to replacing the local
responsibilities (24) with binary values:

α
(i)
k,j =

{

1 k = arg maxk∈{1,...,K} P(Hk|yj ,Θ
(i−1))

0 else
(26)

This approach is similar to theMAP-k-MMSEapproach from
Section V-A, in the sense that a MAP decision is made
for the “correct” mixture component selection and that this
selection is used for accumulating the sample covariances
yjy

T
j . Sadly, in the EM context the “winner-take-all” vari-

ant does not necessarily converge to a maximum of the
log-likelihood function. However we can still apply this
technique during the first iterations and use the standard
approach (24) only when the winner-take-all variant has
converged [44].

Another advantage of the “winner-take-all” approach is
that the MAP classification in (26) and in (18) can be

optimized as follows:

argmax
k∈{1,...,K}

P(Hk|yj ,Θ
(i−1))

= argmax
k∈{1,...,K}

πkP
(

yj |Hk,Θ(i−1)
)

= argmax
k∈{1,...,K}

(

log πk + log P
(

yj |Hk,Θ(i−1)
))

= argmax
k∈{1,...,K}

(

log π
′

k−

q
∑

m=1

(

VT
k yj

)2

m

(Ct,k)m,m

−

d−q
∑

m=1

(

V̄T
k yj

)2

m

(Ψk)m,m

)

(27)

with log π
′

k = 2 log πk −
∑q

m=1 log (Ct,k)m,m −
∑d−q

m=1 log (Ψ)m,m. We particularly note that the terms in
the summations in (27) are positive. While evaluating this
equation, the computations can be stopped whenever the
current accumulated sum becomes smaller than the last
maximum. In this case, we would never be able to improve
the last maximum. To get the most benefit of this trick as
possible, we first completely evaluate (27) for the mixture
componentk⋆ that we predict to be the most likely. For EM
iterationi = 1, we therefore usek⋆ that has the highestπk⋆ .
For subsequent iterationsi > 1 we reuse the classification
result from the previous estimate. Moreover, we can expect
the most benefit if the terms in the summations (27) are
ordered such that they are decreasing and such that the
current maximum is attained as quickly as possible. Because
Ct,k andΨ usually are obtained from a SVD algorithm that
orders the eigenvalues in decreasing order, this automatically
is the case.

This way, the EM algorithm fully takes advantage of the
linear projections. This technique finds the desired maximum
P(Hk|yj ,Θ

(i−1)) exactly, but in a reduced number of
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(a) (b)

Figure 9. (a) Magnitude of a noisy wavelet subband of Barbara. Black
corresponds to high magnitudes (b) Label image of the most dominant
MPGSM component. The number of MPGSM components is4 and the
size of the neighbourhood is5 × 5. We usedq = 20.

computations. In the best case scenario, it isK times faster;
in the worst case (ifyj = 0 and π

′

k = π
′

1, k = 1, ..., K,
which never occurs in practical situations) the computation
time remains the same.

To illustrate the effectiveness of the “winner-take-all”
variant of the EM-algorithm for this task, we add white
Gaussian noise (with variance252) to the Barbara image.
In Fig. 9.a, the magnitude of a wavelet subband of the
noisy image is depicted. Fig. 9.b shows the indexk of the
most dominant MPGSM component of each position in the
wavelet subband. Even though the noise level is quite high,
the method is able to capture the repetitivity in the image:
neighbourhoods that are similar are also classified as such4.

B. Data-independent bases

It is convenient to only estimate the central coefficient of
the considered local window [17]. For the data-independent
bases of Section III-A, we select the bases such that the
central coefficient of the window is retained after projection
(i.e., [Vk]c,i = 1 for exactly onei ∈ {1, ..., d}). With this
choice thec-th row of V̄k only contains zeros, such that
[

V̄kρ̂k

]

c
= 0, making the estimation of̂ρk unnecessary in

this case. For some well chosen neighbourhood structures
as in Fig. 5.a, we see, by comparing covariance matrices
Cy,k = VkCt,kV

T
k + V̄kΨV̄T

k corresponding to different
modelsk, that a non-diagonal element ofCy,k appears to be
non-zero, for at most onek. If we further assume that the
model probabilitiesP(Hk) are prior knowledge, the EM-
algorithm is not required, which is a big computational
advantage. Because the probabilitiesP(Hk) are not known
in practice, we estimate them empirically from the data as:

P̂(Hk) =
1

N

N
∑

j=1

I

(

k = arg max
k′

P(yj |Hk′)

)

(28)

whereI(·) denotes the indicator function. For efficiency, the
probabilitiesP(yj |Hk) are computed only once for every
subband and stored in the memory of the computer.

