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ABSTRACT

In this paper we give new insights into quantitative microwave
tomography with robust Huber regularizer and Gauss-Newton
optimization. Firstly, we validate this approach for the first
time on real electromagnetic measurements. Secondly, we
extend the framework with a modified Huber function, which
behaves like TV regularization. This is interesting for re-
constructing piece-wise constant permittivities that appear in
non-destructive testing of installations and other man-made
objects.

Index Terms— inverse problem, microwave imaging,
Huber function, sparsity, inverse scattering.

1. INTRODUCTION

Quantitative microwave imaging has the potential of recon-
structing not only geometrical shapes but also exact permit-
tivity profiles of unknown scattering objects. The images are
obtained by illuminating the object with microwaves and by
measuring the scattered field. Regularization is crucial for
solving this ill-posed nonlinear inverse problem [1–5]. Mul-
tiplicative Smoothing (MS) [1] applies Tikhonov regulariza-
tion in a multiplicative fashion. The Value Picking (VP) [2]
regularizer favors piecewise constant targets with several dis-
tinct permittivities values. An edge preserving regularization
in [3] was imposed on the real and imaginary part of the com-
plex permittivity separately. Total variation (TV) was used
as a multiplicative constraint in [4] and a Line Process model
was employed in [5].

We introduced Huber regularization for this problem in
our previous work [6] where we demonstrated encouraging
first results on simulated data only. In this paper, we build
further on this work, design an alternative TV-like regular-
ization function within the same framework and we evaluate
the whole approach on real electromagnetic measurements.
The main novelties in this paper are: (1) extending the frame-
work from [6] such that it can handle regularization that be-
haves like TV, which is of interest from theoretical point of
view and practically because the new function proves to be
even more effective for piecewise constant profiles that ap-
pear, e.g. in non-destructive testing of various installations

etc; (2) evaluating the complete framework of Huber regular-
ization in microwave imaging for the first time on real data
from electromagnetic measurements.

Scattering measurements of inhomogeneous targets from
the Institute Fresnel, the so-called Fresnel database, are com-
monly used to test new algorithms in the inverse scattering
community. A special issue of Inverse Problems [7] was
devoted to reconstructions on these benchmark experimental
data in order to enable fair comparison of the current and
future methods using the same measurements. Moreover,
validating inversion algorithms on experimental data is much
more reliable than using simulations only, which are prone
to inverse crime [8]. Reconstructions from the experimen-
tal data are quite challenging due to measurement noise and
discretization noise as well as mismatch between the actual
incident fields and their simulation in the forward solvers.

Our results on the experimental data motivate strongly
the use of Huber regularization but also show potentials of
extending the whole framework with other related functions.
Especially, the modified Huber function (which behaves like
TV regularization) demonstrates excellent performance on
piece-wise constant profiles. This paper is organized as fol-
lows. In Section 2 the electromagnetic inverse scattering
problem and Gauss-Newton method are revisited. An alter-
native regularization function, which is modified from the
Huber function and which behaves similar to TV is discussed
in Section 3 and experimental validations are presented in
Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

As we described in [6], in order to reconstruct the permittivity
profile εεε = [ε1, · · · , εν , · · · , εNε ] of the object, an iterative
method is used on a grid with Nε square cells within a recon-
struction domain D, alternating between the forward and the
update problem. In each step of the iterative method, simu-
lated scattered fields escat(εεε) are compared with the measured
fields emeas and the permittivity profile is updated based on
this difference. This inverse problem is solved by minimizing
a cost function

F (εεε) = FLS(εεε) + µFR(εεε) (1)
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where FR(εεε) is a regularization function, µ ≥ 0 is a regular-
ization parameter and FLS(εεε) is the least squares data fit:

FLS(εεε) =
‖emeas − escat(εεε)‖2

‖emeas‖2
(2)

emeas and escat(εεε) areNd-dimensional vectors that represent
the measured and the simulated scattered fields, respectively.
We define the regularization function FR(εεε) as

FR(εεε) =
1

2

∑
ν

∑
ν′∈Nν

gγ(εl − εl′) (3)

where gγ is a potential function with parameter γ and l′ de-
notes a spatial position neighboring l in the neighborhood sys-
temNl. We use 8 neighbors in 2D and 26 neighbors in 3D as a
compromise between reconstruction quality and complexity.

As in [6], we consider minimization by an approximate
line search along a Gauss-Newton descent direction, which
requires a positive definite Hessian matrix. The complex per-
mittivity in iteration k is updated as εεεk+1 = εεεk + βk∆∆∆εεεk.
βk is calculated from the line search [2] and ∆∆∆εεεk is obtained
from

(JHk Jk + λ2ΣR
k )∆∆∆εεεk = −(JHk [escat(εεεk)− emeas] + λ2ΩR∗

k )
(4)

where (.)H stands for Hermitian transpose and (.)∗ denotes
the complex conjugate. In the following, the subscript k is
omitted. The factor JHJ+λ2ΣR is known as a Gauss-Newton
Hessian matrix. The trade-off parameter λ is given by λ2 =
µ‖emeas‖2 [2]. J is the Nd × Nε Jacobian matrix, which
contains the derivatives of the scattered field components with
respect to the optimization variables: Jd,l = ∂escatd /∂εl; ΩΩΩR∗

is an Nε−dimensional vector that contains the derivatives of
the regularizing function, ΩR∗l = ∂FR/∂ε∗l ; ΣΣΣR is aNε×Nε

matrix ΣRl,l′ = ∂2FR/∂εl′∂ε
∗
l .

