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A Joint Inter- and Intrascale Statistical Model for
Bayesian Wavelet Based Image Denoising

Aleksandra Pižurica, Wilfried Philips, Ignace Lemahieu, and Marc Acheroy

Abstract—This paper presents a new wavelet-based im-
age denoising method, which extends a recently emerged
“geometrical” Bayesian framework. The new method com-
bines three criteria for distinguishing supposedly useful co-
efficients from noise: coefficient magnitudes, their evolu-
tion across scales and spatial clustering of large coefficients
near image edges. These three criteria are combined in a
Bayesian framework. The spatial clustering properties are
expressed in a prior model. The statistical properties con-
cerning coefficient magnitudes and their evolution across
scales are expressed in a joint conditional model. The three
main novelties with respect to related approaches are: (1)
the interscale-ratios of wavelet coefficients are statistically
characterized, and different local criteria for distinguishing
useful coefficients from noise are evaluated; (2) a joint con-
ditional model is introduced, and (3) a novel anisotropic
Markov Random Field prior model is proposed. The re-
sults demonstrate an improved denoising performance over
related earlier techniques.

Index Terms—Image denoising, interscale ratios, Markov
random field, statistical modeling, wavelets.

I. Introduction

In image denoising, a compromise has to be found be-
tween noise reduction and preserving significant image de-
tails. To achieve a good performance in this respect, a
denoising algorithm has to adapt to image discontinuities.
The wavelet representation naturally facilitates the con-
struction of such spatially adaptive algorithms. It com-
presses the essential information in a signal into relatively
few, large coefficients; these large coefficients correspond
to the main image details at different resolution scales.
Due to this property, additive noise can be effectively sup-
pressed even by simple thresholding [7] of the wavelet co-
efficients. Bayes estimation assuming independent wavelet
coefficients [25], [2], [22] results also in relatively simple
shrinkage of their magnitudes.

Advanced wavelet based denoising methods make use of
image context [1], interscale dependencies [20], [30], [10],
[5], [24] or intrascale (spatial) correlations [13], [26], [11],
[12] between image wavelet coefficients. Combining inter-
and intrascale dependencies in a decimated, orthonormal
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wavelet basis is known to provide only minor improve-
ments in estimation performance [15]. However, in a non-
decimated wavelet basis, such a combination has clear ad-
vantages in terms of both quantitative image quality mea-
sures and visual quality of the results, as was demon-
strated, e.g., in [17]. The method of [17] combines the
inter and intrascale dependencies in a powerful and ele-
gant way: a bilevel Markov Random Field (MRF) model
is used to encode prior knowledge about spatial clustering
of wavelet coefficients, i.e., to encode “geometrical prop-
erties” of image details. The interscale dependencies be-
tween wavelet coefficients are encountered via interscale
ratios, which appear as significance measures. The statis-
tical properties of these significance measures are expressed
in a conditional probability density model, and combined
with the prior model in a Bayesian framework. Hence the
name “geometrical Bayesian approach”. The conditional
model from [17] is heuristic and parameterized, which com-
plicates its practical implementation. The authors of [11],
[12] further motivate the whole approach theoretically and
develop practical algorithms from it. However, they do not
employ interscale statistics, but instead consider the mag-
nitude of a wavelet coefficient as its significance measure,
and derive corresponding, realistic conditional models.

In this paper, we further extend the geometrical
Bayesian approach. The three main novelties are (1) a sta-
tistical characterization of different significance measures
for wavelet coefficients, and a comparative evaluation of
their performance; (2) a joint conditional model, which
combines local inter- and intrascale statistical properties
and (3) a novel, anisotropic MRF prior model. We start
from different interscale-ratio formulations, [17], [10], and
present them in a unifying and a more general way. In-
stead of using earlier heuristic models for such ratios, we
determine empirically their realistic conditional probabil-
ity densities given pure noise, and given noisy edges. Using
the empirical densities and employing a statistical decision
theory, we compare the performance of different signifi-
cance measures. Such a performance evaluation clearly
motivates a joint significance measure, which relies on both
coefficient magnitudes and on their evolution across scales.
The resulting, joint conditional model offers a superior de-
noising performance with respect to earlier ones that use
interscale ratios only [17], or coefficient magnitudes only
[11], [12]. A new anisotropic prior model preserves well
finest image details. As compared to the isotropic one
from [17], it introduces minor increase in complexity, but
preserves image details significantly better.

The paper is organized as follows. In Section II, back-
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ground concepts are briefly reviewed. A simulation method
for characterizing statistical properties of different signif-
icance measures is presented in Section III, and a perfor-
mance evaluation in Section IV. The proposed joint sig-
nificance measure and the practical implementation of the
conditional model are described in Section V. In Section
VI, a new prior model is proposed. The results are pre-
sented and discussed in Section VII. Finally, concluding
remarks are given in Section VIII.

