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Abstract

We study a Bayesian wavelet shrinkage approach for natural images based on a probability

that a given coefficient contains a significant noise-free component, which we call “signal of

interest”. First we develop new subband adaptive wavelet shrinkage method of this kind

for the generalized Laplacian prior for noise free coefficients. We compare the new shrinkage

approach with other subband adaptive Bayesian shrinkage rules in terms of mean squared error

performance. The results demonstrate that the new method outperforms existing Bayesian

thresholding rules for natural images. We also extend the new shrinkage method to a spatially

adaptive procedure. In the spatially adaptive version of the method, each coefficient is shrunk

according to how probable it is that it presents a signal of interest, based on its value, based on

a measurement from the local surrounding and based on the global statistical properties of the

coefficients in a given subband. The procedure is fully automatic and fast. The new method

yields the results that are among the best state-of-the-art ones and it outperforms much more

complex recent related methods.

Keywords: Image denoising, wavelets, Bayesian estimation, generalized likelihood ratio

I. Introduction

In image denoising, where a trade-off between noise suppression and the preservation of

actual image discontinuities must be made, solutions are sought which can “detect” important

image details and accordingly adapt the degree of noise smoothing. The wavelet transform

[1–5] facilitates the detection of important image details in the presence of noise: the wavelet

coefficients representing the main image discontinuities are relatively large as compared to

coefficients that only contain noise. Noise reduction in the wavelet domain is usually done by
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2

shrinking the magnitudes of noisy wavelet coefficients. Ideally, the coefficients that contain

primarily noise should be reduced to negligible values while the ones containing a “significant”

noise-free component should be reduced less. A common shrinkage approach is thresholding

[6, 7], where the coefficients with magnitudes below a certain threshold are treated as “non

significant” and are set to zero. The remaining, “significant” coefficients are kept unmodified

(hard-thresholding) or reduced in magnitude (soft-thresholding).

Shrinkage estimators can also result from Bayesian methods [8–33]. A Bayesian approach

imposes a prior distribution of noise-free data. Common models for noise-free subband data

include (generalized) Laplacian [2, 8, 15, 17], double stochastic (Gaussian scale mixture) pri-

ors [24–26] and mixtures of two distributions where one distribution models the statistics of

“significant” coefficients and the other one the statistics of “insignificant” data [9–14]. Com-

bined with these priors for marginal statistical distributions, Hidden Markov Tree (HMT)

models are often employed to incorporate inter-scale dependencies [21–23] and Markov Ran-

dom Fields (MRF) have been used to model intra-scale (spatial) dependencies [29–32].

Regardless of the particular prior, Bayesian wavelet domain denoising methods have been

developed along the following two main lines. The first class of methods optimizes the threshold

selection for hard- and soft-thresholding [8–11]. The soft thresholding method of [8] known

as BayesShrink, employs a threshold that is optimal in terms of mean squared error (MSE)

for the generalized Laplacian prior. The second class of methods replaces somewhat ad-hoc

choice of hard- and soft- thresholding rules by shrinkage functions that result from minimizing a

Bayesian risk, typically under a quadratic cost function (minimum mean squared error - MMSE

estimation [13–16]) or under a delta cost function (maximum a posteriori - MAP estimation

[17]). The above listed methods are subband adaptive: they are optimized with respect to the

marginal subband statistics. The use of bivariate and joint statistics of wavelet coefficients

is addressed in [18, 19], respectively. In practice, spatially adaptive Bayesian estimators are

efective, where a given parameter of the marginal prior is refined with respect to the local

spatial context. Such a spatially adaptive extension of the BayesShrink rule is reported in [20]
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and different spatially adaptive versions of the MMSE estimators are developed in [21–28].1

This paper focuses on another class of Bayesian shrinkage methods [29–31] including our

previous work [32,33], where the shrinkage rule is: multiply empirical wavelet coefficient with

the probability that it contains a significant noise-free component, given a set of measurements

calculated from the empirical coefficients. While this “probabilistic shrinkage” rule is intuitively

appealing, its motivation in terms of some well established optimization criteria was less clear so

far. The effectiveness of the existing methods [29–32] is largely due to the use of powerful MRF

priors for spatial context. While such priors could have been combined with the MMSE and

MAP estimates as well, some important questions remain: why should one consider multiplying

a coefficient with the probability that it contains a significant signal (instead of using some

common Bayesian estimator, like MMSE or MAP)? How can we develop a simple subband

adaptive2 probabilistic shrinkage function and how would such a function compare with the

well known Bayesian shrinkers, like MAP and MMSE estimates and BayesShrink?

Here we first address these questions and some other related aspects including the MMSE

estimation with Laplacian mixture priors, by providing a thorough analysis and experimental

evaluation. The goals of this analysis are to develop a new subband adaptive Bayesian shrinkage

rule as a valuable alternative to the common ones and, at the same time, to provide a motivation

for a class of methods that shrink the wavelet coefficients according to probability of signal

presence, while building a new, simple and efficient representative of this class. First we develop

new subband adaptive probabilistic wavelet shrinkage rule for the (generalized) Laplacian prior.

The results demonstrate that the new subband adaptive shrinkage outperforms MAP and

BayesShrink in terms of MSE, and that it yields a performance close to the MMSE estimation

under the same priors, while it is less complex and offers a flexible framework for spatially

adaptive extensions. We also develop a spatially adaptive version of the new denoising method

which is simple to implement, fast and effective in practice. The new method outperforms

1 In [21–23] a mixing parameter for a mixture of two normals is calculated adaptively for each spatial position using a
HMT model, while in [24–28], the multiplier of a Gaussian scale mixture prior is calculated from the local surrounding
of each spatial position.

2 Subband adaptive here means adapted to the marginal staistics only, i.e., without using spatial context models.
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some of the much more complex recent ones, which employ HMT and MRF models and yields

results that are in terms of MSE and visually among the best published ones in the field.

The paper is organized as follows. Section II provides the background on minimum mean

squared error estimation of image wavelet coefficients. The emphasis is on MMSE estimation

with mixture priors that are superpositions of two distributions. We give an original, brief

unifying description of the most relevant methods. In Section III, we develop and analyze new

subband adaptive shrinkage functions for natural images. In Section IV, we present one possible

approach to extend the developed shrinkage functions to a spatially adaptive procedure and

we demonstrate and discuss the implementations with orthogonal and with redundant wavelet

transforms. Finally, we conclude the paper in Section V.