We addressed this problem in [6], by deriving ΩΩΩR∗ and
ΣΣΣR for the Huber function. In this paper, we will not only
validate this framework on real data, but we will also propose
a new function in the same framework which behaves more
effective on piecewise constant objects.

3. MODIFIED HUBER OR TV-LIKE
REGULARIZATION

Microwave tomography is often applied in non-destructive
testing of installations and other buried man-made objects
with piece-wise constant permittivity profiles. For such prob-
lems total variation (TV) regularization is ideally suited. TV
would correspond to defining gγ in (3) as gγ,TV (εl − εl′) =
|εl − εl′ |. Unfortunately, this function is non differentiable
at εl = εl′ and hence it cannot be applied directly within
our framework. Different solutions were proposed to work
around this numerical problem, e.g., in [4, 9]. Here we pro-
pose another solution, which fits well with our framework

Fig. 1. The qualitative shape of the Huber and modified Huber
functions in the complex domain, η = α+ jβ.

from [6]. We start from gγ,TV and modify it only around
εl − εl′ = 0 to a quadratic form to ensure differentiability,
resulting in

gγ,HT (εl − εl′) =

{
|εl − εl′ |2 , |εl − εl′ | ≤ δ
γ|εl − εl′ | , otherwise

(5)

where δ → 0. With this function FR(εεε) from (5) behaves
like TV, just without suffering from the numerical problem at
εl = εl′ . It is interesting to note that this function can also be
interpreted as a modified Huber function gγ,H(η) = |η|2 for
|η| ≤ γ and 2γ|η| − γ2 otherwise.

To derive ΩΩΩR∗ and ΣΣΣR in (4), gγ in FR will be substituted
by (5). Note that ε in (5) is a complex number and hence
|εl − εl′ |2 = (εl − εl′ )(ε∗l − ε∗l′ ). It can be shown that

ΩR∗l =
∂FR

∂ε∗l
=

∑
l′∈Nl

ωl′

ωl′ =

(εl − εl′) , |εl − εl′ | ≤ δ
γ(εl − εl′ )
2|εl − εl′ |

, otherwise
(6)

Consider next ΣΣΣR, which is a submatrix of the Hessian
matrix, containing the second order derivatives of FR. The
diagonal elements of ΣΣΣR are

ΣRl,l =
∂2FR

∂εl∂ε∗l
=

∑
l′∈Nl

σl′ (7)

σl′ =

1 , |εl − εl′ | ≤ δ
γ

4|εl − εl′ |
, otherwise
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Fig. 2. Reconstruction results showing real part of the permittivity for different methods and three targets from the Fresnel
database (top to bottom: FoamDielInt; FoamDielExt and TwinDiel). Left to right: reference (permittivity 1.45 ± 0.15 and
3± 0.3), MS, SRVP, Huber function and the modified Huber function.

and the non-diagonal elements are

ΣRl,l′ =
∂2FR

∂εl′∂ε
∗
l

(8)

=

−1 , |εl − εl′ | ≤ δ
− γ

4|εl − εl′ |
, otherwise

Now, equation (4) can be solved for TV-like regulariza-
tion using (6)-(8), providing an alternative to Huber regular-
ization from [6]. Note that the expressions (6)-(8) are nearly
the same as those for the Huber function in [6], but one im-
portant difference is that an additional parameter δ exists now
and this δ can be made arbitrarily small (δ → 0) without af-
fecting the slope in the linear part of gγ,HT which is not the
case with the Huber function gγ,H . Fig. 1 illustrates the Hu-
ber function gH(η) and our TV-like function gHT (η) in the
complex domain (η = α+ jβ), together with the correspond-
ing magnitude |ω(η)| and σ(η) functions. Note that |ω| is
an indication of the smoothing strength. |ωH | increases with
|η| in the smoothing interval |η| < γ and remains a constant,
allowing limited (bounded) smoothing, outside this interval.
|ωHT | remains constant in the whole domain except around
zero. The interaction σ, which determines the interaction be-
tween neighboring pixels also behaves differently for the two
regularizations: σH is smaller for large |η| and approaches 0

as |η| goes to ∞, while σHT shows a very sharp interaction
peak around zero. This way, TV-like function has a positive
effect on the quality of the reconstruction for ’blocky’ pro-
files like TV generally does. We optimize the regularization
parameter γ and µ in (1) experimentally. For piece-wise con-
stant objects γ = 0.1 is a good choice. For the regularization
parameter µ, we obtained the same optimal value (∼ 1 10−3)
in 2D and (∼ 1 10−4) in 3D for different targets and different
antenna configurations in real data situation.

