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Abstract— Breast tumor detection with microwaves is based
on the difference in dielectric properties between normal and
malignant tissues. The complex permittivity reconstruction of
inhomogeneous dielectric biological tissues from microwave
scattering is a nonlinear, ill-posed inverse problem. We proposed
to use the Huber regularization in our previous work where
some preliminary results for piecewise constant objects were
shown. In this paper, we employ the Huber function as regu-
larization in the even more challenging 3D piecewise continuous
case of a realistic numerical breast phantom. The resulting re-
constructions of complex permittivity profiles indicate potential
for biomedical imaging.

I. INTRODUCTION

Recent research [1]–[4] indicates potentials of quantitative
microwave imaging (QMWI) to discriminate between tumors
and healthy tissue in biomedical imaging. Microwave imag-
ing relies on the capability of microwaves to differentiate
among different materials/tissues based on the contrast in
their dielectric properties. In biomedical imaging, QMWI
quantitatively reconstructs the complex permittivity profile
of the biological tissue using microwave scattering measure-
ments. It is well known that the QMWI is a nonlinear and
ill-posed inverse problem. Employing appropriate optimiza-
tion techniques, such as Newton-type methods [5], [6] may
address the nonlinearity of the problem. The ill-posedness is
treated via regularization, which improves the convergence
and stability by reducing the solution space. Different ap-
proaches exist for solving this problem. Multiplicative spatial
smoothing regularization [5] of the non-linear cost function
is applied to a realistic numerical breast phantom in [4]. Mul-
tiplicative weighted L2-norm total variation regularization is
applied to a human forearm in [7], [8]. The self-regularizing
properties of the conjugate gradient least squares (CGLS)
algorithm and tissue permittivity bounds are used on realistic
numerical breast phantoms in [9].

In this paper, we employ the Huber function as regulariza-
tion to deal with a challenging case study: 3D reconstructions
of the complex permittivity profile from a realistic numerical
breast phantom. The Huber function [10]

gHuber(η) =

{
η2 |η| ≤ γ
2γ|η| − γ2 else

(1)

is quadratic for small η and linear for large values, avoid-
ing in this way over-smoothing at true discontinuities. We
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proposed to use this function in microwave imaging [11],
reconstructing some 3D piecewise constant objects.

Although some initial clinical results of microwave breast
imaging have been reported [12], [13], they do not readily
lend themselves to rigorous validations of imaging perfor-
mance. Recent development of realistic MRI-derived numeri-
cal phantoms [14], [15] offer more flexibility in capturing the
structural complexity of breast tissue than models consisting
of arrangements of homogeneous cylindrical or spherical
targets. In this paper, we adapt such a realistic breast phantom
to a coarser numerical permittivity model which is then
illuminated with single frequency microwave fields for data
generation. The non-linear least-squares error between these
simulated data and the scattered field computed for a current
permittivity profile is additively regularized with the Huber
function and the resulting cost function is optimized with a
Gauss-Newton algorithm with line search.

The results indicate potentials of the proposed Huber
regularization in biomedical imaging, and in particular, for
applications like breast cancer screening. This paper is
organized as follows. Section II introduces the biomedical
data and the electromagnetic inverse scattering problem.
The proposed method is presented in Section III and breast
phantom reconstructions are shown in Section IV.

II. APPLICATION

A. Realistic numerical breast phantom

The 3D complex permittivity breast phantom that serves
as a testbed in this study is adapted from the UWCEM
online Numerical Breast Phantoms Repository [15], which
contains a number of anatomically-realistic MRI-derived
numerical breast phantoms. As described in [14], these
phantoms are obtained from mapping MRIs to a uniform
grid of frequency-dependent and tissue-dependent dielectric
properties. In this paper, we employ a single-frequency
time-harmonic approach (a time dependency ejωt, with ω
the angular frequency, is assumed), hence the frequency
dependency of the complex permittivity is implicit. The
(relative) complex permittivity in a point r = (x, y, z) then
is defined as:

ε(r) = ε′(r)− jε′′(r) = ε′(r, ω) +
σ(r, ω)

jωε0
(2)

where ε′ is the (relative) permittivity and σ the conductivity.
In the following, we use permittivity vectors εεε = εεε′− jεεε′′ =
[ε1, · · · , εN ] on a grid with N = Nx×Ny×Nz cubic cells.