II. Background and related work

Assume the input image is contaminated with additive white Gaussian noise of zero mean

and variance σ2. An orthogonal wavelet transformation [1–4] of the noisy input yields then an

equivalent additive white noise model in each wavelet subband3

yi = βi + εi, i = 1, ..., n, (1)

where βi are noise-free wavelet coefficients, εi are independent identically distributed (i.i.d.)

normal random variables εi ∼ N(0, σ2) and n is the number of coefficients in a subband. The

MMSE solution is the conditional mean of the noise-free coefficient value [15]

E(β|y) =

∫ ∞

−∞
βf(β|y)dβ =

∫ ∞
−∞ βf(y|β)f(β)dβ∫ ∞
−∞ f(y|β)f(β)dβ

=

∫ ∞
−∞ βϕ(y − β; σ2)f(β)dβ∫ ∞
−∞ φ(y − β; σ2)f(β)dβ

, (2)

where φ(ε; σ2) is the zero-mean normal density N(0, σ2), i.e., φ(ε; σ2) = (1/
√

2πσ2) exp(−ε2/2σ2),

f(β) is the probability density function of the noise-free coefficients and f(y|β) is the condi-

tional probability density function (likelihood) of y given β. In the following, we use the term

density for the probability density function, and also we call the density f(β) “prior (model)

for β”. Below, several often used models are listed.

3 As it is common in the related literature, for compactness we omit here the indices that denote the scale and the
orientation and we denote the spatial position with a single index, like in a raster scanning.
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A. MMSE estimation under generalized Laplacian priors

The histograms of noise-free wavelet coefficients of natural images, in each subband of the

decomposition, are typically long-tailed and sharply peaked at zero. A generalized Laplacian

distribution (also called generalized Gaussian distribution) is thus a widely accepted prior

model for noise-free subband data (e.g., [2, 8, 15,17]):

f(β) =
λν

2Γ( 1
ν
)
exp(−λ|β|ν), (3)

where Γ(x) =
∫ ∞

0
tx−1e−tdt is the Gamma function, λ > 0 is the scale parameter and ν is

the shape parameter. For natural images, ν is typically in the range ν ∈ [0, 1]. The model

parameters λ and ν are estimated from the noise-free histogram4 as follows: if σ2
β is the sample

variance and κβ the kurtosis of the noise-free histogram, then [15]

σ2
β =

Γ( 3
ν
)

λ2Γ( 1
ν
)
, κβ =

Γ( 1
ν
)Γ( 5

ν
)

Γ2( 3
ν
)

. (4)

Simoncelli and Adelson [15] studied the MMSE approach (2) to image denoising under the

generalized Laplacian prior (3). The resulting estimator performs a Bayesian “coring” of the

coefficients in a manner similar to soft-thresholding.

A special case in the family (3), with ν = 1 (the so-called Laplacian or double exponential)

is often used because of its analytical tractability [16, 17] since it usually does not produce a

noticeable degradation in performance. In [17] it was shown that the maximum a posteriori

(MAP) estimate under the Laplacian prior is a soft-thresholding function with the threshold

√
2σ2/σβ. The MMSE estimate under the Laplacian prior (for the normalized noise standard

deviation σ = 1) was derived in [16] and we shall generalize it in Section III-B.

B. MMSE estimation under mixture priors

Mixture priors are often used to reduce the computation complexity and/or to adapt a

Bayesian estimator to the surrounding of each coefficient. For example, Mihçak et al [24],

Strela et al [25], and Portilla et al [26] use Gaussian scale mixture models: each coefficient is

4 The parameter estimation from the noisy coefficient histogram is explained in [15] and also later in this paper.
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modeled as the product of two independent random variables: β =
√

zu, where z is a positive

scalar (a function of the surrounding coefficient values, like the local variance in [24]), and u

is an element of a Gaussian random field. The MMSE estimate (2) with such priors takes the

form of a Wiener estimator.

Another common class of mixture priors, are superpositions of two distributions, where

one of these models the statistics of “significant” (“high energy” or “important”) coefficients

and the other one models the statistics of “non-significant” coefficients and where the mixing

parameter is usually a Bernoulli random variable [10–14,21–23]. Within this framework, Chip-

man et al [13] proposed a mixture of two normals, which is also adopted in [21–23]. Abramovich

et al [11] and Clyde et al [14] consider a related prior for β which is a mixture of a normal

distribution and a point mass at zero. Vidakovic [10] gives a nice overview of these and related

approaches. Hansen and Yu [16] consider a mixture of a point mass at zero and the Laplacian

distribution. The analysis in Section III will start from a generalization of that model. At this

point, it is useful to give a unifying description of these approaches. Above mentioned mixture

priors can be seen as special cases of the following mixture model class:

f(β) = P (H1)f(β|H1) + P (H0)f(β|H0), (5)

where H1 denotes the hypothesis “signal component appears in the observed coefficient with

significant energy” and H0 denotes the opposite hypothesis. For the prior (5) the minimum

mean squared error estimate of the noise-free coefficient value is

E(β|y) = E(β|y,H0)P (H0|y) + E(β|y,H1)P (H1|y). (6)

Using the Bayes’ rule one can show that

P (H1|y) =
µη

1 + µη
, where µ =

P (H1)

P (H0)
and η =

f(y|H1)

f(y|H0)
, (7)

where the product µη is usually referred to as the generalized likelihood ratio [34]. We can

express the conditional means E(β|y,H0) and E(β|y,H1) as

E(β|y,H0) =

∫ ∞

−∞
βf(β|y,H0)dβ =

∫ ∞
−∞ βφ(y − β; σ)f(β|H0)dβ∫ ∞
−∞ φ(y − β; σ)f(β|H0)dβ

, (8)
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E(β|y,H1) =

∫ ∞

−∞
βf(β|y,H1)dβ =

∫ ∞
−∞ βφ(y − β; σ)f(β|H1)dβ∫ ∞
−∞ φ(y − β; σ)f(β|H1)dβ

. (9)

For the mixture of two normals of the form f(β|H0) = N(0, σ2
0) and f(β|H1) = N(0, σ2

1), (8)

and (9) reduce to E(β|y,H0) = σ2
0/(σ

2
0 + σ2

1)y and E(β|y,H1) = σ2
1/(σ

2
0 + σ2

1)y. In Section

III-B, we derive the above expressions for a mixture prior that generalizes the one in [16],

where it was proposed H0 : β = 0 and H1 : β �= 0, with a Laplacian prior for β.