II. Background

A. Wavelet decomposition and notation

For a comprehensive treatment of the wavelet transform
we refer to [3], [6], [18], [21], [28]. In a wavelet decompo-
sition of an image a wavelet coefficient wD

j,l represents its
bandpass content at resolution scale 2j , spatial position l
and orientation D. Typically, three orientation subbands
are used, leading to three detail images at each scale, char-
acterized by horizontal, vertical and diagonal directions. A
decomposition from [19] results in two detail images at each
scale; these details can be interpreted as partial derivatives
of smoothed image in horizontal and vertical directions.
This decomposition is often used for edge detection, lo-
cal regularity characterization and denoising [20], [10]. We
use it for the results throughout the paper. In Section VII,
we also present results for a classical 3-subband decom-
position, which was implemented with the same quadratic
spline wavelet from [19], like in [17], [30]. In both cases,
we use a non-decimated representation [4], [11], [17]. It fa-
cilitates use of interscale dependencies, and offers a better
denoising performance than orthonormal bases. The im-
provement is achieved at the expense of computing time:
more coefficients need to be stored and processed. In this
respect, the 2-subband decomposition is more attractive.

Whenever there can be no confusion, we omit the in-
dices that denote the scale and the orientation. Random
variables are denoted by capital letters and their realiza-
tions by the corresponding small letters. Boldface letters
are used for vectors. A given detail image is thus rep-
resented as vector w = {w1, ..., wn}. The set of indices
L = {1, ..., n} is a set of pixels on a regular rectangular
lattice. In the spirit of [11], [12], [17], we assign a measure
of significance ml, and a binary label xl to each wavelet
coefficient wl. The label value xl = −1 denotes that wl

represents mainly noise, and the value xl = 1 denotes that
wl is a “significant” coefficient. The significance measure
can be, e.g., the magnitude of a coefficient, the local Lips-
chitz exponent [21] or the interscale correlation [30] at the
corresponding location, etc. A set m = {m1, ...,mn} is
called significance map, and a set x = {x1, ..., xn} is called
mask. We assume that the wavelet coefficients are cor-
rupted with additive white Gaussian noise. An observed
wavelet coefficient wl is thus given by wl = yl + nl, where
yl is the noise-free wavelet coefficient and nl are indepen-
dent identically distributed (i.i.d.) random variables. The
magnitude of a wavelet coefficient is denoted by ωl = |wl|.

B. Spatial dependencies and MRF

A detailed analysis of MRF models can be found else-
where, e.g., in [14], [29]. Here we briefly review the basic
concepts of these models that are of interest for our de-
noising method. Let L \ l denote the set of all pixels in L
except l itself. The Markov property of a random field X
is P (Xl = xl|XL\l = xL\l) = P (Xl = xl|X∂(l) = x∂(l)),
where ∂(l) is the neighborhood of the pixel l. Most often
used are the first-order neighborhood (four nearest pix-
els) and the second-order neighborhood (eight nearest pix-
els). A set of pixels, which are all neighbors of one another
is called a clique. For example, for the first-order neigh-
borhood cliques consist of one or two pixels, and for the
second order neighborhood cliques consist of up to four
pixels. The joint probability P (X = x) of a MRF is a spe-
cial case of the Gibbs distribution, exp(−H(x)/T )/Z, with
partition constant Z and temperature T , where the energy
H(x) can be decomposed into contributions of clique po-
tentials VC(x) over all possible cliques. The clique poten-
tial VC(x) is a function of only those labels xl, for which
l ∈ C. In practice, one chooses the appropriate clique
potential functions to give preference to certain local spa-
tial dependencies, e.g., to assign higher prior probability
to edge continuity. In [17], the isotropic auto-logistic MRF
model, with the second order neighborhood Nl, was ap-
plied to binary masks. In this case, and for the label set
{−1, 1} that we use here, the joint probability of the MRF
becomes1

P (X = x) =
1
Z

exp
(
−

∑
l∈L

VNl
(x)

)
, VNl

(x) = −γ
∑
k∈Nl

xlxk,

(1)
where γ is a positive constant. In the remainder of this
text, we call the MRF model from Eq (1), the isotropic
MRF model. In Section V, we shall introduce a new,
anisotropic model, which adapts to the presence of micro-
edges in a given neighborhood. Another prior model, which
uses a different reasoning, and adapts to an average degree
of isolation of labels 1 was proposed in [12].

C. A probabilistic shrinkage approach

We shall extend the probabilistic shrinkage approach
of [17]. Each wavelet coefficient is multiplied with the
marginal probability that it is noise-free, given the com-
puted significance map:

ŷl = P (Xl = 1|M = m)wl. (2)

A heuristic motivation for this rule is: the shrinkage factor
P (Xl = 1|M = m) is always between zero and one, and
it suppresses more those coefficients that are less likely
to represent a useful signal, given the significance map
m for the whole detail image. A theoretic motivation in
the form of an “expected posterior action” was given in
[11], [12]. The exact computation of the marginal proba-
bility P (Xl = 1|M = m) requires the summation of the

1 In [17], the set of labels was {0, 1}, and this expression was rep-
resented in a less compact way, but it is only a matter of notation.
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posterior probabilities P (X = x|M = m) of all possible
configurations x for which xl = 1. Since this is an in-
tractable task, one typically alleviates it by using a rel-
atively small, but “representative” subset of all possible
configurations. Such a representative subset is obtained
via an importance-type sampling: the probability that a
given mask is sampled is proportional to its posterior prob-
ability. An estimate of P (Xl = 1|M = m) is then obtained
by computing the fractional number of all sampled masks
for which xl = 1. An importance sampling for Markov
models is typically realized via Monte Carlo Markov Chain
(MCMC) [16] samplers, such as the Metropolis [14] and
the Gibbs sampler [9]. We apply the Metropolis sampler.
From each configuration x, it generates a new, “candidate”
configuration xc by switching the binary label at a ran-
domly chosen position l. The decision about accepting the
change is based on the ratio p of the posterior probabilities
of the two configurations. After applying the Bayes rule
P (X = x|M = m) = P (X = x)fM|X(m|x)/fM(m), as-
suming the conditional independence2 as in [11], [12], [17]
fM|X(m|x) =