4Very recently, in parallel to our research, in [25] a similarresult is
obtained for the noise-free House image.

VII. I MPLEMENTATION ASPECTS

When estimating only the central coefficient of the neigh-
bourhood, for the strategyOverall-MMSE(Section V-B) this
results in the estimate:

[x̂]c =

K
∑

k=1

P(Hk|y) [Vkv̂k]c+

K
∑

k=1

P(Hk|y)
[

V̄kρ̂k

]

c
(29)

with c = 1 + ⌊d/2⌋, using our indexing conventions (see
Section II-B), and[x]c is the c-th component of the vector
x. Similar as in [17], we simplify the estimate (29) by diago-
nalizing the observation covariance matrix ofy, conditioned
on z andk:

Cy|z,k = Vk(zCu,k + Cn,k)VT
k + V̄kΨV̄T

k

= (VkUkQk) (Λkz + I) (VkUkQk)
T

+ V̄kΨkV̄
T
k

(30)

where Uk is the symmetric square root of the positive
definite matrixCn,k (UkU

T
k = Cn,k), and Qk and Λk

are obtained by the SVDU−1
k Cu,kUk = QT

k ΛkQk. Hence
Uk, Qk andΛk are allq× q matrices. This diagonalization
does not depend onz and has to be performedK times
for each wavelet subband. It is interesting to note that the
projection (VkUkQk)T that diagonalizes both the signal
and noise covariance matrix, independent ofz, is generally
not an orthogonal projection, sinceUk is not an orthogonal
transform in general. Unfortunately, this projection requires
knowledge of the noise covariance matrix, and cannot be
estimated from the observed wavelet coefficient vectors
using standard PCA. Nevertheless, this decomposition is
computationally attractive, because in this way the evalu-
ation of fz|t,Hk

(z|t, Hk) in (16) andP(Hk|y) in (22) only
involves diagonal covariance matrices. Next, applying this
diagonalization to equation (21), yields:

E (x|y, z) = (VkUkQkΛkz (Λkz+I)
−1

Q−1
k U−1

k VT
k

+ V̄kPk (Pk + Ωk)
−1

V̄T
k )y (31)

By precomputing the matrix multiplications (i.e.
VkUkQkΛk, Q−1

k U−1
k VT

k and V̄kPk (Pk + Ωk)−1
V̄T

k )
after the EM-training phase, the computational complexity
(for each modelk) is essentially reduced to the complexity
of the standard BLS-GSM estimator [17] whenq = d
and becomes even more efficient whenq < d because the
second term in (31) is simply a linear (Wiener) estimate,
independent ofz.

VIII. R ESULTS

A. Using data-independent bases

In this Subsection, the results for our method are produced
using the Dual Tree Complex Wavelet Transform (DT-CWT)
[45], with 6 tap Q-shift filters. In Table I, the performance
of the estimatorsMAP-k-MMSEand Overall-MMSE (Sec-
tion V) is evaluated for theK data-independentbases from
Fig. 5. For K = 1, only the horizontal neighbourhood is
used. ForK = 2, both horizontal and vertical neighbour-
hoods are used. The speed-up w.r.t. [17] is calculated by
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Figure 10. Average Decreasein PSNR (DPSNR) fordata-independentbases from
Fig. 5, compared to the method of [17]. Results are averaged over 6 different noise
levels σ ∈ {5, 15, 25, 35, 50, 80}. The corresponding computational savings are
shown in Table I.

dividing execution times, averaged over 30 runs. In order
to have a fair comparison, we implemented the reference
method of [17] in C++, using the DT-CWT and the same
level of optimization as for our method. A good trade-off is
the methodOverall-MSEfor K = 2, which is approximately
three times faster than the reference method, with only an
average PSNR decrease of0.128dB. For this choice, the
average computation time is 3 sec. on an Intel Pentium Core
2 CPU 2.40 GHz processor with 2 Gb RAM (for512× 512
grayscale images; the implementation is single-threaded).