III. Subband adaptive Bayesian wavelet shrinkage

Here we develop new Bayesian wavelet shrinkage functions, which are adapted to the

marginal subband statistics (histograms) of image wavelet coefficients. We define a “signal of

interest” as a noise-free coefficient component that exceeds a specific threshold T and formulate

the following two hypotheses: H0: “signal of interest is absent” and H1: “signal of interest is

present” (in a given coefficient) precisely as:

H0 : |β| ≤ T and H1 : |β| > T. (10)

For T = 0, the resulting mixture prior (5) reduces to the one in [16]. As an alternative to the

MMSE estimate (6), here we consider a simpler estimator

β̂ = P (H1|y)y =
µη

1 + µη
y, (11)

where each coefficient is multiplied with the probability that it contains a signal of interest.

We call this rule ProbShrink and develop the resulting shrinkage functions for the (generalized)

Laplacian prior for noise free coefficients. We will show that this Bayesian shrinker for appro-

priately defined threshold T yields a mean squared error (MSE) close to the MMSE estimate

(2) under the Laplacian prior for β, while it outperforms the corresponding MAP estimator

and soft-thresholding rules with the MSE-optimum threshold.

Fig. 1(a) shows an example of the conditional densities of noise-free coefficients f(β|H0)

and f(β|H1). The conditional densities of noisy coefficients (likelihoods) f(y|H0) and f(y|H1)
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(a) (b) (c)

Fig. 1. (a) An illustration of the probability density functions of noise-free coefficients: f(β) (dotted), f(β|H0)
(solid) and f(β|H1) (dashed). (b) The resulting conditional densities of noisy coefficients f(y|H0) (solid) and
f(y|H1) (dashed). (c) ProbShrink rule β̂ = P (H1|y)y, where P (H1) is a parameter.

are given by the following convolutions

f(y|H0) =

∫ ∞

−∞
φ(y − β; σ)f(β|H0)dβ , f(y|H1) =

∫ ∞

−∞
φ(y − β; σ)f(β|H1)dβ (12)

and are illustrated in Fig. 1(b). Fig. 1(c) shows the resulting ProbShrink rule (11), where

P (H1) (i.e., the prior ratio µ) is left as a free parameter. Next we address the specification of

the prior probabilities in a given subband.

A. Adapting the prior probabilities to the subband statistics

In this Section we consider a subband adaptive approach, meaning that the prior probabil-

ity (that a signal of interest is present in a coefficient) P (H1) is the same for all the coefficients

in a given subband. In related approaches it has been usually assumed P (H1) = P (H0) = 0.5

(e.g., [16, 29–32]) or P (H1) was estimated empirically as the fraction of the observed noisy

coefficients that are above a certain threshold [13]. In our earlier approach [33], P (H1) was

also estimated empirically using binary masks x = {x1, ..., xn} that indicate the positions of

“significant” (xl = 1) and “insignificant” (xl = 0) coefficients for each subband. The mask

detection was based on interscale correlations and the required probability was estimated by

the fraction of labels “1”: P (H1) =
∑n

l=1 xl/n.

Here we propose to derive the probability P (H1) from the prior model for the noise-free

coefficients in a given subband. First, we note that from the definition H0 : |β| ≤ T and
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H1 : |β| > T , and in case where P (H1) is constant per subband, it follows that

P (H1) =

∫ ∞

−∞
f(β|H1)dβ = 1 −

∫ T

−T

f(β)dβ. (13)

Next we develop this expression and analyze ProbShrink rule (11) in cases where the prior for

noise-free coefficients is Laplacian or generalized Laplacian density.

B. ProbShrink rule for the Laplacian prior

For the Laplacian prior, the conditional densities of noise-free coefficients are

f(β|H0) =




A0 exp(−λ|β|), if |β| ≤ T

0, if |β| > T,
(14)

f(β|H1) =




0, if |β| ≤ T ,

A1 exp(−λ|β|), if β > T ,
(15)

where it is straightforward to show that

A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT . (16)

From (13) it follows that P (H1) = 1 − λ
∫ T

0
exp(−λβ)dβ = 1 − exp(−λT ) yielding

µ =
P (H1)

P (H0)
=

exp(−λT )

1 − exp(−λT )
. (17)

For the ProbShrink rule (11), we still need to derive the likelihood ration η = f(y|H1)/f(y|H0).

For completeness, we also derive the conditional means from (8) and (9). We start by normal-

izing the noise standard deviation to σ = 1 and later generalize to arbitrary σ.

Proposition 1 Assume the wavelet coefficients in a given subband follow model (1) with

σ2 = 1, i.e., yi = βi + εi, i = 1, ..., n, where εi are i.i.d. N(0, 1). Also, assume that the

noise-free coefficients βi are i.i.d. Laplacian random variables (according to (3) with ν = 1)

and define the hypotheses H0 and H1 as in (10): H0 : |β| ≤ T and H1 : |β| > T . Let φ(y) and

Φ(y) denote the probability density function and the cumulative distributions of the standard

normal distribution N(0, 1) and define Ψ(a; t) = Φ(a + t) − Φ(t).
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The conditional mean of β given y under H1 (the signal of interest is present) is

E(β|y,H1) = y − λr−(y; λ; T ) − e−(T 2/2+λT )(eTy − e−Ty)/
√

2π

r+(y; λ; T )
, (18)

where

r+(y; λ; T ) = e(y−λ)2/2Φ(y − λ − T ) + e(y+λ)2/2Φ(−y − λ − T ),

r−(y; λ; T ) = e(y−λ)2/2Φ(y − λ − T ) − e(y+λ)2/2Φ(−y − λ − T ).

The conditional mean of β given y under H0 (the signal of interest is not present) is

E(β|y,H0) = y − λρ−(y; λ; T ) + e−(T 2/2+λT )(eTy − e−Ty)/
√

2π

ρ+(y; λ; T )
, (19)

where

ρ+(y; λ; T ) = e(y−λ)2/2Ψ(λ − y; T ) + e(y+λ)2/2Ψ(λ + y; T ),

ρ−(y; λ; T ) = e(y−λ)2/2Ψ(λ − y; T ) − e(y+λ)2/2Ψ(λ + y; T ).

The conditional densities (likelihoods) of noisy coefficients are

f(y|H0) = A0

√
2πφ(y)ρ+(y; λ; T ) (20)

f(y|H1) = A1

√
2πφ(y)r+(y; λ; T ) (21)

with A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT , and the likelihood ratio is

η =
f(y|H1)

f(y|H0)
= (eλT − 1)

r+(y; λ, T )

ρ+(y; λ, T )
. (22)

Proof: See Appendix A.

Note that the expression for the conditional mean E(β|y) derived by Hansen and Yu [16]

is a special case of (18) corresponding to T = 0. Note also that in our approach for T = 0 one

has P (H1) = 1 and E(β|y) = E(β|y,H1) = y − λr−(y; λ, 0)/r+(y; λ, 0), where σ = 1.