The phantom we selected (Phantom 1, ID:071904, ACR
class 1) is a mostly fatty breast phantom with some glandular
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(a) Real part (b) Imaginary part

Fig. 1. A view of the permittivity in a slice through the full-resolution
MRI-based breast phantom from the online UWCEM repository at 2 GHz.

Fig. 2. A view of the permittivity in a slice through the discretized breast
phantom for the data generation. The cell size is 2.5 mm, an artificial tumor
has been added to the phantom and the muscle layer has been removed.

and fibro-connective inhomogeneities. A slice through this
phantom at a frequency of 2 GHz is depicted in Fig. 1.
We adapted this high-resolution phantom as follows [4].
As background medium surrounding the breast, we chose
a material with permittivity 10.0 − j2.0, which yields a
background wavelength λb = 47.2mm. We down sampled
the data from a cell-size of 0.5 mm to a cell size of 2.5 mm
(0.05λb) by local averaging. An artificial spherical tumor
with permittivity 50.0 − j10.0 and a radius of 1 cm is
inserted manually to position (0.03,-0.03,0), which is rather
close to the chest wall. We also removed the muscle layer
of the chest wall from the original phantom. This coarser
model is depicted in the same slice in Fig. 2 and is used
for field data generation in Section IV. The dimensions of
this cuboid are 0.12 m × 0.14 m × 0.11 m and it contains
N = 48× 56× 44 = 118272 cells.

B. Electromagnetic inverse scattering problem

A 3D object is illuminated successively with known time-
harmonic incident fields from different angles and polar-
izations and the scattered fields are measured in a number
of receiving antennas. Next, a reconstruction algorithm is
applied whereby the discretized unknown permittivity profile
εεε = [ε1, · · · , εν , · · · , εNε ] is updated iteratively, on a grid
with Nε inverse problem cells within a reconstruction do-
main D, by comparing the scattered fields escat(εεε) computed
in the receiving antenna locations and the measured fields
emeas. Therefore, the following non-linear cost function is
minimized

F (εεε) = FLS(εεε) + µFR(εεε) (3)

where FLS(εεε) is the least squares data error and FR(εεε) is
a regularization term, with regularization parameter µ ≥ 0.
The least squares data error is

FLS(εεε) =
‖emeas − escat(εεε)‖2

‖emeas‖2
(4)

where emeas and escat(εεε) are Nd-dimensional vectors that
contain the field values for all combinations of illuminating
and receiving antennas. For the forward problem solution
escat(εεε) a full-vectorial contrast-source integral equation
formulation is adopted and discretized with a Galerkin
method of moments on a forward grid (NF cells) that is
an integer subdivision of the inversion grid (Nε cells); the
resulting linear system of equations is solved iteratively with
the stabilized bi-conjugate gradient-FFT (BICGSTAB-FFT)
method, see [16] for details.

The complex permittivity in iteration k is updated as
εεεk+1 = εεεk + βk∆∆∆εεεk, where βk is calculated from an
approximate line search [17] and ∆∆∆εεεk is a Gauss-Newton
descent direction obtained from

(JHk Jk + λ2ΣR
k )∆∆∆εεεk = −(JHk [escat(εεεk)− emeas] + λ2ΩR∗

k )
(5)

where (.)H stands for Hermitian transpose and (.)∗ denotes
the complex conjugate. The trade-off parameter λ is given
by λ2 = µ‖emeas‖2 [4]. In the following, the subscript k is
omitted. J is the Nd ×Nε Jacobian matrix, which contains
the derivatives of the scattered field components with respect
to the optimization variables: Jdν = ∂escatd /∂εν ; ΩΩΩR∗k is
an Nε−dimensional vector that contains the derivatives of
the regularizing function and ΣΣΣRk is a Nε × Nε matrix
with second order derivatives. To avoid ill-conditioning of
the forward solution, constraints are imposed on the real
and imaginary parts of the complex permittivity. These are
implemented by a modified, constrained line search [4].

III. HUBER REGULARIZATION

The regularization term FR(εεε) in (3) is defined as follows

FR(εεε) =
1

2

∑
ν

∑
ν′∈Nν

gHuber(εν − εν′) (6)

where the index ν denotes the spatial position ν ≡ (i, j, k)
and Nν is the neighborhood of ν. Let η denote the difference
between two neighboring complex permittivities: η = εν −
εν′ . Considering that η is a complex number, we redefine
gHuber in (6) as

gHuber(η) =

{
|η|2 |η| ≤ γ
2γ|η| − γ2 else.