∏
l∈L fMl|Xl

(ml|xl), and a MRF prior model
from Eq (1), the ratio p reduces to

p =
fMl|Xl

(ml|xc
l )

fMl|Xl
(ml|xl)

exp
(
VNl

(x)− VNl
(xc)

)
. (3)

If p > 1 the local change is accepted, because it has pro-
duced a mask with a higher posterior probability. If p < 1,
the change is accepted with probability p. After all labels
in the mask have been updated in this way, one iteration
is completed. It was found in [11], [17] that 10 such iter-
ations suffice to estimate the marginal probabilities, pro-
vided that the initial mask is well chosen.

III. Choice of significance measures and
statistical characterization

For the performance of the above described denoising ap-
proach the choice of the significance measure ml and the
characterization of its conditional densities fMl|Xl

(ml|xl)
are important. In [17], ml was defined as an averaged in-
terscale ratio of the magnitudes of wavelet coefficients, but
a heuristic model was used for its conditional densities. In
[11] and [12], the magnitude of the wavelet coefficient was
used instead, and its realistic conditional densities were
considered. To our knowledge, there has been no attempt
to objectively compare the performance of these two and
possibly other significance measures ml, neither to investi-
gate realistic densities of interscale ratios.

Two different formulations of interscale ratios have been
used in recent literature with the same intention: to esti-
mate roughly the local regularity of an image and accord-
ingly to make a distinction between useful edges and noise.
In [17], the ratio of the magnitudes of wavelet coefficients
was averaged over a certain number d of resolution scales:
ml = (1/d)

∑d
j=1 |wj+1,l/wj,l|; it is a rough estimate of

2 Since an undecimated wavelet transform is assumed, the condi-
tional independence assumption apparently cannot hold. However,
in the context of the proposed approach, this simplification greatly
reduces the computational effort and yields good results.

2α, where α is the local Lipschitz exponent [21]. Another
formulation was given in [10]. There, the authors first
define the integral N f(s, x0) =

∫
|x−x0|≤Ks

|Wf(s, x)|dx,
whereWf(s, x) is the wavelet transform at resolution scale
s, K is the support width of the mother wavelet and
|x−x0| ≤ Ks defines the cone of influence of the point x0 in
the scale-space (s, x). The ratio N f(2j+1, x0)/N f(2j , x0)
was proved to be an estimate of 2α+1 and was used as a sig-
nificance measure for the wavelet coefficients at resolution
scale 2j . The statistical properties of these ratios were not
investigated and also their averaging through scales was
not considered.

A. A discretized approximation of interscale ratios

We formulate the two mentioned interscale ratio mea-
sures from [17] and [10] in a unifying and slightly more
general way. Let us define for each spatial position l the
coefficient αn→k,l which determines the average rate of in-
crease of the magnitudes of the wavelet coefficients be-
tween any two dyadic scales 2n and 2k, where n, k ∈ Z
and k ≥ n + 1

αn→k, l � log2

( 1
k − n

k−1∑
j=n

|wj+1,l|
|wj,l|

)
. (4)

The logarithm in Eq. (4) is used in order to make αn→k,l

behave as a rough estimate of the local Lipschitz exponent
α. This quantity describes the evolution of the individual
wavelet coefficients at the spatial position l. Similarly we
define a second quantity βn→k,l, which describes the “col-
lective” evolution of the wavelet coefficients inside a cone
of influence centered at the spatial position l. We denote
by C(j, l) the discrete set of wavelet coefficients at the res-
olution scale 2j , which belong to the cone of influence of
the spatial position l, and we define βn→k,l as

βn→k, l � log2

( 1
k − n

k−1∑
j=n

|Ij+1,l|
|Ij,l|

)
, Ij,l �

∑
m∈C(j,l)

|wj,m|,

(5)
which is a rough estimate of α + 1. We call the quantity
αn→k,l the average point ratio (APR) and the quantity
βn→k,l the average cone ratio (ACR).

B. Statistical characterization via simulation

We apply a simulation method to determine the empir-
ical conditional densities fMl|Xl

(ml|xl), of any chosen sig-
nificance measure ml and arbitrary type of noise. Practi-
cally we restrict ourselves to additive white Gaussian noise.
The benefit of knowing the empirical densities is twofold.
Firstly, the performance of different significance measures
can be objectively compared relying on the statistical es-
timation theory [27]. Secondly, the empirical densities can
be employed in an actual denoising procedure instead of
heuristic models.

