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Abstract—We propose an efficient and accurate wavelet-based
noise estimation method for white Gaussian noise in video se-
quences. The proposed method analyzes the distribution of spatial
and temporal gradients in the video sequence in order to estimate
the noise variance. The estimate is derived from the most frequent
gradient in the two distributions and is compensated for the
errors due to the spatio–temporal image sequence content, by
a novel correction function. The spatial and temporal gradients
are determined from the finest scale of the spatial and temporal
wavelet transform, respectively. The main application of the noise
estimation algorithm is in wavelet-based video processing. The
results show that the proposed method is more accurate than other
state-of-the-art noise estimation techniques and less sensitive to
varying spatio–temporal content and noise level.

Index Terms—Noise estimation, video analysis and processing,
wavelets.

I. INTRODUCTION

VIDEO sequences are often distorted by noise during acqui-
sition or transmission. In many video processing applica-

tions, such as video quality enhancement, compression, format
conversion, deinterlacing, motion segmentation, etc., accurate
knowledge of the noise level present in the input video sequence
is of crucial importance for tuning the parameters of the corre-
sponding video processing algorithm. We assume the additive
white Gaussian noise model, which is of interest in many video
applications [1]. Given a noisy video sequence

(1)

the noise estimation problem is to estimate the standard devi-
ation of the noise , i.e., to distinguish noise from the
changes due to the spatio-temporal image sequence structure. In
(1), denotes the discrete spatial ( horizontal and

vertical) coordinate, and denotes the frame index. Addition-
ally, , and stand for the noisy and original image
sequence frame .

In this letter, we propose a novel gradient-based noise es-
timator in the wavelet domain, which exploits both the tem-
poral and the spatial correlations (gradient magnitudes) in the
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sequence. Our initial noise estimate is proportional to the value
at which the spatial or temporal gradient-histogram reaches its
maximum. The decision of whether to use the spatial or tem-
poral gradient histogram is based on the deviation of the gra-
dient-histogram from the Rayleigh distribution, and so is the
correction of the initial estimate. The implementation of these
ideas is an efficient scheme suitable for real-time applications.
The experimental results show that the proposed method is more
accurate than the state-of-the-art techniques and less sensitive
to varying noise levels and the presence of spatio–temporal se-
quence content.

This letter is organized as follows. In Section II, we present
an overview of the existing noise estimation techniques. We
explain our method for noise estimation in Section III-A and
give implementation details in Section III-B. In Section IV, we
present experimental results, and we conclude the letter in Sec-
tion V.

II. RELATED WORK

In the past, a number of different methods have been pro-
posed for noise variance estimation in still images and video,
e.g., [1]–[9]. Some of those noise estimation approaches were
evaluated and compared in [10], where it was concluded that
the averaging approach, which is based on first suppressing
image structures by prefiltering and then computing the noise
variance, provides the most reliable results for a wide range
of noise levels and images with different content. Recently, in
[8], a block-based noise estimation method was proposed, with
a new measure for determining intensity-homogeneous blocks
and a structure analyzer for rejecting blocks with structure. They
showed to outperform the methods of [4] and [10].

Gradient-based approaches [3], [6] analyze the distribution of
the gradient magnitudes in the noisy image. The gradient ampli-
tudes are determined in terms of horizontal and vertical gra-
dient component values and , where . The
idea is that in the case of an ideally uniform image with added
white Gaussian noise, the two gradient components and
are independent white Gaussian processes, thus yielding the
Rayleigh distribution for the gradient magnitude . However,
for typical images, which are not ideally uniform, the actual dis-
tribution of the gradient magnitudes differs from the Rayleigh
distribution, which consequently introduces errors in the noise
estimation approach. To our knowledge, no efficient solutions
have been proposed for compensating for these errors. In our
earlier work [6], we tried to find the optimal correspondence be-
tween the gradient value at which the gradient histogram peaks
(most frequent gradient) and the estimated standard deviation
of noise, in the least-square sense, across the training set of se-
quences and for all noise levels.
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TABLE I
AVERAGE ERROR E AND THE STANDARD DEVIATION � OF THE ERROR FOR EIGHT SEQUENCES AND VARYING INPUT NOISE LEVEL (STANDARD DEVIATION � )
AND AVERAGED OVER FIRST 50 FRAMES (FIRST 14 COLUMNS CORRESPOND TO THE SEQUENCES IN THE PROGRESSIVE FORMAT AND LAST TWO COLUMNS TO THE

SEQUENCES IN THE INTERLACE FORMAT). HIGHLIGHTED NUMBERS STAND FOR THE BEST RESULTS IN EACH ROW

TABLE II
AVERAGE ERROR E AND THE STANDARD DEVIATION � OF THE ERROR FOR ALL NOISE LEVELS � PER SEQUENCE AND AVERAGED OVER

FIRST 50 FRAMES (FIRST 14 COLUMNS CORRESPOND TO THE SEQUENCES IN THE PROGRESSIVE FORMAT AND LAST TWO COLUMNS TO THE SEQUENCES

