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ABSTRACT
We study the relationships between diffusivity functions

in a nonlinear diffusion scheme and probabilities of edge
presence under a marginal prior on ideal, noise-free image
gradient. In particular we impose a Laplacian-shaped prior
for the ideal gradient and we define the diffusivity function
explicitly in terms of edge probabilities under this prior. The
resulting diffusivity function has no free parameters to opti-
mize. Our results demonstrate that the new diffusivity func-
tion, automatically, i.e., without any parameter adjustments,
satisfies the well accepted criteria for the goodness of edge-
stopping functions. Our results also offer a new and interest-
ing interpretation of some widely used diffusivity functions,
which are now compared to edge-stopping functions under
a marginal prior for the ideal image gradient.

1. INTRODUCTION

Nonlinear diffusion filtering [1] has received and still at-
tracts a considerable research attention in the field of image
processing, the statistical signal and image analysis. Let
f(x) = {f (1)(x), f (2)(x), . . . , f (M)(x)} denote a M -band
image defined on a finite domain Ω, where x = (x, y) is
the position vector on Z

2 defining the coordinates of image
pixels. The following system of coupled partial differen-
tial equations (PDEs) produces a family of diffused images
u(x, t), which are smoothed versions of f(x):






∂tu
(r)(x, t) = div

[

c(x, t)∇u(r)(x, t)
]

∀r = 1...M
u (x, t = 0) = f(x)
∂nu(x, t) = 0 on δΩ

where ∂t is the partial derivative over t, c(x, t) is the so-
called conductance coefficient, which controls the diffusion
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process at each position x; t being the continuous scale pa-
rameter. δΩ is the image boundary, with n denoting the
normal direction to it.

In a nonlinear diffusion the conductance c(x, t) coeffi-
cient is chosen to vary spatially so as to encourage intra-
region smoothing in preference to inter-region smoothing,
and thus overcoming the distortion of region boundaries.
Based on these requirements, in the widely adopted formu-
lation by Perona and Malik [1] the conductance coefficient
is a function of the gradient magnitude |∇u(x, t)|:

c(x, t) = g(|∇u(x, t)|) (1)

where g(x) is the so-called edge stopping or diffusivity func-
tion. The diffusivity function is a non-negative function,
which is usually decreasing with the increase of the gra-
dient magnitude. It ensures, that important edges and re-
gion boundaries are less blurred than noise or low-contrast
details. Some of the often used diffusivity functions in-
clude those proposed by Perona [1], denoted as Lorentzian
(gLor) and Le Clerc (gLec), respectively, the Tukey bi-weight
function (gTuk) [2] and the Weickert edge stopping function
(gWei) [3]:
? gLor(x) = 1

1+ x2

k2

? gLec(x) = exp
[

−x
2

k2

]

? gTuk(x) =

{
[

1 − x
2

5k2

]2

if |x| <
√

5k

0 else

? gWei(x) =

{

1 − exp
[

−3.31488k
8

x8

]

if x 6= 0

1 else

The parameter k appearing in these functions is called the
contrast parameter, because it controls the shape of the dif-
fusivity function, balancing the degrees of inter-region smooth-
ing and edge enhancement in the diffusion process. Black et
al [2] showed that different edge-stopping functions in the
anisotropic diffusion are closely related to the correspond-
ing error norms and the so-called influence functions in the
robust statistical estimation framework.



Since the first formulation of the nonlinear diffusion, the
starting idea in defining edge-stopping functions is that they
should have a smaller value for those gradient magnitudes
that are more likely to present image edges. In this sense,
the edge stopping functions implicitly express the proba-
bilities of edge absence. To our knowledge no attempts
were made so far to explicitly express the diffusivity func-
tion g(x) as a probability that x presents no edge under a
suitable marginal prior for ideal, noise-free image gradient.

In related works, several researchers have recently pro-
posed stochastic formulations of conductance coefficients
[4, 5], which is usually called “probabilistic” diffusion. Note
that these approaches replace the classical diffusivity func-
tion of the image gradient by a stochastic conductance co-
efficient, which is not an explicit function of the image gra-
dient.