K=1

DPSNRin Speedup

MAP-k-MMSE 0.260 4.25

Overall-MMSE 0.260 4.25

K=2

DPSNRin Speedup

MAP-k-MMSE 0.184 3.10

Overall-MMSE 0.128 2.95

K=4

DPSNRin Speedup

MAP-k-MMSE 0.183 1.98

Overall-MMSE 0.123 1.75

Table I
Average DecreaseIN PSNR (DPSNR)[dB] AND speed-upFOR data-independent

BASES FROMFIG. 5, COMPARED TO THE METHOD OF[17]. RESULTS ARE

AVERAGED OVER Lena, Barbara, House, Couple, PeppersAND Hill , AND 6
DIFFERENT NOISE LEVELSσ ∈ {5, 15, 25, 35, 50, 80}

B. Using data-driven bases of Principal Components

In Table II, we compare our data-adaptive MP-GSM
method Overall-MSE, including the EM-algorithm from
Section VI with current wavelet domain state-of-the-art de-
noising algorithms. Our method uses local windows of size
5×5 andαq = 92%. TheProbShrinkmethod from [9] scales
each wavelet coefficient according to the probability that it

σ PSNRin [46] [23] P-FSP

Barbara 10 28.13 34.83 35.38 35.12
(512 × 512) 15 24.61 32.69 33.45 33.02

20 22.11 31.11 32.05 31.50
25 20.17 29.82 30.93 30.31

Lena 10 28.13 35.50 35.89 35.74
(512 × 512) 15 24.61 33.70 34.23 34.04

20 22.11 32.40 33.01 32.80
25 20.17 31.28 32.04 31.81

Table III
COMPARISON WITH RECENTnon-local METHODS FOR WHITE NOISE:
K-SVD (ELAD ET AL .) [46], BM-3D [23].PSNR[dB] RESULTS ARE

GIVEN.

represents a signal of interest. The results for this technique
are reported for the undecimated wavelet transform, with
Symlet 8, as in [9]. TheBiShrinkmethod of [16] estimates
the noise-free wavelet coefficients based on a bivariate
statistical model for wavelet coefficients and their parent
coefficients, in the DT-CWT domain. The GSM-BLS filter
[17], already explained before, uses Full Steerable Pyramids
(FSP), with 8 orientations and a3×3 local window,without
inclusion of a parent coefficient in the local neighbourhood.
The SV-GSM filter [20] uses the same settings as GSM-
BLS and additionally a fixed block size of32×32. We also
compare our results to the Fields of Gaussian Scale Mixtures
model from [33], that combines a spatial Markov Random
Field model with a GSM Model. Because at the time of
writing the implementation is not publicly available, we
copied the results from [33] whenever the same input image
and input SNR is used. For the proposed technique, we
report results for both the DT-CWT and the FSP transform.
Our method is very competitive to the technique from [17]
and performs significantly better in the presence of strong
edges or patterns, e.g. the Barbara image (see Fig. 11). A
result for artificial correlated noise is shown in Fig. 12, using
the same parameter set as mentioned above. The method
using data-independent bases still leaves some stripes in the
image, while the method using data-dependent bases is able
to completely remove the noise pattern.

In Table III, we compare the data-adaptive MP-GSM
method to two recent nonlocal techniques: K-SVD [46] and
BM-3D [23]. Although the performance of our method is
significantly better than K-SVD, it is slightly outperformed
by BM-3D. We believe the main reason is that our method
uses exploits non-local information only partially (i.e. in the
EM training phase and not the denoising phase), and can be
further improved by enabling the estimation in Section V
to use information from other neighbourhoods as well. This
will be topic of our future research.

A final point of interest is the evolution of the denoising
performance for a fixed neighbourhood size, whenαq is
varied. For this experiment, we add white Gaussian noise
with standard deviationσ = 15 to the Barbara, Lena
and House image. Next, we apply the proposed denoising
method for different values ofαq and measure the denoising
performance in terms of PSNR. The neighbourhood has the
size 7 × 7. In Fig. 13, the difference in PSNR (DPSNR)
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PSNRout

σ PSNRin [9] [16] [17] [20] [33] P-CWT P-FSP

Barbara 5 34.15 37.75 37.10 38.32 38.59 - 38.50 38.65
(512 × 512) 10 28.13 33.83 33.51 34.50 34.97 - 34.87 35.12

15 24.61 31.46 31.28 32.21 32.76 - 32.75 33.02
20 22.11 29.77 29.76 30.56 31.15 - 31.24 31.50
25 20.17 28.45 28.63 29.30 29.90 - 30.07 30.31