For an arbitrary value of σ one can show (see Appendix B) that the previous expressions

generalize as follows:

E(β|y,H1) = y − σ2λr−(y/σ; σλ; T ) − σe−(T 2/2+σλT )(eTy/σ − e−Ty/σ)/
√

2π

r+(y/σ; σλ; T )
, (23)
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E(β|y,H0) = y − σ2λρ−(y/σ; σλ; T ) + σe−(T 2/2+σλT )(eTy/σ − e−Ty/σ)/
√

2π

ρ+(y/σ; σλ; T )
, (24)

For arbitrary σ, the densities of noisy coefficients are f(y|H0) = (A0/σ)
√

2πφ(y/σ)ρ+(y/σ; σλ; T )

and f(y|H1) = (A1/σ)
√

2πφ(y/σ)r+(y/σ; σλ; T ) and the likelihood ratio is

η =
f(y|H1)

f(y|H0)
= (eλT − 1)

r+(y/σ; σλ; T )

ρ+(y/σ; σλ; T )
. (25)

The MMSE estimate E(β|y) is the special case of E(β|y,H1) for T = 0:

E(β|y) = y − σ2λr−(y/σ; σλ, 0)/r+(y/σ; σλ, 0). (26)

Also, the probability density function of noisy wavelet coefficients f(y) is the special case

of f(y|H1), for T = 0: f(y) = (λ/2σ)
√

2πφ(y/σ)r+(y/σ; σλ; 0). The special case of this

expression, for σ = 1, was previously derived in [16].

Note that the mixture prior f(β) = P (H1)f(β|H1) + P (H0)f(β|H0) with the conditional

densities (14) and (15), and with subband-adaptive prior probability P (H1) defined in (13) re-

duces to the Laplacian density f(β) = (λ/2) exp(−λ|β|). Computing the conditional mean (6):

E(β|y) = E(β|y,H0)P (H0|y) +E(β|y,H1)P (H1|y) using (7), (17), (22)-(24) is thus equivalent

to the classical MMSE estimate (2) under the Laplacian prior. This also means that the MMSE

estimate E(β|y) = E(β|y,H0)P (H0|y) + E(β|y,H1)P (H1|y) is a generalization of the MMSE

estimate under the Laplacian prior, which reduces to this special case when P (H1) is constant

per subband as defined in (13). The main importance of using the described mixture prior is

that it provides a simple methodology for making the shrinkage spatially adaptive, by adapting

P (H1) and P (H0) to the local spatial context, which can be achieved using e.g., HMT [21,22]

or MRF [29,31,32] models or using local spatial activity indicators as in Section IV. A question

is whether such a MMSE approach would be of practical importance, regarding the complex-

ity of the involved expressions for E(β|y,H0) and E(β|y,H1). This is possibly a subject for

further research. The conditional means E(β|y), E(β|y,H1) and E(β|y,H1) are illustrated in

Fig. 2. For large |y|, E(β|y,H0) approaches +T (when y > 0) or −T (when y < 0). This is

a consequence of the formulation H0 : |β| ≤ T , which imposes −T ≤ E(β|y,H0) ≤ T . The
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Fig. 2. (a) An illustration of E(β|y,H0) and E(β|y,H0) at the finest resolution scale for different T . (b) and
(c) Comparison between the MMSE estimate E(β|y) and the proposed ProbShrink rule for T = σ at the finest
and at the second finest scale, respectively.

values of E(β|y,H1) for large |y| do not depend on the value of T . From (23) it can be shown5

that when |y| tends to infinity, E(β|y,H1) and E(β|y) approach to the maximum a posteriori

(MAP) estimate of β, i.e., lim|y|→∞ E(β|y,H1) = lim|y|→∞ E(β|y) = sgn(y)(|y| − σ2λ).

Fig. 2 also illustrates the ProbShrink rule in comparison to the MMSE estimate. While

the MMSE estimate is analyzed here for completeness, we restrict the further analysis to

ProbShrink rule and use the MMSE estimate for the performance comparison (Section III-D).

C. ProbShrink rule for the generalized Laplacian prior

When the noise-free first-order distribution is modelled by a generalized Laplacian (3), the

conditional densities of noise-free coefficients are

f(β|H0) =




B0 exp(−λ|β|ν), if |β| ≤ T

0, if |β| > T,
(27)

and

f(β|H1) =




0, if |β| ≤ T ,

B1 exp(−λ|β|ν), if β > T ,
(28)

with the normalization constants (see Appendix C):

B0 =
λν

2Γ( 1
ν
)Γinc

(
(λT )ν , 1

ν

) and B1 =
λν

2Γ( 1
ν
)
[
1 − Γinc

(
(λT )ν , 1

ν

)] . (29)

5 Note that limy→∞ Φ(y−λ−T ) = limy→−∞ Φ(−y−λ−T ) = 1, limy→−∞ Φ(y−λ−T ) = limy→∞ Φ(−y−λ−T ) = −1,

which yields limy→±∞
r−(y;λ;T )

r+(y;λ;T )
= ±1 and limy→±∞ eT y−e−T y

r+(y;λ;T )
= 0.
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Fig. 3. Test images. Top left to right: Airfield, Barbara, Boat. Bottom left to right: Couple, Goldhill, Lena.

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete gamma function. From (13) we have that

(see also Appendix C): P (H1) = 1 − ∫ ∞
−∞ f(β)dβ = 1 − Γinc

(
(λT )ν , 1

ν

)
and thus

µ =
P (H1)

P (H0)
=

1 − Γinc

(
(λT )ν , 1

ν

)

Γinc

(
(λT )ν , 1

ν

) . (30)

The likelihood ratio η = f(y|H1)/f(y|H0) is calculated using (12), where f(y|H0) and f(y|H1)

result from convolving (27) and (28), respectively, with the normal density N(0, σ2).

D. Experimental performance evaluation

There are three goals of the experimental performance evaluation in this Section. Firstly,

we wish to investigate the optimal (in terms of mean squared error) choice of the parameter T ,

which specifies the signal of interest in the proposed ProbShrink rule (11). Secondly, we wish to

compare the performance of the resulting shrinkage rules under Laplacian and under generalized

Laplacian priors. Finally, we wish to evaluate the performance of these new Bayesian shrinkers

with respect to MAP and MMSE estimators and with respect to BayesShrink of [8]. Recall

that the MAP estimate under the Laplacian prior is soft-thresholding with the threshold σ2λ =

√
2σ2/σβ and that BayesShrink is soft-thresholding with the threshold σ2/σβ that is for natural
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Fig. 4. Resulting PSNR[dB] values for the subband adaptive ProbShrink estimator under the Laplacian prior,
as a function of the threshold T . From left to right the noise standard deviation is σ = 10, σ = 15 and σ = 20.