To determine fMl|Xl
(ml|1) one needs a statistical model

for the actual significant image discontinuities, i.e., the
“ground truth” edges. To achieve realistic results, we ex-
tract these discontinuities from various natural noise-free



4 PUBLISHED IN IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 5, PAGES 545–557, MAY 2002.

21

3 4

1 2

3 4

Fig. 1. Left: reference images: 1 - “Lena”, 2 - “Goldhill”, 3 - “Fruits”, 4 - “Barbara”. Right: reference edge positions for vertical orientation
of details at resolution scale 22.

images, like those in Fig. 1. For a given reference image,
at each resolution scale and orientation the reference edge
positions are obtained by thresholding the magnitudes of
noise-free wavelet coefficients. For characterizing densities
of interscale ratios, the choice of these thresholds is not
critical. In particular, we choose a threshold for each res-
olution scale that is equal to the magnitude of a wavelet
coefficients produced by an ideal step edge of amplitude A,
where A equals to 1/16 of the dynamic range of the image.

The complete simulation procedure is the following. To
estimate fMl|Xl

(ml| − 1), we use the image which consists
of pure noise. We compute the discrete wavelet transform
of this image and find the histogram of the given signifi-
cance measure ml. To estimate fMl|Xl

(ml|1), we apply a
similar procedure, except that the noise is added to the
reference image and ml is computed only in the reference
positions of significant coefficients. The whole procedure is
iteratively repeated, adding every time random noise with
equal variance. Therefore, we refer to this method as sim-
ulation.

1. Conditional densities of APR and ACR. The condi-
tional densities fMl|Xl

(αn→k,l|−1) and fMl|Xl
(βn→k,l|−1),

of APR and ACR, respectively, given pure noise do not
depend on the noise variance: the increase of noise affects
equally the magnitudes of the wavelet coefficients at all
scales and the statistical distribution of their averaged ra-
tios does not change. These conditional densities, shown
as dashed curves in Fig. 2(a) and Fig. 2(b), are peaked in
the vicinity of -1 and 0, respectively. The empirical den-
sities fMl|Xl

(αn→k,l|1) and fMl|Xl
(βn→k,l|1), for different

reference edges from Fig. 1 are also illustrated in Fig. 2(a)
and Fig. 2(b), and are peaked in the vicinity of 0 and 1, re-

spectively. We have verified that the choice of a threshold
that specifies the reference edges in Fig. 1 is not critical
for characterizing these densities.

It should be noticed that the overlap between
fMl|Xl

(βn→k,l|−1) and fMl|Xl
(βn→k,l|1) is smaller than the

overlap between fMl|Xl
(αn→k,l|−1) and fMl|Xl

(αn→k,l|1).
It suggests that ACR provides a better separation between
noise and useful edges. We examine this further in Section
IV. The robustness of interscale ratio statistics with re-
spect to noise level is illustrated in the top of Fig. 3. One
can see that the overlap between conditional densities of
ACR given noise and given edges does not change much as
the noise variance increases.

2. Conditional densities of the magnitudes of the wavelet
coefficients. The bottom of Fig. 3 illustrates densities
fMl|Xl

(ml|xl), for the case where ml is the magnitude of
the wavelet coefficient, which we denote by ωl. There is
no need to simulate fMl|Xl

(ωl| − 1) since it is simply equal
to (2/σn

√
(2π)) exp(−ω2

l /(2σ2
n), ωl > 0, where σn is the

standard deviation of noise in the given detail image. For
fMl|Xl

(ωl|1), a realistic model to be used in the denoising
procedure can be computed directly from the noisy image
itself (Section V). For comparative performance analysis
with respect to interscale ratios, we use empirical densities
fMl|Xl

(ωl|1).
It is interesting to compare how the overlap between

the conditional densities of ωl in Fig. 3 evolves with the
increase of noise level, with respect to that of ACR that
is shown in the same figure. A simple visual inspection
suggests that for relatively small standard deviations of
noise the coefficient magnitude provides a better separa-
tion between noise and useful signal, whereas the opposite
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Fig. 2. Conditional densities of (a) APR and (b) ACR, computed from scales 21 − 24. Different reference edges from Fig. 1 are used. The
standard deviation of added noise is σ = 25.

-4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

ACR 1-3

E
m

p
iri

c
a

ld
e

n
si

tie
s

Noise standard deviation=10

x
l
=-1

x
l
=1

E
m

p
iri

c
a

l d
e

n
si

tie
s

Noise standard deviation=25

x
l
=-1

x
l
=1

-4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

ACR 1-3 ACR 1-3

E
m

p
iri

c
a

ld
e

n
si

tie
s

Noise standard deviation=55

x
l
=-1

x
l
=1

-4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

E
m

p
iri

c
a

l d
e

n
si

tie
s

Noise standard deviation=10

x
l
=-1

x
l
=1

Magnitude

0 100 200 300
0

0.02

0.04

0.06

0.08

0.1

0.12

E
m

p
iri

c
a

l d
e

n
si

tie
s

Noise standard deviation=25

x
l
=-1

x
l
=1

Magnitude

0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

x
l
=-1

x
l
=1

E
m

p
iri

c
a

l d
e

n
si

tie
s

Noise standard deviation=55

Magnitude

0 100 200 300
0

0.005

0.01

0.015

0.02

0.025

Fig. 3. Comparison between empirical densities of ACR computed from scales 21−23 (top) and empirical densities of coefficient magnitudes
at scale 22 (bottom), for reference edges 1 from Fig. 1.

is true for high noise levels. This is further investigated in
Section IV. It is not shown here, but one can easily extrap-
olate, that if a different threshold was chosen for defining
the edges of interest in Fig. 1, the densities fMl|Xl

(ωl|1)
are peaked at correspondingly greater or smaller values ωl,
but important is that their qualitative behaviour does not
change.