Lena 5 34.15 38.18 38.01 38.49 38.53 38.66 38.61 38.63
(512 × 512) 10 28.13 35.06 35.29 35.59 35.64 35.94 35.63 35.74

15 24.61 33.23 33.58 33.85 33.91 34.28 33.87 34.04
20 22.11 31.90 32.32 32.57 32.61 - 32.58 32.80
25 20.17 30.87 31.35 31.58 31.59 32.11 31.56 31.81

House 5 34.15 38.04 38.01 38.69 38.88 38.98 39.30 39.30
(256 × 256) 10 28.13 34.61 34.78 35.37 35.50 35.63 35.66 35.86

15 24.61 32.69 33.01 33.59 33.67 33.89 33.62 33.99
20 22.11 31.27 31.74 32.27 32.32 - 32.17 32.67
25 20.17 30.18 30.74 31.22 31.25 31.64 31.09 31.62

Peppers 5 34.15 37.02 36.42 37.15 37.32 - 37.62 37.60
(512 × 512) 10 28.13 34.24 34.41 34.58 34.63 - 34.69 34.77

15 24.61 32.67 32.14 33.13 33.16 - 33.17 33.32
20 22.11 31.50 31.64 32.03 32.05 - 32.03 32.25
25 20.17 31.13 30.74 31.13 31.13 - 31.10 31.38

Table II
DENOISING RESULTS INPSNR[dB] FOR whiteNOISE WITH STANDARD DEVIATION σ. P-CWT: THE PROPOSED METHOD IN THEDT-CWT DOMAIN , P-FSP:THE

PROPOSED METHOD USINGFULL STEERABLE PYRAMIDS

is reported compared to the case of using no projections
(the MGSM model). It can be seen that forq ≥ 30 or
equivalently, forαq ≥ 0.7, only a marginal improvement
(∼ 0.2dB) in denoising performance can be achieved when
using no projections, but at a much higher computational
cost (the number of model parameters increases quadrati-
cally in q, see Fig. 13c). We note that smaller neighbourhood
sizes can be obtained by using special cases of the projection
matrices (see Section III-A), hence this result suggests that
the denoising performance may further increase when using
larger neighbourhood sizes, like11 × 11, but this requires
a proper selection of the projection subspaces, which is not
yet possible using the EM-algorithm in Section VI and will
be a topic for our future work.

C. Discussion

So far we only considered dependencies between wavelet
coefficients within the same subband or scale, but one can
also take interscale dependencies into account using e.g.
a Hidden Markov Tree (HMT) model [11]. The MPGSM
component indicesk are then hidden nodes (states) of the
HMT. The EM training can be easily extended to include the
Baum-Welch algorithm. After applying the training phase,
one can use the state transition probability to find matching
MPGSM components across scales, e.g. to arrive at a multi-
scale texture segmentation.

For the results in this paper, the number of MPGSM
componentsK is selected to be constant for every wavelet
subband. Ideally,K should represent the number of groups
of neighbourhoods that share the same local spectral density
(when ignoring the phase information in the covariance
matrix, the local spectral density is the Fourier transform
of the local autocovariance function). This number may be
difficult to determine in advance. However, we find that:

Figure 12. Denoising results for artificialcorrelatednoise, forσ = 25.
From left to right and from top to bottom: the original image,the
noisy image, the proposed method using data-independent bases (K=2)
PSNR = 29.90dB, the proposed method using data-dependent bases
PSNR = 30.50dB.

• If K is chosen too small, then local adaptation to the
spatially varying covariance is lost. The performance
falls back to thesingleGSM model whenK → 1.

• If K is too large, some mixture components will obtain
a very low weight after the model training. As noted in
[25], under-utilized mixture components may attribute
to a large part of the computation time. Fortunately,
in our approach we can solve this problem by using
the “winner-take-all” variant of the EM algorithm (Sec-
tion VI) and by the incremental computation of the
likelihood function, under-utilized mixture components
are quickly rejected, without altering the final training
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(a) (b) (c) (d) (e)

Figure 11. Denoising results forwhite noise: two different parts of the Barbara image, forσ = 25. (a) the original image, (b) the noisy image, (c)
GSM-BLS [17], (d) SV-GSM [20], (e) the proposed MPGSM methodusing DT-CWT.
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Figure 13. Influence of the parametersq or αq on the denoising performance forlena, barbara and housecorrupted with white Gaussian noise with
σ = 15. The local neighbourhood size is7×7. (a) Difference in PSNR, with respect toq, compared to using no projections (q = d = 49). (b) Difference
in PSNR, with respect toαq , compared to using no projections (q = d = 49). (c) Total number of model parameters with respect toq, for MPGSM
(K (q(q + 1)/2 + d − q + 1) and for MGSM (K(d(d + 1)/2 + 1).

result.