4. EXPERIMENTAL VALIDATION

We used three quasi lossless inhomogeneous targets from the
Fresnel database: FoamDielInt, FoamDielExt and TwinDiel
(shown in Fig. 2 and described with antenna configuration
in [10]). We only use experimental data from measure-
ments at 4GHz (λ0 = 7.49cm). For each target, Multiplica-
tive Smoothing (MS) [1], Step-wise relaxed value picking
(SRVP) [2], Huber estimation [6] and the modified Huber
function from this work are employed in independent re-
constructions and the results are compared. The antenna
positions are equally spaced on a circle with radius 1.67
m. The target is positioned in the center of this circle. For
a transmitting antenna at 0◦, the receiving antenna can be
positioned from 60◦ to 300◦. We only use 4 (90◦ spaced)
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Method FoamDielint FoamDielext TwinDiel
MS [1] 15.35 14.73 18.04
SRVP [2] 11.13 17.00 22.09
Huber [6] 13.68 13.34 17.83
modified Huber 10.71 12.90 16.12

Table 1. Relative error R = ‖ εεεrec − εεεref ‖2/‖εεεref‖2 (%)
for the reconstructed permittivities from Fig. 2 with the dif-
ferent methods. εεεrec and εεεref are reconstructed and reference
permittivity profiles, respectively.

transmitting antennas (9 (40◦ spaced) for TwinDiel), each
with TM and TE polarizations, and 9 (30◦ spaced) receiving
antennas, resulting in a data vector emeas of length Nd =
108 (243 for TwinDiel) complex numbers. A calibration is
applied to match amplitude and phase between measured and
simulated fields. For each incidence, the measured scattered
field values are multiplied with a complex factor, which is the
ratio of the simulated and the measured incident fields at the
receiver located opposite to the source. This number of data
points is sparse by the criterion of [11], which is of interest in
terms of computation time.

The reconstruction domain in the inverse solver is dis-
cretized in 30× 30 square inverse problem cells (edge size = 5
mm ≈ λ0/15), yielding a total of 900 permittivity unknowns.
To solve the forward problems, each inverse problem cell is
subdivided in 2× 2 = 4 forward problem cells, which have the
same permittivity. In our experiments, BICGSTAB-FFT (bi-
conjugate gradient stabilized method-Fast Fourier Transform)
forward solver is used to accelerate the calculations.

With the chosen antenna configuration (4 transmitting and
9 receiving antennas, i.e., 108 data points), the reconstruction
with each of the analyzed methods takes around 20 min on
a six-core Intel i7 980x processor (3.33GHz) with 24GByte
memory (threads = 8). With 8 transmitting and 241 receiv-
ing antennas (5784 data points), the reconstruction time is
20 hours. In both cases, the same stopping criterion is used
(FLS = 10−3 or maximum 20 iterations).

Fig. 2 shows the reconstructions with the different meth-
ods using 4 (9 for TwinDiel) transmitting and 9 receiving an-
tennas. Only the real parts of the permittivities are shown,
since the imaginary parts are almost zero. The parameters
for MS and SRVP were set as in [12]: µ = 2 × 10−3 for
MS and µ = 3 for SRVP. Like with simulated data in [6],
MS oversmooths the targets, especially at edges. SRVP can-
not reconstruct well the objects from such a small number
of data points (see the two bottom images in the middle col-
umn). The results of our Huber regularization and modified
Huber function are much closer to the ground truth. Table
1 shows the corresponding reconstruction errors. This pro-
vides for the first time validation of our original framework
from [6] with robust statistical regularization on actual elec-
tromagnetic measurements and motivates clearly the use of
this approach. Moreover, the extension with modified Huber

(a) Huber (b) modified Huber

(a1) Huber (b1) modified Huber

Fig. 3. Reconstructions of Two Spheres at 4GHz and a 3D
view of the surface.

function proposed in this paper proves to be even more effec-
tive in the reconstruction of piecewise constant objects.

To test the effectiveness of our inversion algorithms in
even more challenging scenario with 3D real data, we se-
lect one 3D target–Two Spheres from the Fresnel database
described with antenna configuration in [13]. The only differ-
ence is that we use 4 receiving dipoles compared to 36 in orig-
inal data, resulting in a data vector emeas of length Nd = 479
sparse numbers of data points. The reconstruction domain in
the inverse solver is discretized in 40× 20× 20 cube inverse
problem cells (16000 permittivity unknowns). Using 479 data
points and the same hardware parameters as in the 2D case,
the reconstruction takes 40 minutes in 10 iterations or with
a stop criterion FLS = 10−3. The reconstruction from Hu-
ber regularization and modified Huber function are shown in
Fig. 3. The shape is well reconstructed and the value is very
close to the reference value which is 2.6− j0.

5. SUMMARY

We extended and gave new insights into the framework of
quantitative microwave imaging with robust Huber regular-
ization. We showed how this framework can be used with
other related functions, by modifying the Huber function such
that the resulting regularization behaves like TV regulariza-
tion, and without numerical problems. We also demonstrated
for the first time the results of this complete framework in
real electromagnetic measurements, showing its potentials in
sparse measurements with relatively few receiving antennas.
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