IV. Performance Evaluation

By performance of a given significance measure we mean
its ability to distinguish between noise and useful signal
without making use of the prior model. This is equivalent
to analyzing the performance under the Bayes labeling [8],
[27] with P (Xl = −1) = P (Xl = 1) = 0.5. We shall com-

pute the receiver operating characteristics (ROC) [27] for
a given standard deviation σ of added noise, and the error
probabilities depending on σ. To understand the mean-
ing of ROC, imagine a binary classifier that receives ml

as its input and delivers the label xl by applying a deci-
sion threshold T . It can be shown that the optimal de-
cision threshold Topt (for which the total probability of
wrongly classified labels is minimum) is the one for which
fMl|Xl

(Topt| − 1) = fMl|Xl
(Topt|1). The receiver operating

characteristics describes the operation of the classifier for
a range of different decision thresholds, below and above
Topt. It shows fractional number of the labels xl = 1 that
are wrongly classified as xl = −1 (false negatives - FN),
versus the fractional number of the labels xl = −1 that
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are wrongly classified as xl = 1 (false positives - FP). For
P (Xl = −1) = P (Xl = 1), FN and FP are simply deter-
mined as

FN =
∫ T

−∞
fMl|Xl

(ml|1)dml,

FP =
∫ ∞

T

fMl|Xl
(ml| − 1)dml, (6)

For the case T = Topt, we shall compute the error proba-
bility Pe = 0.5(FN + FP ).

Recall that we have derived the empirical densities
fMl|Xl

(ml|1) from realistic edges corrupted by noise, and
fMl|Xl

(ml| − 1) from pure noise. Therefore, FN , FP and
Pe that we consider refer to the ability to detect realistic
noisy edges from pure noise. We call it expected perfor-
mance (Section IV-A). The actual performance for differ-
ent test images, where instead of pure noise one deals with
a combination of noise and image texture is addressed in
Section IV-B.

A. Expected performance

Using the empirical densities derived from the test im-
ages in Fig. 1, we compare first the two interscale ratios:
APR and ACR. Discussing Fig. 2, we have already re-
marked that ACR should perform better. The computed
ROC in Fig. 4(a) and error probabilities as a function of σ
in Fig. 4(b) confirm this observation. Fig. 4(c) illustrates
that the expected performance of interscale ratios is im-
proved when they are averaged over a greater number of
resolution scales.

Let us now compare the performance of ACR (which was
the better one among the two considered interscale-ratios)
and the magnitudes of the wavelet coefficients. Fig. 5(a)
illustrates that at the finest resolution scale 21, ACR offers
a better performance than the coefficient magnitude even
for small amounts of noise. However, this is not the case
at coarser resolution scales. At the scale 22, as shown in
Fig. 5(b), ACR offers a better performance only for rela-
tively high standard deviations σ of noise.

B. Actual performance

The above presented, expected performance comparison
between different significance measures relies on the em-
pirical densities fMl|Xl

(ml|xl) and refers to the detection
of noisy edges from pure noise. To investigate its valid-
ity in practice, we shall apply a decision threshold directly
to the computed significance map m, and actually count
the number of misclassified labels, with respect to the as-
sumed “ground truth” edges. A reference edge label at
the position l will be denoted by xR

l , and the one that
results from thresholding ml will be denoted by xT

l . The
empirical FP is then equal to FPe = �{l|xR

l = −1, xT
l =

1}/�{l|xR
l = −1}, and the empirical FN is computed as

FNe = �{l|xR
l = 1, xT

l = −1}/�{l|xR
l = 1}, where �S de-

notes the cardinality of the set S. It should be noted that
in contrast to earlier analyzed performance, FNe and FPe,

refer to the separation between realistic edges and a com-
bination of noise and image texture, instead of pure noise.
Concerning coefficient magnitudes, it does not make a sig-
nificant difference and the two ways of computing error
probabilities give almost the same results. For interscale
ratios empirical FNe and FPe are greater than those that
were derived from the estimated densities, and the differ-
ence is image-dependent.3

In Fig. 6, we show the empirical error probabilities com-
puted as (FNe +FPe)/2 for a range of decision thresholds.
One can see that main conclusions regarding the compar-
ison between the three significance measures remain valid
on these empirical curves. Also, it can be seen that for
interscale ratios, a well chosen decision threshold provides
nearly optimal performance for different images and for
different noise levels, as was expected according to the em-
pirical densities.