Fig. 5. Same as in Fig. 4, but for the generalized Laplacian prior.

images optimal in terms of mean squared error.

We used six representative natural images from Fig. 3, which were corrupted by various

amounts of artificial additive white Gaussian noise. The experimental results are shown in

Fig. 4, Fig. 5 and in Table I, where PSNR denotes the peak signal to noise ratio defined as:

PSNR = 10 log10(2552/MSE), where MSE is the mean squared error. The diagrams in Fig. 4

and Fig. 5 demonstrate clearly that for the ProbShrink rule the optimal threshold value is a

function of noise level. For both the Laplacian and the generalized Laplacian prior the PSNR

peaks at T � σ. All the following results in this paper correspond to this threshold selection.
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TABLE I
Experimental PSNR[dB] results of several Bayesian wavelet shrinkers under Laplacian

(Lap.) and generalized Laplacian (gen. Lap) priors, for the Daubechies’ least asymetrical

wavelet with eight vanishing moments.

Standard deviation of noise

Prior Estimator 10 15 20 25

AIRFIELD

Lap. noisy image 28.14 24.63 22.10 20.19

Lap. MAP 30.18 27.86 26.33 25.25

Lap. MMSE 30.43 28.19 26.71 25.67

Lap. ProbShrink 30.19 28.01 26.55 25.52

gen. Lap. ProbShrink 30.25 28.09 26.62 25.56

gen. Lap. BayesShrink soft-thresholding 30.24 27.98 26.49 25.44

BARBARA

noisy image 28.12 24.59 22.09 20.17

Lap. MAP 31.33 28.96 27.36 26.08

Lap. MMSE 31.35 28.93 27.34 26.18

Lap. ProbShrink 31.52 29.05 27.41 26.21

gen. Lap. ProbShrink 31.62 29.17 27.54 26.32

gen. Lap. BayesShrink soft-thresholding 31.24 28.86 27.32 26.20

BOAT

noisy image 28.15 24.62 22.10 20.17

Lap. MAP 32.00 29.92 28.42 27.37

Lap. MMSE 32.23 30.14 28.70 27.70

Lap. ProbShrink 32.13 30.05 28.63 27.63

gen. Lap. ProbShrink 32.23 30.13 28.70 27.69

gen. Lap. BayesShrink soft-thresholding 32.01 29.98 28.55 27.54

COUPLE

noisy image 28.15 24.60 22.11 20.18

Lap. MAP 31.65 29.26 27.89 26.95

Lap. MMSE 31.81 29.61 28.29 27.32

Lap. ProbShrink 31.73 29.53 28.20 27.18

gen. Lap. ProbShrink 31.82 29.60 28.24 27.24

gen. Lap. BayesShrink soft-thresholding 31.70 29.46 28.08 27.09

GOLDHILL

noisy image 28.13 24.63 22.11 20.20

Lap. MAP 31.83 29.72 28.50 27.66

Lap. MMSE 32.16 30.16 28.95 28.09

Lap. ProbShrink 31.95 30.02 28.80 27.88

gen. Lap. ProbShrink 32.04 30.05 28.85 27.94

gen. Lap. BayesShrink soft-thresholding 31.94 29.95 28.71 27.82

LENA

noisy image 28.13 24.60 22.12 20.16

Lap. MAP 33.43 31.47 30.18 29.23

Lap. MMSE 33.62 31.65 30.36 29.40

Lap. ProbShrink 33.69 31.70 30.39 29.41

gen. Lap. ProbShrink 33.80 31.82 30.49 29.51

gen. Lap. BayesShrink soft-thresholding 33.47 31.53 30.26 29.30
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The results in Table I demonstrate that ProbShrink rule outperforms the MAP estimation

in terms of mean squared error and that it yields similar MSE performance as the classical

MMSE estimate E(β|y) from (2). Next, the results demonstrate that ProbShrink with the

generalized Laplacian prior yields slightly higher PSNR as compared to the same rule with the

Laplacian prior. Finally, the results in Table I also demonstrate that the proposed ProbShrink

rule outperforms BayesShrink rule on all tested images. Since BayesShrink is soft-thresholding

with the MSE optimum threshold, we can deduce that ProbShrink (at least on the tested

images) outperforms soft thresholding with any threshold that is constant per subband.

IV. Spatially adaptive Bayesian shrinkage

The shrinkage approach analyzed so far was subband-adaptive: if two noisy coefficients

from the same subband were of equal magnitudes than they were shrunk by the same amount

no matter their spatial position and no matter their local surrounding. Now we adapt the

estimator to the local spatial context in the image. For the ProbShrink rule β = P (H1|y)y,

the most natural way to achieve such a spatial adaptation is to estimate the prior probability

of signal presence P (H1) adaptively for each coefficient instead of fixing it per subband.

Similarly as in our related work [33], we achieve this by conditioning the hypothesis H1 on a

local spatial activity indicator (LSAI) such as the locally averaged coefficient magnitude or the

local variance. In general, LSAI can be defined as the parent coefficient magnitude as in [18],

the average of the (weighted) coefficient magnitudes [20, 23] or the local variance [24] within

a small window, the estimate of the local regularity [5, 29, 32] at the corresponding position,

etc. To estimate the probability that “signal of interest” is present at the position l we now

take into account not only the global coefficient histogram but we also take into account the

local spatial activity indicator. The probability of the hypothesis H1 at the position l is thus

estimated given LSAI zl, i.e., it is conditioned on zl. Starting from (11) and replacing the ratio

of “global” probabilities P (H1)/P (H0) with

P (H1|zl)

P (H0|zl)
=

f(zl|H1)

f(zl|H0)

P (H1)

P (H0)
, (31)
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(a) (b)

Fig. 6. (a) An illustration of the proposed denoising method, where pdf denotes the probability density function
and where LSAI denotes the local spatial activity indicator. (b) The resulting shrinkage rule is a family of
characteristics, which corespond to different values of LSAI.

we obtain a spatialy adaptive shrinkage estimator

β̂l =
ηlξlµ

1 + ηlξlµ
yl, (32)

where

ηl =
f(yl|H1)

f(yl|H0)
, ξl =

f(zl|H1)

f(zl|H0)
and µ =

P (H1)

P (H0)
. (33)

The characteristic parts of the method are illustrated in Fig. 6, where the generalized likelihood

ratio denotes the product ηlξlµ. The proposed method has a nice heuristic explanation: each

coefficient is shrunk according to how probable it is that it presents useful information, based

on its value (via ηl), based on a measurement from the local surrounding (via ξl) and based on

the global statistical properties of the coefficients in a given subband (via µ). The estimator

(32) is of the same form as in our previous method [33]. The difference is that µ, ηl and ξl

were in [33] estimated differently, based on a preliminary coefficient classification according to

user-defined notion of the signal of interest, while now we develop an alternative analytical

approach which does not involve any user-optimized parameters and binary classifications.