IN THE INTERLACE FORMAT). HIGHLIGHTED NUMBERS STAND FOR THE BEST RESULTS IN EACH ROW

Recently, a number of wavelet-based techniques have been
developed for video denoising/enhancement and video coding
purposes [11], [12]. Accurate and efficient methods for noise
estimation in the wavelet domain are preferred because all
other processing, in wavelet-based denoising, also takes place
in the wavelet domain. The most common method for noise
estimation in the wavelet domain is a robust median estimator
of [13], which computes the noise standard deviation as the
median absolute deviation (MAD) of the wavelet coefficients
in the highest frequency subband divided by 0.6754. The
accuracy of the MAD method of [13] is sensitive to varying
noise levels (see Table I), and it also varies for different image
sequences (see Table II). Recently, three novel and alternative
wavelet-based methods were proposed in [7], where the results
were shown to outperform the MAD method of [13].

In contrast to most methods, which are purely intra-frame
techniques, the methods in [2] and [9] are inter-frame tech-
niques. The method of [9] uses multiresolution motion estima-
tion in a video coder, in order to estimate noise variance only for
the well-motion-compensated macroblocks, which are averaged
in each frame. To our knowledge, no spatio–temporal noise esti-
mation techniques that exploit both inter- and intra-frame con-
tent have been proposed so far. In this letter, we develop one
such estimator that uses both spatial and temporal gradients.

III. NEW WAVELET DOMAIN NOISE ESTIMATION FOR VIDEO

A. Proposed Algorithm

In this letter, we propose a new low-complexity gra-
dient-based noise level estimation method for Gaussian noise

that is accurate and insensitive to highly textured image se-
quences with large moving areas. In contrast to the previously
proposed gradient-based method of [6], the new proposed
gradient method not only uses information from the spatial
gradients but from the temporal gradients as well. Moreover,
in a novel way, it corrects the initial estimate of the standard
deviation of noise (most frequent gradient), based on the de-
termined deviation of the corresponding (spatial or temporal
gradient) distribution to its fitted Raleigh distribution.

In the proposed noise estimation method, the corresponding
gradient estimates are the wavelet transform coefficients.
Namely, we obtain spatial gradients, in terms of the hori-
zontally and vertically oriented
wavelet bands, of the 2-D wavelet decomposition of the image,
and temporal gradients in terms of a 1-D wavelet transform
high-pass band . We use wavelet bands from the
finest scale , where denotes the decom-
position level (1 denotes the finest scale and the roughest).
In particular, we use here nondecimated wavelet transform [14]
with the Haar wavelet.

We define spatial and temporal gradient magnitudes
and for the input sequence frame as follows:

(2)

where index stands for the randomly chosen spatial neigh-
boring pixel position.
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Fig. 1. General block scheme of the proposed noise estimation approach (I (t)
and I (t�1) stand for the current and previous input noisy frame, respectively).

Let and denote the histograms of the spatial
and temporal gradient magnitudes and , re-
spectively. Note that in an ideally uniform image sequence with
added white Gaussian noise, both and follow the
Rayleigh distribution. In a typical nonuniform image sequence,
these histograms will deviate to some extent from the Rayleigh
distribution, depending on the sequence content.

Fig. 1 outlines the proposed algorithm. In the first step for
each time instant , we compute the spatial and temporal gra-
dient histograms. In the second step, we seek the most frequent
gradient magnitudes in these histograms, i.e., the abscissa values

and at which the amplitude gradient histograms,
and , respectively, peak.1 Specifically, and are influ-
enced by both noise and spatio–temporal image sequence struc-
tures, from the noisy sequence . We will use either
or as the initial noise estimate, where the decision about
which of the two is used for the initial estimate is based on the
closeness of the spatial and temporal gradient histograms to the
Rayleigh distribution. In particular, we fit the Rayleigh distri-
bution to the spatial and the temporal magnitude gradient his-
tograms, using the maximum-likelihood approach, and we eval-
uate the deviation between the fitted Rayleigh distribution and
the corresponding histogram using the Kolmogorov–Smirnoff
test [15]. The outputs of this test are deviation errors and

for the spatial and temporal magnitude gradient distribu-
tion, respectively. Based on the computed errors and
and using and , we make a decision about which mag-
nitude gradient histogram will be used for noise estimation, in
the following way. We define the minimum correction error as

. If , we choose the spa-
tial most frequent gradient as the initial estimate, and if

, we take the temporal most frequent gradient

1We smooth the spatial and temporal histograms prior to locating the most
frequent gradient.

as the initial estimate. In the following, we use the notation
and , where (temporal) if and
(spatial) if .