V. A joint measure of significance

On the basis of the previous analysis, we now propose
a joint significance measure ml, which relies on both the
coefficient magnitude ωl and on the interscale ratio at the
corresponding spatial position. It was shown that ACR of-
fers a better performance than APR. Therefore, for wavelet
coefficients at resolution scale 2j we compute β1→j+1,l. It
was the best choice according to our experiments: averag-
ing ratios over scales coarser than 2j+1 suppresses back-
ground noise better, but increases the number of falsely
selected coefficients in regions adjacent to image edges. To
simplify notations, in the remainder we use only the lo-
cation index l. The proposed significance measure is thus
ml = (ωl, βl), where ωl and βl are computed from the ob-
served wavelet coefficients, and are realizations of random
variables Ωl and Bl, respectively. We still need to spec-
ify conditional densities fMl|Xl

(ml|xl) for this joint signif-
icance measure ml. From a practical point of view, it is
most convenient to assume that βl and ωl are conditionally
independent given xl,

fMl|Xl
(ml|xl) = fΩl|Xl

(ωl|xl)fBl|Xl
(βl|xl). (7)

To determine the validity of this assumption, we
find empirically the actual joint conditional densities,
fMl|Xl

(ωl, βl|xl) using the simulation method from Section
III, adapted for the two-dimensional case. Fig 7 shows the
contour plots of the empirical joint densities in compar-
ison with the product of two independent densities from
Eq (7). These diagrams suggest that the assumption about
the conditional independence is not true, but is acceptable
as an approximation.

With the proposed conditional probability model (7),

3 The main reason for this is: the wavelet coefficients that origi-
nate from noisy image texture propagate better through scales than
coefficients of pure noise; even if they have small magnitudes, they
can have large interscale ratios.
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the parameter p in Eq (3) becomes

p =
(fΩl|Xl

(ωl|xc
l )

fΩl|Xl
(ωl|xl)

)λ1
(fBl|Xl

(βl|xc
l )

fBl|Xl
(βl|xl)

)λ2

e
λ3

(
VNl

(x)−VNl
(xc)

)
,

(8)
where λ1 = λ2 = 1 and λ3 is a positive constant. In
practice, it may be useful to allow other values of λ1 and
λ2 in order to change the relative importance given to ωl

and βl. For example, in the special case where λ1 = 0, this
model reduces roughly to the one in [17], except for the
fact that there APR was used instead of ACR, and that
other, heuristic density model was assumed. For λ2 = 0
the joint conditional model basically reduces to the one of
[11] and [12]. In Section VII-A we investigate the influence
of different values λ1, λ2 and λ3 on denoising results.

In actual denoising procedure, we implement the densi-
ties from Eq (8) as follows. Since white Gaussian noise is
assumed, fΩl|Xl

(ωl| − 1) = 2fN (ωl), ωl ≥ 0, where fN (n)
is the Gaussian density with zero mean and variance σ2

n,
which is here assumed to be known4. Realistic models for
fΩl|Xl

(ωl|1) were already discussed in [12] and we use one
such model. In particular, we assume a generalized Lapla-
cian distribution [18] fYl

(yl) ∝ exp(−yl/s)p, for noise-free
wavelet coefficients yl. The parameters s and p are reliably
estimated from the input noisy image [25]. The density of
the significant noise-free wavelet coefficients fYl|Xl

(yl|1) is
equal to zero for |yl| < T , and proportional to exp(−yl/s)p

for |yl| > T , where T is a threshold that specifies the edges
of interest. We adopt the reasoning from [12], according
to which T = σn. Since wl = yl + nl, where yl and nl

are statistically independent, the density of wl is given
by convolution [23] fWl|Xl

(wl|1) = fYl|Xl
(yl|1) ∗ fN (n),

4 In case σ2
n is unknown, a robust estimate of the noise variance

is the median absolute deviation of the highest-frequency subband
wavelet coefficients, divided by 0.6745 [7].

Fig. 8. The proposed sub-neighborhoods.

and it is straightforward that fΩl|Xl
(ωl|1) = 2fWl|Xl

(ωl|1),
ωl ≥ 0. For interscale ratios, we have used the empir-
ical densities, because they are robust with respect to
noise level. We have verified that using empirical ratios
fBl|Xl

(βl|1)/fBl|Xl
(βl|−1) derived from different reference

edges and for different noise variance, does not affect de-
noising performance noticeably. Therefore, one ratio of
ACR densities was stored and used for all results presented
in this paper.

VI. A New MRF Prior Model

The simplest isotropic MRF model is not well suited to
encode prior knowledge about the spatial clustering of the
wavelet coefficients. Significant coefficients form relatively
narrow clusters with predominantly horizontal, vertical or
diagonal directions, depending on the orientation subband.
At coarser scales, even the isotropic model with a small
neighborhood performs well. However, the problem arises
at the finest scales, where details are very thin lines.

The idea behind our model is the following: for each spa-
tial position l, we define a given number of oriented sub-
neighborhoods, which contain possible micro-edges cen-
tered at the position l. The binary label value xl = 1
(edge) should be assigned a high probability if any of the
oriented sub-neighborhoods indicates the existence of an
edge element in a certain direction. On the contrary, the
binary label value xl = −1 (non-edge) should be assigned
a high probability only if no one of the oriented neighbor-
hoods indicates the existence of a such edge element.
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INITIAL MASK ISOTROPIC MRF λ3 = 1.5λ2 NEW MRF λ3 = 1.5λ2

Fig. 9. Masks at the scale 21, for SNR=9dB. Left: initial. Middle: using the isotropic MRF model. Right: using the new, anisotropic MRF
model. Equal relative influence was given to both prior models.