We define LSAI as the locally averaged magnitude of the coefficients in a relatively small

square window δ(l) of a fixed size N , within the same subband:

zl =
1

N

∑
k∈δ(l)

ωl, (34)
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(a) (b) (c)

Fig. 7. Performance of the proposed ProbShrink method without spatial adaptation (subband adaptive shrink-
age) and with spatial adaptation on three test images: (a) Barbara, (b) Boat and (c) Lena.

(a) (b) (c) (d)

Fig. 8. Visual performance of different versions of the proposed ProbShrink method. (a) Noisy Barbara image,
σ = 20, PSNR=22.09dB. (b) Subband adaptive shrinkage in the orthogonal transform, PSNR=27.54dB. (c)
Spatially adaptive shrinkage in the orthogonal transform PSNR=28.4dB. (d) Spatially adaptive shrinkage in
the non-decimated transform PSNR=29.53dB.

where ωl denotes the coefficient magnitude ωl = |yl|. For practical reasons, we simplify the

statistical characterization of zl considerably assuming that all the coefficients within the small

window are equally distributed and conditionally independent. With these simplifications,

f(Nzl|H1) is given by N convolutions of f(ωl|H1) with itself and f(Nzl|H0) is given by N

convolutions of f(ωl|H0) with itself. The resulting spatially adaptive estimator (32) yields a

significant improvement with respect to the subband-adaptive estimator (11) as it is illustrated

in Fig. 7). In all cases, the window size 3x3 was used, which was experimentally found optimal.

Fig. 8 demonstrates that the visual improvement resulting from the spatial adaptation of the

estimator is also evident.
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Fig. 9. Performance of the proposed spatially adaptive shrinkage in comparison with several recent methods
using orthogonal wavelet transform: [7] (Donoho, 1995), [21] (Crouse, 1998), [24] (Mihcak, 1999) and [18]
(Sendur, 2002). “Classical MMSE” denotes the MMSE estimation under the Laplacian prior.

A. Results in the orthogonal wavelet representation

Here we present the results of the proposed spatially adaptive algorithm with the or-

thogonal wavelet transform, where we used five decomposition levels, the least asymmetri-

cal Daubechies wavelet symmlet with eight vanishing moments [1]. We used the generalized

Laplacian prior and the fixed window size 3x3. Fig. 9 shows the results in comparison with

several representative denoising methods that use the orthogonal transform: the recent bi-

variate shrinkage method of Şendur and Selesnick [18], the locally adaptive Wiener method

of Mihcak et al [24], the Hidden Markov Tree (HMT) approach of Crouse et al [21] and the

soft thresholding of Donoho and Johnstone [7] with the SURE threshold (that minimizes the

Stein’s unbiased risk estimate). We also show in Fig. 9 the results of the classical MMSE

estimation (2) with the Laplacian prior for noise-free coefficients. The experimental results

indicate that the proposed method offers the results that are among the best available ones

where the orthogonal wavelet transform is used. On the three tested 512x512 images, Lena,

Barbara and Boat the new method provides higher signal to noise ratio as compared to the

bivariate shrinkage of [18] and the HMT approach of [21]. Our results also compare well with

those of [24], which are the best reported ones with the orthogonal transform.
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Fig. 10. Performance of the proposed method implemented with a non-decimated transform in comparison with
several recent methods, which use a redundant wavelet transform: [29] (Malfait, 1997), [20] (Chang, 1998), [22]
(Romberg, 1999), [28] (Li, 2000), [23] (Fan, 2001), [26] (Portilla, 2001) and [32] (Pizurica, 2002).

Fig. 11. Left: (a) noise-free part of the Peppers image, (b) noisy image, σ = 37.5, (c) the result of the
MRF-based wavelet domain method of [32] and (d) the result of the new method. Right: noise-free part of
the Couple image, (b) noisy image, σ = 15, (c) the result of the spatially adaptive Matlab’s Wiener filter in
the image domain and (d) the result of the new method.

B. Results in the redundant wavelet representation

In order to compare the performance of the proposed method with the best available

results in the field, we need to use a redundant rather than orthogonal wavelet representation.

In this respect, two approaches are common: (1) cycle spining [35]: (apply the orthogonal

transform to several cyclically shifted image versions and average over unshifted denoising
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results) and (2) denoising in a non-decimated (stationary) wavelet representation. Here we

used the non-decimated transform, implemented with the algorithm à trous [4].

A non-decimated wavelet transform maps input white noise into correlated one which

makes the modelling more complicated. A possible solution in this respect is to divide the

coefficients in each subband at the scale 2j into 22j
sets of non-correlated coefficients and

to process these coefficient sets independently as in [20]. With these coefficient separations

however the benefit of the non-decimated representation is not fully exploited (e.g., intrascale

comparisons between the nearest-neighboring coefficients are no longer possible). Otherwise,

if the estimation is not performed over sets of non-correlated coefficients certain model sim-

plifications are needed, like, e.g., in [26, 29, 31, 32]. We performed experiments both with and

without separating the coefficients into the sets of non-correlated elements. The resulting sig-

nal to noise ratio was on all tested images 0.1-0.2dB higher without the coefficient separation

(window sizes were optimized in both cases).

In Fig. 10, the results are plotted in comparison with seven recently published methods,

which use overcomplete wavelet transform: spatially adaptive thresholding of [20]; locally

adaptive Wiener filtering combined with a directional filtering along the edges [28], MMSE

estimation with a Gaussian scale mixture prior of [26], two different MMSE estimation variants

with HMT models [22, 23] and two earlier probabilistic shrinkage methods based on MRF

priors [29, 32]. The results are plotted for three test images: 512x512 Lena and Barbara

images and 256x256 Peppers image. We experimented only with two types of orthogonal

wavelets: Daubechies wavelets and symmlets [1, 4]. Among these, on the Barbara image the

best results were obtained using the symmlet with eight vanishing moments, while for Lena

and Peppers images the best results were obtained using the shortest Daubechies wavelet (i.e.,

the Haar wavelet). Visual quality of results is illustrated in Fig. 11. In all cases, we used four

decomposition levels and the square window size 7x7, which was experimentally found optimal.