In this paper, we return to the classical Perona-Malik
formulation of the nonlinear diffusion, governed by an ex-
plicit function of the image gradient and we revisit this for-
mulation within a Bayesian framework. By imposing a suit-
able prior distribution for ideal, noise-free image gradient,
we derive the diffusivity function as a probability that the
observed noisy gradient magnitude presents no edge of in-
terest. In deriving the edge probabilities we make a parallel
to the related recent developments in the wavelet process-
ing [6]. Other researchers have recently studied connections
between the nonlinear diffusion and the classical wavelet
shrinkage functions, like hard- and soft-thresholding [7, 8].
In this paper, we point to new relationships between the two
domains, employing the statistical image models that are
initially developed for wavelet processing for deriving new
diffusivity functions.

The paper is organized as follows. Section 2 presents the
proposed Bayesian formulation of the edge-stopping func-
tion. We start from the specification of a suitable prior for
noise-free gradient (Section 2.1) and then we formalize the
diffusivity in terms of the corresponding edge probability
(Section 2.2). The results are presented in Section 3, where
we compare the shape of the resulting probabilistic diffusiv-
ity function to other, often used functions. We also present
the results of the diffusion process for several representa-
tive images. Discussions and concluding remarks are given
in Section 4.

2. PROPOSED APPROACH

The main idea of our approach is to express the diffusivity
function as a probability that the observed gradient presents
no edge of interest under a suitable marginal prior distribu-
tion for the noise-free gradient histogram.

2.1. Specifying a suitable prior for ideal gradient

Ideal, noise-free images typically contain large portions of
relatively uniform regions that produce negligible gradient
values. Therefore, for any reasonable gradient definition,
the histogram of the noise-free gradient will be sharply peaked
at zero. On the other hand, sharp edges and textured re-
gions will generally produce some relatively large gradients,
building in this way long tails of the gradient histogram (see
the ideal gradient in Fig. 1(b) and its histogram in Fig. 2(a)).

In the wavelet literature, motivated by the above rea-
soning, a well-adopted prior for the marginal probability
density function of the noise-free wavelet coefficients is the
generalized Laplacian, also called generalized Gaussian dis-
tribution [9, 10]

p(x) =
λν

2Γ( 1
ν )

exp(−λ|x|ν), (2)

where Γ(x) =
∫

∞

0
tx−1e−tdt is the Gamma function, λ >

0 is the scale parameter and ν is the shape parameter. The
two parameters of this prior are reliably estimated from the
noisy histogram, provided that noise is additive white Gaus-
sian. The variance σ2 and the fourth moment m4 of the gen-
eralized Laplacian signal corrupted by additive white Gaus-
sian noise with standard deviation σn are [10]

σ2 = σ2
n +

Γ( 3
ν )

λ2Γ( 1
ν )

, m4 = 3σ4
n +

6σ2
nΓ( 3

ν )

λ2Γ( 1
ν )

+
Γ( 5

ν )

λ4Γ( 1
ν )

.

(3)
Many researchers use a special case of the density (2) with
ν = 1, namely Laplacian or double exponential [11]

p(x) = Lap(x;λ) = (λ/2) exp(−λ|x|) (4)

because of its analytical simplicity, without incurring a sig-
nificant performance degradation in image denoising and
compression schemes. It can be shown that the parameter
estimation from (3) now simplifies as

λ = [0.5(σ2 − σ2
n)]−1/2. (5)

with σ2
n and σ2 the variances of noise and noisy signal, resp.

Note that each wavelet subband can be interpreted as a
partial derivative of the smoothed image in a given direction
[12] and thus the statistical models for wavelet coefficients
can be largely applied to smoothed image gradients in the
nonlinear diffusion. Here we present the results for both
the generalized Laplacian (2) and the Laplacian (4) priors.
The proposed methodology that follows is general and can
be used with other priors as well. For example, other rea-
sonable (highly kurtotic) candidates include Cauchy and α-
stable priors.