One, but not the only possible, realization of the above
explained idea follows. We choose the sub-neighborhoods
Nl,i, 1 ≤ i ≤ 5 shown in Fig. 8; each Nl,i contains
four neighbors of the central pixel l. We use only pair-
wise cliques {k, l}, with the potential function V2(k, l) =
−γxkxl, where γ is a positive constant. The potential
VNl,i

(x) of the sub-neighborhood Nl,i, is equal to the sum
of all pair-wise potentials

VNl,i
(x) =

∑
k∈Nl,i

V2(k, l) = −γ xl

∑
k∈Nl,i

xk. (9)

The potential associated with the complete neighbor-
hood Nl of the position l will be denoted by VNl

(x). To
determine this potential we follow the idea that was in-
troduced at the beginning of this Section. An edge-label
xl = 1 should be assigned a high probability if any of
Nl,i indicates the presence of an edge element. Therefore,
VNl

(x|xl = 1) = mini{VNl,i
(x)} = −γ maxi{

∑
k∈Nl,i

xk}.
A non-edge label xl = −1 should be assigned a high prob-
ability if none of Nl,i indicates the presence of an edge
element. This is accomplished if we choose VNl

(x|xl =
−1) = maxi{VNl,i

(x)} = γ maxi{
∑

k∈Nl,i
xk}, which is

exactly the opposite with respect to VNl
(x|xl = 1). We

can present both of these potentials with the same expres-
sion, if we keep the label xl as a variable:

VNl
(x) = −γ xl max

i

{ ∑
k∈Nl,i

xk

}
. (10)

This completes the specification of the new prior model.
The expression for the joint probability is of the form (1),
but with the new neighborhood potential VNl

(x), given in
(10).

Fig. 9 illustrates the advantage of the new, anisotropic
MRF model. The three masks correspond to vertical de-
tails at the resolution scale 21, for the house image with
input SNR=9dB. The initial mask was obtained by thresh-
olding ACR. Starting from this initial mask, we ran 10
iterations of the Metropolis sampler, with the isotropic
prior model, and repeat the procedure using the new prior
model. In both cases equal relative importance was given
to the prior model λ3 = 1.5λ2 and λ1 = 0. One can see

that the isotropic model removes background noise, but it
also removes useful edges. The new model, in contrast to
this, has the ability to preserve the useful edges well.

VII. Results and Discussion

The practical implementation of the algorithm is briefly
described in the Appendix. Its performance will be illus-
trated on two 256x256 images with artificial noise: the
peppers and the house images from Fig. 11. The first
one is rich with slow intensity variations and natural tex-
ture, while the second one is mainly characterized by sharp
edges and flat background. As a quantitative perfor-
mance measure, we use the signal to noise ratio defined
as SNR = 10 log10(Psignal/Pnoise), where Psignal is the
variance of the input image, and Pnoise the variance of
noise. This performance measure was chosen for the sake
of clear comparison with the most related methods from
literature, in particular the one of [17]. In Table 1, we also
indicate a simple calculation of the peak-signal-to-noise-
ratio PSNR = 10 log10(2552/mean squared error) values
from given SNR, for both images.

A. Choice of parameters

The proposed method relies on the magnitudes of
wavelet coefficients, their interscale dependencies and on
prior knowledge about the spatial clustering. The rela-
tive importance given to these three sources is expressed
through the parameters λ1, λ2 and λ3, respectively, in
Eq (8). To quantify the relative influence of the two sig-
nificance measures with respect to each other, and with
respect to the prior model at the same time, we set λ3 = λ,
λ1 = k1λ, and λ2 = k2λ. The choice of λ is then equivalent
to choosing a different “temperature” [14] of the Metropo-
lis sampler, which is not critical in this method. Therefore,
we fix it to a constant value (in particular, λ = 10) and
concentrate on the optimum choice of the relative influ-
ences k1 = λ1/λ3 and k2 = λ2/λ3. We computed the SNR
for different images, using a step 0.25 for k1 and k2 in the
range 0 to 4. Fig. 10 demonstrates that the performance
of the method is stable for a wide range of selected param-
eters. It also shows that better results are always achieved
by combining both significance measures instead of using
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Fig. 10. Resulting SNR corresponding to different values of the parameters k1 = λ1/λ3 and k2 = λ2/λ3, for different test images and
different standard deviations σ of added noise.

either of them alone, and that the benefit from a joint
conditional model is image-dependent. If we examine the
centers of the regions with maximum SNR, then it indeed
appears that for higher noise variance the optimal propor-
tion λ2/λ1 is bigger, i.e., that the use of interscale statis-
tics is more important. The parameters λ1/λ3 = 1.5 and
λ2/λ3 = 0.75 are near to optimal for all analyzed cases, so
we use these parameters for all subsequent results. The vi-
sual quality of results in Fig. 11 confirms the advantage of
using the joint conditional model over special cases, where
λ1 = 0 or λ2 = 0.

B. Implementation and execution time

We have implemented the proposed method with a 3-
subband decomposition as well, using the quadratic spline
wavelet from [20] like in [17]. For all results, we used the
same parameters λ1 : λ2 : λ3 = 1.5 : 0.75 : 1. With respect
to the 2-subband case, certain image-dependent improve-
ment is achieved at the expense of computation time. The
improvements in terms of SNR, are summarized in Table
1, and the differences in visual quality can be judged from
Fig. 12. In all cases, we have used three resolution scales.
We have measured the total execution time for 256x256
images, on a computer with Pentium III processor. For
the implementations with two and with three orientation
subbands, the corresponding execution times are 30s and
45s, respectively.