Based on this, we chooseK rather large enough (K = 8 or
K = 12) to obtain maximal benefit of the model compared
to thesingleGSM model. Future research could e.g. inves-
tigate the effect of the recently developed greedy mixture
learning [47], [48], where starting from one component,
a new component is iteratively added and the complete
mixture is updated.

MPGSM is a generalization of earlier related models (see
Fig. 14): the SVGSM method [20] assumes that the local
signal covariance matrix is constant withinB × B blocks
of wavelet coefficients. It is interesting to note that the
MAP-k-MMSE strategy generalizes this technique: if the
wavelet subband has sizeNx × Ny, then it consists of
⌈Nx/B⌉ × ⌈Ny/B⌉ blocks. Let us choose the number of

MPGSM componentsK =
⌈

Nx

B

⌉

⌈

Ny

B

⌉

. Then the MAP-k-
MMSE is equivalent with the SVGSM method if we choose

the following local responsibility function:

αk,j = P(Hk|yj ,Θ) ≈

{

1 j ∈ Bk

0 else

where{Bk, k = 1, ..., K} is the set of all wavelet coefficient
blocks. Becauseαk,j is constant for a givenj, the recursive
EM algorithm is not required for the model training. This
results in computational savings, the only limitation being
that the signal covariance matrix cannot change from point
to point except when block boundaries are crossed (whereas
MPGSM does allow changes from point to point). However
it is still possible to use the SVGSM method as initialization
of the EM algorithm, as an alternative for (25). In this case
we could estimatêS(0)

k as the local covariance matrix in
block Bk.

Instead of adapting the MPGSM model to the local
covariance, it is also possible to adapt it the local orientation
of features in a given band as in [21]. A Steerable Pyramid
(SP) transform is used for this, with 2 orientation bands. Let
us assume that the vectorsxj ,yj ,nj are column stacked
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versions of the wavelet coefficients in a localM × M
window centered at positionj of both bands, such that the
dimensiond = 2M2. The SP transform has the nice property
that oriented features can be computed as a linear sum of
coefficients in different orientation bands. More specifically,
we have:

yj = R(θj)tj (32)

with R(θ) a spatial rotation operator that rotates the patch
by θj radians, chosen such that the dominant orientation of
tj is along the first coordinate axis. For the construction of
R(θ) we refer to [21]. However, there are some practical
problems in this method:

• θj is continuous (θj ∈ [0, 2π]), while in practice a
discrete number ofθj values have to be evaluated.

• θj has to be estimated from the noisy SP subband itself
and there is no guarantee that a “dominant” orientation
exist (for example: rotational invariant patches)

An alternative method is obtained by noticing that (32) is
a special case of the latent variable model introduced in
Section II-C:yj = Vktj + V̄krj , with Vk = R(θj) and
d = q. Instead of estimatingθj , we “learn” Vk from the
image itself. Hence we can consider the OAGSM-method
also as a special case of the MPGSM model, where the
SP transform is used and the neighbourhood is extended to
different orientation bands.

We also note that the MPGSM model specializes to the
MGSM model from [25] when we chooseq = d and identity
matrices for the projection basesVk = I. This is equivalent
to not incorporating dimension reductions into the model,
hence the third layer in Fig. 1 is missing.

The Mixtures of Principal Component Analyzers model
from [30] and the Mixtures of Factor Analyzers model from
[31] have in common with the MPGSM model that the
mixtures all incorporate dimension reductions, either through
PCA or Factor Analysis. However, the underlying model is
different: in [30], [31] the low dimensionalapproximation
error is considered to be Gaussian noise with a diagonal
covariance matrix. In [30], all diagonal elements of this
covariance matrix are even equal. In our case, the approxi-
mation error is the residual processg which is not restricted
to a diagonal covariance matrix. Also, the individual model
components have a GSM (plus Gaussian noise) as density
instead of a Gaussian distribution. The reason for not choos-
ing a Gaussian Mixture (e.g. with dimension reductions as in
[30], [31]) for this modeling task is that we want to enforce
a scale mixture coupling between the covariance matrices
in each mixture component. This coupling is actually the
second layer in Fig. 1 and significantly reduces the number
of model parameters even when a discrete density is chosen
for the hidden multiplierz.