The results in Fig. 10 demonstrate that the new method outperforms more complex related

ones that are based on HMT priors [22] and on MRF priors [29, 32]. Visual improvement is
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illustrated in Fig. 11. The new, non-recursive method is much faster as compared to our previ-

ous MRF-based method from [32]. On a Pentium IV processor with 1.8GHz the new method

takes 14s to process 512x512 image; the processing time of the MRF based method [32] is

three times as long with the same processor. Here proposed method is also less complex as

compared to the sophisticated MMSE approach of [26], while yielding a similar MSE perfor-

mance (in [26], the reported processing time for a 512x512 image was 12.8 min on a Pentium

III processor with 900 MHz). Fig. 10 also shows that in comparison with the approaches of

similar complexity [20,28], the new method yields a significant improvement.

C. Implementation details

In the proposed method, the parameters λ and ν of the generalized Laplacian prior for

noise-free data are estimated from the noisy histogram in each subband, like in [8, 15]. In

particular, we first solve the equation

Γ( 1
ν
)Γ( 5

ν
)

Γ2( 3
ν
)

=
m4 + 3σ4

n − 6σ2σ2
y

(σ2
y − σ2)2

. (35)

where σ2
y and m4 denote the variance and fourth moment of the noisy histogram respectively.

Then we compute the scale parameter ν as

λ =
(
(σ2

y − σ2)
Γ( 1

ν
)

Γ( 3
ν
)

)−1/2

. (36)

For the Laplacian prior (ν = 1) we have λ = [0.5(σ2
y − σ2)]−1/2. The results in this paper were

obtained assuming that the noise standard deviation σ was known (as it is usual for reporting

the results in case of artificially added noise). In practice the noise standard deviation is

usually not known in advance, but its reliable estimate can be obtained as the median absolute

deviation of the coefficients in the highest frequency subband devided by 0.6745 [7].

V. Conclusion

We developed a new wavelet domain denoising method based on probability that a given

coefficient represents a significant noise-free component called here “signal of interest”. The
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new method differs significantly from the previous related ones that were based on Markov

Random Fields and presents a complementary extension to our recent heuristic method [33].

The main conclusion of this paper is that a “probabilistic wavelet shrinkage” approach

that we named here ProbShrink presents in terms of mean squared error performance a valu-

able alternative to more common Bayesian methods like MMSE and MAP estimators and the

thresholding with the MSE optimum threshold. We demonstrated this both in case of esti-

mators that are adapted to the marginal subband statistics only and in case where spatially

adaptive versions of such estimators are used. This also presents a new theoretical and practi-

cal motivation for a class of previous related methods [29–33]. As side results of this analysis

we also developed analytical expressions for MMSE estimation with Laplacian mixture priors,

opening some new possibilities for further research in this field.

New spatially adaptive denoising method proposed here yields superior results as compared

to some much more complex recent approaches based on HMT and MRF models. These

results motivate strongly further development of the presented concept. We believe that main

improvements of the current scheme should come from defining more effective local spatial

activity indicators and from modelling accurately their conditional densities given the presence

and given the absence of a signal of interest. Improvements can also result from replacing the

classical wavelet transform with complex wavelets [36] or with a steerable pyramid as in [26,27].

VI. Appendix A

Proof of the proposition 1

When the noise-free coefficient histogram is modelled by a Laplacian density we have that

f(β|H0) =




A0 exp(−λ|β|), if |β| ≤ T

0, if |β| > T,
and f(β|H1) =




0, if |β| ≤ T ,

A1 exp(−λ|β|), if β > T ,

with A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT . The conditional means E(β|y,H1) and

E(β|y,H0) from (8) and (9), and the likelihoods f(β|y,H0) and f(β|y,H1) from (12) can be
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written as

E(β|y,H1) =
KH1(y; λ, T )

mH1(y; λ, T )
, and E(β|y,H0) =

KH0(y; λ, T )

mH0(y; λ, T )
, (37)

f(β|y,H1) = A1mH1(y; λ, T ) and f(β|y,H0) = A1mH0(y; λ, T ), (38)

where

mH1(y; λ, T ) =

∫ −T

−∞
eλβφ(y − β)dβ +

∫ ∞

T

e−λβφ(y − β)dβ, (39)

KH1(y; λ, T ) =

∫ −T

−∞
βeλβφ(y − β)dβ +

∫ ∞

T

βe−λβφ(y − β)dβ, (40)

mH0(y; λ, T ) =

∫ 0

−T

eλβφ(y − β)dβ +

∫ T

0

e−λβφ(y − β)dβ, (41)

KH0(y; λ, T ) =

∫ 0

−T

βeλβφ(y − β)dβ +

∫ T

0

βe−λβφ(y − β)dβ. (42)

On a nonnegative interval [a, b], one can verify the following two identities [16]

I(y; a; b, λ) =

∫ b

a

e−λβφ(y − β)dβ =
√

2πφ(y)e(y−λ)2/2[Φ(b − y + λ) − Φ(a − y + λ)],

II(y; a; b, λ) =

∫ b

a

βe−λβφ(y − β)dβ =
√

2πφ(y)e(y−λ)2/2
[ 1√

2π
e−(a−y+λ)2/2 − 1√

2π
e−(b−y+λ)2/2

+(y − λ)
(
Φ(b − y + λ) − Φ(a − y + λ)

)]
.

Using these identities, we find

mH1(y; λ, T ) = I(y; T,∞, λ) + I(−y; T,∞, λ) =

√
2πφ(y)

[
e(y−λ)2/2(1 − Φ(T − y + λ)) + e(y+λ)2/2(1 − Φ(T + y + λ))

]
=

√
2πφ(y)r+(y; λ; T ),

and

KH1(y; λ, T ) = II(y; T,∞, λ) − II(−y; T,∞, λ) =

√
2πφ(y)

[ 1√
2π

(
e(y−λ)2/2−(T−y+λ)2/2 − e(y+λ)2/2−(T+y+λ)2/2

)
+

(y − λ)e(y−λ)2/2Φ(y − λ − T ) + (y + λ)e(y+λ)2/2Φ(−y − λ − T )
]

=

√
2πφ(y)

[ 1√
2π

e
−
(

T2

2
+λT

)(
eTy − e−Ty

)
+ yr+(y; λ; T ) − λr−(y; λ; T )

]
,
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where

r+(y; λ, T ) = e(y−λ)2/2Φ(y − λ − T ) + e(y+λ)2/2Φ(−y − λ − T ),

r−(y; λ, T ) = e(y−λ)2/2Φ(y − λ − T ) − e(y+λ)2/2Φ(−y − λ − T ).