C. Quantitative results and discussion

Quantitative results for the two test images are summa-
rized in Table 1. The first method, that is used as a basis
for comparison, is [17]. It uses 3 orientation subbands and
is similar to a special case of our method, with λ1 = 0.
However, note that [17] uses APR with a heuristic condi-
tional model, the parameters of which need to be estimated
for each detail image at each scale and that it applies the
isotropic MRF prior model. For the peppers image, our
method achieves a significant improvement, which is bigger
for higher input SNR. For example, for input SNR=9dB
the new method is 1.6dB better, and for input SNR=0dB
it is 0.6dB better). For the house image, the results of the
new method are almost the same as those in [17]. One
can also see from the contour plots in Fig. 10 that for
the house image setting k1 = λ1/λ3 = 0 does not incur
such a big penalty on the resulting SNR as it does for the
peppers image. The computation time is approximately
the same for both methods, since the Metropolis sampling
procedure, takes the majority of computing time. The dif-
ferences in prior and conditional models are insignificant
in this respect: both prior models practically involve pair-
wise pixel interactions only and converge equally fast. The
performance of the new prior model and the isotropic one
from [17] can be visually compared in Fig. 13.

Table 1 also lists the results from [20]. The method
of [20] is considered one the best for detecting multiscale
edges from a noisy image. However, it makes all textures
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Fig. 11. Influence of the proposed joint conditional model on the visual quality of results. Top: noise-free image, noisy image SNR=3dB,
the result of the proposed method using the joint conditional model, and the corresponding result for λ1 = 0. Bottom: noise-free image,
noisy image SNR=0dB, the result of the proposed method using the joint conditional model, and the corresponding result for λ2 = 0. Two
orientation subbands are used in all cases.

Fig. 12. From left to right: enlarged parts of noise-free images, noisy images SNR = 9dB, and the results of the proposed method using 2
and using 3 orientation subbands.

disappear, as was noted by the authors themselves. For
this reason our method achieves a bigger improvement with
respect to [20] for smaller noise levels, where such textures
can still be reconstructed.

We have also included the results of Matlab’s spatially
adaptive Wiener filter. Its window size was optimized for

each input image to produce the maximum SNR. For both
test images these sizes were 3x3 for input SNR 9dB, 5x5
for input SNR 6 and 3dB and 7x7 for input SNR 0dB.
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Fig. 13. Comparing the performance of the isotropic and the anisotropic MRF prior model on a part of the house image. From left to right:
noise-free image, noisy image SNR = 9dB and the results of the 3-subband version of the proposed method, using isotropic MRF model
and using the new MRF model.

TABLE I

Comparison of quantitative results, expressed in SNR[dB], for different methods.∗

PEPPERS HOUSE

Input 9 6 3 0 9 6 3 0

New, 2 orientation subbands 16.3 14.6 13.0 11.3 17.2 15.6 14.4 13.2

New, 3 orientation subbands 16.6 15.0 13.4 11.6 17.9 16.4 14.9 13.4

Malfait and Roose [17] 15.0 13.7 12.4 11.0 18.0 16.4 14.9 13.3

Mallat and Hwang [20] 14.6 13.7 13.5 11.0 16.4 15.6 14.2 12.2

Matlab’s spatially adapt. Wiener 15.4 13.5 11.7 9.7 15.4 13.7 11.8 10.0

∗To compute the corresponding PSNR[dB], 13.6 should be added to all values for the peppers image,

and 14.9 should be added to all values for the house image.

VIII. Conclusion

In this paper, several issues were addressed to improve
Bayesian image denoising using prior models for spatial
clustering. A new MRF prior model was introduced to pre-
serve image details better. A joint significance measure,
which combines coefficients magnitudes and their evolu-
tion through scales was introduced. For the resulting, joint
conditional model a simple practical realization was pro-
posed and motivated via simulations. The advantage of the
joint conditional model in terms of noise suppression per-
formance was demonstrated on different images and for dif-
ferent amounts of noise. Some aspects that were analyzed
in this paper may be useful for other denoising schemes as
well: the realistic conditional densities of interscale ratios
obtained via simulations, and objective criteria for evaluat-
ing noise suppression performance of different significance
measures.

Appendix

The complete procedure in the proposed method is:

• Compute the discrete wavelet transform without
down-sampling
• For each orientation and for resolution scales 2j , 1 ≤
j ≤ 3
– For all coefficients wl, 1 ≤ l ≤ n compute signifi-
cance measures ml = (ωl, βl)

– Run the Metropolis algorithm:
∗ Initialize binary mask x and set Nlocal ← 0 and

Sl ← 0, for 1 ≤ l ≤ n
∗ Repeat Nglobal times

Repeat until all the positions l have been vis-
ited
· Choose l at random; set xc

l ← −xl and
Nlocal ← Nlocal + 1
· Compute p from Eq (8) and generate a ran-

dom number u from U[0,1]
· if p > u set xl ← xc

l

· If xl = 1 set Sl ← Sl + 1
– For 1 ≤ l ≤ n: Estimate the wavelet coefficients:
ŷl = wlSl/Nlocal

• Reconstruct the denoised image by applying the in-
verse wavelet transform.
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