IX. CONCLUSION

In this work, we proposed the Mixtures of Projected
Gaussian Scale Mixtures (MPGSM) as a means to further

MP-GSM
(proposed)

M-GSM [42]

SV-GSM [20]

GSM [18]

OA-GSM [21]

Figure 14. Schematic overview of recent GSM prior models. Anarrow
denotes: “is a generalization of”. Also see text.

improve upon the recently proposed MGSM model. The
new model is a generalization of the existing SVGSM,
OAGSM and MGSM techniques and allows for a lot of
flexibility with regard to the neighbourhood size, spatial
adaptation and even when modeling dependencies between
different wavelet subbands. We developed a fast EM algo-
rithm for the model training, based on the “winner-take-
all” strategy, taking advantage of the Principal Component
bases. We discussed how this technique can also be used
to speed up the denoising itself. We discussed how data-
independent projection bases can be constructed to allow
flexible neighbourhood structures, offering computational
savings compared to the GSM-BLS method which can
be useful for real-time denoising applications. Finally we
showed the PSNR improvement of the complete MPGSM-
BLS method compared to recent wavelet-domain state-of-
the-art methods.
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APPENDIX: EM ALGORITHM FOR THE MPGSM MODEL

In this Section, we describe the EM-algorithm for the
algorithm proposed in Section VI. For the EM-algorithm,
the expected complete data log-likelihood is given by [32]:

Q(Θ,Θ′) = E
(

log fY,k|Θ(Y, k|Θ)|Y,Θ
)

=

K
∑

k=1

N
∑

j=1

P(k|yj , θk)qk,j =

K
∑

k=1

N
∑

j=1

αk,jqk,j

(33)

whereθk = {Vk, V̄k,Ct,k,Ψk} is the set of parameters for
mixture componentk and qk,j = log πk + log fy|θ(yj |θk).
For computational reasons, we maximize the likelihood
function for a fixedz = zE = E (z) instead of integrating



15

over all possiblez, and approximateqk,j using:

qk,j = log πk +

∫ +∞

0

f(z)fy|z,θ(yj |z, θk)dz

≈ log πk + log fy|z,θ(yj |z = zE , θk)

= log πk + log ft|z,θ(V
T
k yj |z = zE , θk)+

log fr|z,θ(V̄
T
k yj |z = zE , θk) (34)

Finding the stationary points ofqk,i with respect toVk leads
to:

∂qk,j

∂Vk
=

(

VkCt,kV
T
k

)−1
× (35)

(

yjy
T
j

(

VkCt,kV
T
k

)−1
Vk − Vk

)

Ct,k = 0 (36)

and an analogous expression can be found for∂qk,j

∂V̄k
= 0.

A solution of (36) is given byVkCt,kV
T
k = yjy

T
j . By

averaging this solution overj (i.e. for finding the stationary
points ofQ(Θ,Θ′)), we arrive at the following update rule:

Ct,k =

∑N
j=1 αk,jVkyjy

T
j VT

k
∑N

j=1 αk,j

(37)

and similarly we find a solution for∂Q(Θ,Θ′)
∂Ψk

= 0:

Ψk =

∑N
j=1 αk,jV̄kyjy

T
j V̄T

k
∑N

j=1 αk,j

(38)

Requiring thatCt,k and Ψk are diagonal yields that the
columns of Vk and V̄k must be eigenvectors of the
responsibility weighted sample covariance matrixSj =
∑N

j=1 αk,jyjy
T
j /
∑N

j=1 αk,j . With this choice,Ct,k andΨk

will contain the eigenvalues ofSj on its diagonal. We can
further minimize the energy in the complementary space
tr(Ψk) by taking the most dominant eigenvectors forVk

and the least dominant eigenvectors forV̄k. Surprisingly,
this is equivalent to using the standard EM algorithm for
Gaussian mixtures (by the approximation in (34)) and apply-
ing a diagonalization afterwards on the estimated covariance
matrix for each mixture component.