In our particular implementation of the diffusion scheme,
the gradient is calculated following [1], i.e., by taking the



Fig. 1. (a) Noise free image, (b) its ideal gradient, (c) noisy
contaminated image and, (d) its gradient.

absolute difference of neighboring pixel intensities on the
4-connected grid. For color images, we use the color dis-
tance between the neighboring pixels [13]. In Fig. 2, we
illustrate the estimation of the Laplacian prior for the imple-
mented gradient in our scheme. Fig. 2(a) and Fig. 2(b) show
respectively the histograms of the gradient magnitudes for
the ideal (noise-free) image in Fig. 1(a), and for the noisy
image in Fig. 1(b). From the noisy histogram in Fig. 2(b),
using (5), we estimate the parameter of the prior for noise-
free data. The result is illustrated in Fig. 2(c), which shows
the estimated Laplacian prior in comparison to the ideal,
noise-free histogram. A generalized Laplacian prior, hav-
ing two parameters, may achieve a slightly better fit, but the
main concept remains the same.

2.2. The proposed probabilistic diffusivity function

A noise-free gradient magnitude that exceeds a specific thresh-
old, T , corresponds to the edge-element of interest. We re-
late this threshold to the noise level: T = σn, where σn is
the noise standard deviation in the observed gradient image.
Let m denote the ideal, noise-free gradient magnitude and
define the following two hypotheses: H0: “an edge-element
of interest is absent” and H1: “an edge-element of interest
is present” precisely as:

H0 : m ≤ σn and H1 : m > σn. (6)

We define the diffusivity function as

g(x) = A(1 − P (H1|x)) (7)

Fig. 2. (a) The histogram of the ideal, noise-free gradient
magnitude from Fig. 1 (b), normalized to unit area. (b) The
histogram of the noisy gradient magnitude from Fig. 1(d),
normalized to unit area. (c) Laplacian prior for the noisy-
free gradient magnitude, estimated from the noisy data (b).

where A is a normalizing constant. By choosing

A = 1/(1 − P (H1|0)) (8)

we ensure that g(0) = 1, because P (H1|0) = minx P (H1|x)
(see Fig. 3) and thus 1 − P (H1|x) peaks at x = 0. The
Bayes’ rule yields

P (H1|x) = µη/(1 + µη) (9)

where µ = P (H1)/P (H0) and η = p(x|H1)/p(x|H0) is
the likelihood ratio. For the Laplacian prior (4) we have [6]:
µ = exp(−λσn)/[1 − exp(−λσn)]. Under the assumption
of additive white Gaussian noise, the densities of the noisy
gradients p(x|H0) and p(x|H1) follow from convolving the
corresponding densities of the noise-free gradients with a
normal density N(0, σn). Let Lapc(x;λ) denote the central
part of the Laplacian (for x < σn) and let Lapt(x;λ) denote
the tails1. We have: p(x|H0) = Lapc(x;λ) ? N(0, σn) and
p(x|H1) = Lapt(x;λ) ? N(0, σn). For more details on de-
riving η see [6], where the expressions are also analyzed for

1Lapc(x; λ) ∝ Lap(x; λ) for |x| < σn and Lapc(x; λ) = 0 oth-
erwise. Lapt(x; λ) = 0 for |x| < σn and Lapt(x; λ) ∝ Lap(x; λ)
otherwise.



Fig. 3. Edge probability under the Laplacian prior with a
fixed parameter λ (same as in Fig. 2, λ = 0.0196) and for
different noise levels σn.

the generalized Laplacian prior. Full analytical formulation
for the Laplacian prior is in [14]. For the diffusion experi-
ments in this paper, we have calculated these convolutions
numerically and stored η as a look-up-table.

3. RESULTS

We compared the proposed diffusivity function to the ones
given in Section 1, for which we optimized the diffusion
performance by estimating the contrast parameter k accord-
ing to [2]. For our method, the estimation of noise standard
deviation σn is needed, and we use a median absolute devi-
ation (MAD) estimator [12], where σn is estimated by the
gradient MAD divided by 0.6745. All the reference func-
tions belong to the class of the so-called backward-forward
schemes [8], which are designed to smooth weak edges and
enhance the strong ones. Our experiments showed that the
new probabilistic diffusivity functions under both consid-
ered priors automatically (i.e., without any parameter ad-
justments) fit in the cluster of the reference edge-stopping
functions with optimized values of the contrast parameter.
Fig. 4 illustrates this for the case of the Laplacian prior and
for the test image in Fig. 1(c). Similar behavior is observed
on all the other tested images: the new function fits well in
the cluster of the reference backward-forward diffusivities.