Thus the conditional mean of β given y under H1 is

E(β|y,H1) =
KH1(y; λ, T )

mH1(y; λ, T )
= y −

λr−(y; λ, T ) − 1√
2π

e−(T 2/2+λT )(eTy − e−Ty)

r+(y; λ, T )
.

Similarly, if we introduce Ψ(a; T ) = Φ(a + T ) − Φ(a), we find

mH0(y; λ, T ) = I(y; 0, T, λ) + I(−y; 0, T, λ) =

√
2πφ(y)

[
e(y−λ)2/2Ψ(λ − y; T ) + e(y+λ)2/2Ψ(λ + y; T )

]
=

√
2πφ(y)ρ+(y; λ; T ),

and

KH0(y; λ, T ) = II(y; 0, T, λ) − II(−y; 0, T, λ) =

√
2πφ(y)

[ 1√
2π

(
e(y+λ)2/2−(T+y+λ)2/2 − e(y−λ)2/2−(T−y+λ)2/2

)
+

(y − λ)e(y−λ)2/2Ψ(λ − y; T ) + (y + λ)e(y+λ)2/2Ψ(λ + y; T )
]

=

√
2πφ(y)

[
− 1√

2π
e
−
(

T2

2
+λT

)(
eTy − e−Ty

)
+ yρ+(y; λ; T ) − λρ−(y; λ; T )

]
,

where

ρ+(y; λ, T ) = e(y−λ)2/2Ψ(λ − y; T ) + e(y+λ)2/2Ψ(λ + y; T ),

ρ−(y; λ, T ) = e(y−λ)2/2Ψ(λ − y; T ) − e(y+λ)2/2Ψ(λ + y; T ).

Thus the conditional mean of β given y under H0 is

E(β|y,H0) =
KH0(y; λ, T )

mH0(y; λ, T )
= y −

λρ−(y; λ, T ) + 1√
2π

e−(T 2/2+λT )(eTy − e−Ty)

ρ+(y; λ, T )
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as was given in (19). Finally, the conditional densities of noisy wavelet coefficients are

f(y|H0) = A0mH0(y; λ, T ) = A0

√
2πφ(y)ρ+(y; λ; T ), (43)

f(y|H1) = A1mH1(y; λ, T ) = A1

√
2πφ(y)r+(y; λ; T ), (44)

which with A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT yield

η =
f(y|H1)

f(y|H1)
= (eλT − 1)

r+(y; λ, T )

ρ+(y; λ, T )
, (45)

which completes the proof of the Proposition 2.

VII. Appendix B

Generalization of the Proposition 2 to arbitrary σ

To generalize the procedure from Appendix B to arbitrary values of the noise standard

deviation σ, the integrals I(y; a, b, λ) and II(y; a, b, λ) from (39)-(42) need to be replaced by

I(y; a, b, λ, σ) and II(y; a, b, λ, σ), respectively, where

I(y; a, b, λ, σ) =

∫ b

a

e−λβ 1

σ
√

2π
e−

(y−β)2

2σ2 dβ,

II(y; a, b, λ, σ) =

∫ b

a

βe−λβ 1

σ
√

2π
e−

(y−β)2

2σ2 dβ.

By introducing a change of variables β′ = β
σ

it follows that

I(y; a, b, λ, σ) =
1

σ

∫ b

a

e−σλβ′
φ(y/σ − β′)dβ′ =

1

σ
I(

y

σ
; a, b, σλ) (46)

II(y; a, b, λ, σ) =

∫ b

a

β′e−σλβ′
φ(y/σ − β′)dβ′ = II(

y

σ
; a, b, σλ) (47)

This yields

f(β|y,H0) =
A0

σ
mH0(

y

σ
; σλ, T ) = A0

√
2πφ(

y

σ
)ρ+(

y

σ
; σλ; T ) (48)

f(β|y,H1) =
A1

σ
mH1(

y

σ
; σλ, T ) = A1

√
2πφ(

y

σ
)r+(

y

σ
; σλ; T ), (49)

and

E(β|y,H0) =
σKH0(

y
σ
; σλ, T )

mH0(
y
σ
; σλ, T )

= y −
σ2λρ−( y

σ
; σλ, T ) + σ√

2π
e−(T 2/2+σλT )(eTy/σ − e−Ty/σ)

ρ+( y
σ
; σλ, T )

(50)

E(β|y,H1) =
σKH1(

y
σ
; σλ, T )

mH1(
y
σ
; σλ, T )

= y −
σ2λr−( y

σ
; σλ, T ) − σ√

2π
e−(T 2/2+σλT )(eTy/σ − e−Ty/σ)

r+( y
σ
; σλ, T )

(51)
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VIII. Appendix C

Derivations for the shrinkage rule with the generalized Laplacian prior

For the generalized Laplacian prior f(β) = λν
2Γ( 1

ν
)
exp(−|λβ|ν), we have

∫ T

−T

f(β)dβ =
λν

2Γ( 1
ν
)

∫ T

−T

exp(−|λβ|ν)dβ =
λν

Γ( 1
ν
)

∫ T

0

exp(−(λβ)ν)dβ. (52)

By introducing the change of variables t = (λβ)ν it follows that dβ = 1
λν

t
1
ν
−1 dt and thus

∫ T

−T

f(β)dβ =
1

Γ
(

1
ν

)
∫ (λT )ν

0

t
1
ν
−1e−tdt = Γinc

(
(λT )ν ,

1

ν

)
,

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete gamma function. From (13), we have

µ =
P (H1)

P (H0)
=

1 − ∫ T

−T
f(β)dβ∫ T

−T
f(β)dβ

=
1 − Γinc

(
(λT )ν , 1

ν

)

Γinc

(
(λT )ν , 1

ν

) , (53)

as it was given in (30). For the conditional densities f(β|H0) and f(β|H1) of noise-free coeffi-

cients from (27) and (28), the normalization constants B0 and B1 are

B0 =
(∫ T

−T

exp(−|λβ|ν)dβ
)−1

=
(2Γ( 1

ν
)

λν

∫ T

−T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)Γinc

(
(λT )ν , 1

ν

) (54)

and

B1 =
(
2

∫ ∞

T

exp(−|λβ|ν)dβ
)−1

=
λν

2Γ( 1
ν
)

(
2

∫ ∞

T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)

(
1 −

∫ T

−T

f(β)dβ
)−1

(55)

=
λν

2Γ( 1
ν
)
[
1 − Γinc

(
(λT )ν , 1

ν

)] .
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