(7)

The expressions for the first and second order derivatives
of (7), i.e.

ΩΩΩR∗ =
∂FR

∂ε∗ν
=
∑
ν′∈Nν

ων′ (8)

ΣRν,ν =
∂2FR

∂εν∂ε∗ν
=
∑
ν′∈Nν

σν′ (9)
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gT (η) ων′ εν − εν′
σν′ 1

ΣR
ν,ν′ −1

|εν − εν′ | ≤ Thr otherwise

gH(η) ων′ εν − εν′
γ(εν − εν′ )
|εν − εν′ |

Thr=γ σν′ 1
γ

2|εν − εν′ |
ΣR
ν,ν′ −1 −

γ

2|εν − εν′ |

TABLE I
ων′ , σν′ AND ΣR

ν,ν′ FOR THE TIKHONOV AND HUBER FUNCTIONS.

Fig. 3. The qualitative shape of the Huber (right) and Tikhonov (left)
functions in the complex domain.

for the diagonal elements and

ΣRν,ν′ =
∂2FR

∂εν′∂ε∗ν
(10)

for the non-diagonal elements of ΣR (which are zero except
if ν′ ∈ Nν), were derived in [11] and are summarized
in TABLE I. The table also shows the expressions for
Tikhonov regularization, gT (η) = |η|2, which is employed
as a benchmark in Section IV, using 3 nearest neighbors
for Nν and replacing gH with gT in (6) (i.e. L2 norm
total variation) within the Multiplicative Smoothing (MS)
regularization technique [5]. Note that with MS, the cost
function is given by F = FLS

(
1 + µFR

)
. Fig. 3 illustrates

the Huber function gH(η) and the Tikhonov function gT (η)
in the complex domain (η = α + jβ ), together with the
corresponding magnitude |ω(η)| and σ(η) functions. Note
that |ω|, which is an indication of the smoothing strength,
increases monotonically with |η| in the whole domain of
|ωT |, whereas |ωH | only does so in the smoothing interval
|η| < γ and remains a constant, allowing limited (bounded)
smoothing, outside this interval. The interaction σ, which
determines the interaction between neighboring pixels also

(a) (b)

Fig. 4. Antenna positions (dots) on a hemi-ellipsoidal-like surface. The
arrows in two orthogonal directions indicate transmitting dipoles. The
cuboid in the center indicates the reconstruction domain D. (a) xyz view;
(b) xy view.

behaves differently for the two regularizations: σH is smaller
for large |η| and approaches 0 as |η| goes to ∞, while
σT holds the same interaction power in the whole domain.
This way, the Huber function preserves edges and reduces
the effect of outliers. A pseudo-code of the reconstruction
algorithm is given in [11].

IV. RESULTS AND DISCUSSION

In this section we show reconstructions of the numerical
breast phantom using Huber regularization and compare
with reconstructions obtained with Tikhonov regularization
employed in a multiplicative way (MS) [4].

Synthetic scattered field data are computed at 2 GHz with
the forward solver [16] for the numerical phantom of Fig. 2.
Since a breast is attached to a body, hence it is not a free-
standing object, the antennas cannot be located all around
it, as with the spherical configurations in [11]. We choose
a configuration as in Fig. 4, where antennas are positioned
on 5 circles on an hemi-ellipsoidal-like surface around the
front side of a gray cuboid. The cuboid contains the breast
phantom with the chest wall in the yz-plane at x = 0.06 m.
The 5 circles, which are centered on the x-axis and parallel to
the yz-plane, each contain 8 equally spaced antenna positions
with in each position 2 dipoles with polarizations in two
orthogonal directions tangential to the spheroid. This yields
a total of 80 dipoles, which is only half of the number
used in [4], hence requiring less computational effort. All
80 dipoles are used to sample the field, but only 64 of them
(indicated with the larger green dots) are used to illuminate
the phantom. This yields a total of ND = 5120 complex
field values. A SNR of 30 dB additive Gaussian noise is
applied.