Fig. 4(a) demonstrates that the new probabilistic diffu-
sivity function under the Laplacian prior resembles in shape
the Le Clerc diffusivity. However the negative peaks of the
proposed function occur usually at larger gradient magni-
tudes than for the Le Clerc one (see Fig. 4(b)), which indi-
cates stronger edge enhancement capability. For the gener-
alized Laplacian prior (not displayed) the shape is similar,

Fig. 4. (a) Diffusivity functions g(x) (diffusion along side
the edge) and (b) functions [xg(x)]′ (diffusion across the
edge) for the image in Fig. 1.c. The proposed probabilistic
diffusivity under the Laplacian prior (Lap) is displayed in
comparison to the Lorentzian (Lor), LeClerc (LeC), Tukey
bi-weight (Tuk) and Weickert (Wei) diffusivities.

but the negative peak in [xg(x)]′ is often even larger and
occurs at a larger gradient. These properties are usually
desired in the diffusion schemes, as they indicate a quick
smoothing of the nearly uniform areas while maintaining
and enhancing the strong edges.

Fig. 5 illustrates the diffusion results for four test im-
ages. The Lorentzian diffusion was terminated sooner which
is mainly due to its weaker enhancement capabilities. The
three other commonly used methods retain some artifacts.
The latter might be resolved by diffusing longer, however
this can result in the removal of important edges as well.
The end-results under the generalized Laplacian are slightly
better than using a simpler, Laplacian prior. Both of the pro-
posed functions perform well with respect to the reference
ones.



4. DISCUSSION AND CONCLUSIONS

We propose a Bayesian formulation of the diffusivity func-
tion by imposing a prior on noise-free gradient. All other
probabilistic approaches give stochastic formulations for con-
ductivity and not for the diffusivity function of the gradient.

Full analytical formulation of our diffusivity function
under the analyzed Laplacian prior is available (the nec-
essary expression for the likelihood ratio can be found in
[14]) but is quite cumbersome. For the generalized Lapla-
cian prior the situation is even more complex. It would be
useful to examine other priors, like the Cauchy distribution.

Our current parameter estimation method assumes that
the noise in the gradient image is additive white Gaussian,
which does not necessarily hold for all possible gradient for-
mulations even if the noise in the input image is white Gaus-
sian. The validity of this assumption should be checked for
different gradient formulations and if necessary, the param-
eter estimation needs to be updated accordingly. If we cal-
culate the gradient using the orthogonal wavelet transform
with the Haar wavelet (which is a moving difference oper-
ator) our assumptions are ensured for images with additive
white Gaussian noise.

The performance of the proposed diffusivity functions
under both analyzed priors compares favorably to the ref-
erence functions. The proposed diffusivity formulation au-
tomatically satisfies the well accepted criteria for the good-
ness of edge-stopping functions: on all the tested images,
our new function lies in the middle of the cluster of a num-
ber of reference functions for which the contrast parame-
ter was optimized to produce the best results. The shape
of the proposed probabilistic diffusivity under the Lapla-
cian prior resembles to the diffusivity based on the Le Clerc
error-norm, while allowing a stronger enhancement of the
edges. The diffusion results on both synthetic and natural
scene color images are encouraging.
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(a) (b) (c) (d)

Fig. 5. Original images (top) and the results using - top to bottom - Lorentzian (Tend = 27.30), Le Clerc (Tend = 165),
Weickert (Tend = 165), Tukey-biweight (Tend = 165), novel with Laplacian prior (Tend = 165) and novel with generalized
Laplacian prior (Tend = 165) diffusion functions. (a) and (b) synthetic images,(c) jelly beans and (d) natural scene image.