The next and final step is the correction of the initial esti-
mates. The correction is also based on the output of the fol-
lowing Kolmogorov–Smirnoff test. We assume that measures
the noise-free image sequence structures (spatial or temporal).
However, there is no one-to-one relationship, because also
depends on noise, when the structure is present. Specifically,
decreases as the noise level increases, i.e., it is inversely propor-
tional to the noise level. Since increases with the noise level
increase, we multiply by to compensate for the noise level,
in order to obtain approximately constant correction function
for a particular image sequence and for all noise levels. Note that
this solution is not unique; nevertheless, the experimental results
showed good performance of such a model for spatio–temporal
image structures present in the image sequence.

For the additive noise model (1), using the previously ex-
plained noise-free and noisy image sequence structure descrip-
tion, we define the following noise estimator at time instant :

(3)

which is essentially a correction (compensation) of the noise
estimate based on the gradient peak. The correction factor

in (3) can be viewed as a first-order Taylor
series expansion of a more general correction factor .
Nevertheless, the estimated noise variance can still fluctuate
from frame to frame in the video sequence, because of the finite
(integer) resolution of the evaluated histograms, i.e., because of
the histogram binning errors. Consequently, we apply recursive
averaging of the estimated in time to compensate for the
fluctuations, i.e., smooth changes of in time, as follows:

, where and correspond
to the current and previous frame in the sequence, respectively.
Finally, the constant in (3) is determined exper-
imentally so as to minimize the mean-squared error of the
estimated noise variance on ten different images sequences:
“Salesman,” “Flower Garden,” “Tennis,” “Deadline,” “Mobile,”
“Football,” “Renata,” “Cargate,” “Bus,” and “Uniform,” with
different contents and resolution and for seven different noise
levels ( , 5, 10, 15, 20, 25, and 30).

B. Implementation

In our implementation, we take into consideration only gra-
dients from the spatial positions belonging to luminance values
between 16 and 235, in order to avoid the saturation effect, as
suggested by ITU-Recommendation CCIR-601 and discussed
in [8]. For the computation of the gradients, we use the Haar
wavelet because of its low complexity. We have performed sev-
eral experiments using different types of wavelets, but we have
not observed significant change of the performance.

IV. EXPERIMENTAL RESULTS

For the sake of comparison, we have compared the results
of our noise estimation method with the well-known MAD
noise estimator of [13], the spatial gradient method of [6], the
structure-oriented method of [8], the wavelet-based moment
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TABLE III
COMPUTATION TIME REQUIRED FOR THE PROCESSING

matching and CDF method of [7], and the temporal-based
noise estimator of [2]. The comparison is made for eight dif-
ferent sequences in progressive format, of which five are in
CIF format, namely, “Flower Garden,” “Tennis,” “Salesman,”
“Bus,” and “Mobile” and three in high-definition format, that
is, “Renata,” “Football,” and “Cargate.” The results of the
estimated noise standard deviations, averaged over the first 50
consecutive frames in a sequence and for seven different noise
levels, are shown in Tables I and II, in terms of average error

and its standard deviation . In the last row of Tables I and
II, we show the results for the proposed method applied to the
interlaced sequences.

We calculate the absolute difference
of the estimated and the true standard deviations, and ,
respectively, for each measurement , and we tabulate the aver-
aged errors , where stands for the number
of measurements (concerning different noise levels or different
test sequences). The standard deviation is calculated as

follows: . In Tables I and II,

we show that the proposed method provides a smaller error
with a smaller standard deviation , than the algorithms of
[2], [6]–[8], and [13]. Also, on average, the new method has a
smaller sensitivity to spatio–temporal image sequence content,
and the error depends less on the noise level. Finally, the results
obtained for the proposed algorithm, applied to interlaced
sequences (the last column in Tables I and II) show that the
average error is approximately 50% higher than the estimate on
the corresponding progressive sequence.

We have compared the complexity of the proposed method to
the other compared methods, by evaluating the required time for
processing. Under a Pentium 4, 2.66 GHz and Linux operating
system (in C++), in case of CIF sequences (size: 352 288)
and 50 frames, we have obtained the results shown in Table III.
Specifically, in the proposed method, 55% (1.5 s) of computa-
tion time is spent for wavelet transform, 27% (0.73 s) for tem-
poral frame memory updating, and 18% (0.45 s) for the rest.

V. CONCLUSION AND FUTURE WORK

In this letter, we have presented a new gradient-based noise
estimation method for video sequences. The proposed method
uses information from both the spatial and temporal gradients
and corrects the initial noise estimate according to the estimated

error introduced by the video sequence structures. The algo-
rithm is implemented in the wavelet domain and is intended
to be a part of the wavelet-based framework for wavelet-based
video denoising techniques. In the future, we aim at extending
the algorithm to other types of noise, by modeling the corre-
sponding gradient distribution.
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