The reconstruction domain D (gray cuboid) in the inverse
solver is discretized in Nε = 24 × 28 × 22 cubic cells with
size 5 mm, yielding a total of 14784 complex permittivity
unknowns. This means that the problem is heavily under-
determined. To test the abilities of the method, we perform
a complete blind reconstruction, i.e. we do not use a-
priori knowledge of the breast contour, which is sometimes
suggested in the literature. Hence, the initial estimate is just
the uniform background medium with permittivity 10− j2.
To keep the forward problems well-conditioned (which are
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Fig. 5. Breast phantom reconstruction showing the real parts (left)
and imaginary parts (right) of the complex permittivity profile. Top: MS
reconstruction; Bottom: Huber regularization.

solved on the grid with cell size 2.5mm), the constraints
on the permittivity are 1.0 < Re(εεε) < 55.0 and −50.0 <
Im(εεε) < 1.0. The tolerance for the BICGSTAB iterative rou-
tine is set to 10−3. We optimized the regularization parameter
µ and the parameter γ of the Huber function experimentally
for satisfactory edges. We obtained the same optimal value
(µ ≈ 10−6) for different targets and antenna configurations.
For continuous profiles (like in biomedical applications) a
smaller value for γ than with piecewise constant objects
should be used: γ = 10−2. The regularization parameter
for MS is set to µ = 10−4 [4]. For the neighborhood Nν
with gH in (6), we used 26 nearest neighbors in 3D as a
compromise between reconstruction quality and complexity.
All computations were performed on a six-core Intel i7 980x
processor (3.33GHz) with 24GByte memory.

Fig. 5 shows the real and imaginary parts in one slice
through the reconstructed complex permittivity profile for
Huber (bottom) and Tikhonov [4] (top). The shape of the
breast and the locations and dimensions of the healthy
heterogeneities and of the tumor are well reconstructed in all
images. The real parts are rather similar, although the MS
image shows a more smoothed tumor: for both regularization
methods the permittivity of the tumor (and of the other
tissues) is too low compared to the reference in Fig. 2. There
are more differences between both methods in the imaginary
parts: the breast contour and the tumor appear clearer with
Huber but the inner glandular tissue heterogeneities are more
distinguished with MS. The reconstructions were stopped
after 13 iterations and took less than 1 hour.

V. CONCLUSIONS

In this paper, we applied the Huber regularization to
biomedical data for quantitative microwave imaging. The
method is able to reconstruct the spatial complex permittivity
distribution in biological objects from blind reconstruction
at one single frequency, thereby overcoming difficulties with

the dispersive nature of body tissues. Numerical results indi-
cate the potentials of the method for breast tumor detection
even though a thorough analysis for this challenging problem
still needs to be done.
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[11] F. Bai, A. Pižurica, S. Van Loocke, A. Franchois, D. De Zutter,
and W. Philips, “Quantitative microwave tomography from sparse
measurements using a robust Huber regularizer,” in In IEEE Int. Conf.
Image Processing (ICIP), October 2012, pp. 2073–2076.

[12] M. Klemm, I. Craddock, J. Leendertz, A. Preece, and R. Benjamin,
“Experimental and clinical results of breast cancer detection using
UWB microwave radar,” in Antennas and Propagation Society Inter-
national Symposium, 2008. AP-S 2008. IEEE, july 2008, pp. 1 –4.

[13] P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang,
C. A. Kogel, S. P. Poplack, and K. D. Paulsen, “Initial clinical
experience with microwave breast imaging in women with normal
mammography,” Acad. Radiol., vol. 14, no. 2, pp. 207 – 218, 2007.

[14] E. Zastrow, S. Davis, M. Lazebnik, F. Kelcz, B. Van Veen, and
S. Hagness, “Development of anatomically realistic numerical breast
phantoms with accurate dielectric properties for modeling microwave
interactions with the human breast,” IEEE Trans. Biomed. Eng.,
vol. 55, no. 12, pp. 2792 –2800, dec. 2008.

[15] UWCEM. numerical breast phantom repository. [Online]. Available:
http://uwcem.ece.wisc.edu

[16] J. De Zaeytijd, I. Bogaert, and A. Franchois, “An efficient hybrid
MLFMA-FFT solver for the volume integral equation in case of sparse
3D inhomogeneous dielectric scatterers,” J. Comput. Phys., vol. 227,
pp. 7052–7068, July 2008.

[17] R. Fletcher, Practical methods of optimization; (2nd ed.). New York,
NY, USA: Wiley-Interscience, 1987.

5138


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

